### P2: Perception auditive



#### **Daniel Pressnitzer**

Laboratoire des Systèmes Perceptifs, CNRS & Département d'études cognitives, Ecole normale supérieure 29 rue d'Ulm, 75230 Paris cedex 05

daniel.pressnitzer@ens.fr

# Plan du cours

I. Bases, méthodes et concepts acoustique, psychophysique, physiologie

II. Caractéristiques élémentaires et applications champ audible, masquage, bande critique, non-linéarités, MP3, implants

#### III. Attributs perceptifs

sonie, (hauteur), localisation, timbre

IV. Analyse des scènes auditives organisation auditive, musique

V. Etudes en cours

mémoire auditive, effets de contexte

# Plan du cours

I. Bases, méthodes et concepts acoustique, psychophysique, physiologie

II. Caractéristiques élémentaires et applications champ audible, masquage, bande critique, non-linéarités, MP3, implants

#### III. Attributs perceptifs

sonie, hauteur, localisation, timbre

IV. Analyse des scènes auditives organisation auditive, musique

V. Etudes en cours

mémoire auditive, effets de contexte



- "Dimension" perceptive
- Liée à l'intensité acoustique
- Mais pas seulement

### Sonie et SPL

• Échelle des "Sones", son pur à 1KHz





S.S. Stevens

### Sonie et fréquence

• Échelle des "Phones", méthode comparaison



### Sonie et fréquence

- Lien entre les échelles, variabilité
- Mesure catégorielle, 62 oreilles





### Sonie et durée

Intégration temporelle



#### Sonie et spectre

• Échelle des sones: lois d'exposant différentes



Fig. 1-11 Fonctions de sonie de sons purs de différentes fréquences : 100, 1 000 et 8 000 Hz. (D'après Scharf, 1978)



Fig. 1-12 Fonctions de sonie d'un son pur de 1 000 Hz et d'un bruit blanc. (D'après Scharf, 1978)

### Sonie et spectre

• Bruit: effet de la bande critique





Fig. 1-14 Niveau d'isosonie en phones d'une bande de bruit ayant une fréquence centrale de 1 000 Hz à différents niveaux de pression acoustique en fonction de sa largeur. Au-dessus de 20 dB, la sonie commence à augmenter lorsque la largeur de la bande de bruit dépasse 160 Hz — largeur de la bande critique à 1 000 Hz. (D'après SCHARF, 1978)

### Seuils différentiels



Miller, 1947; Viemeister & Bacon, 1988

### Mécanismes

- Candidat intuitif: taux de décharge dans le nerf auditif?
- Bonne sensibilité (JND ~= 1dB)
- Grande étendue (140 dB)
- Effets de bande critique



### Mécanismes possibles

• Fibres à seuils étagés



### Mécanismes possibles

• Étalement du pattern d'excitation



FIG. 2.9 Psychoacoustical excitation patterns for a 1-kHz sinusoid at levels ranging from 20 to 90 dB SPL in 10 dB steps. The patterns were calculated on the basis of psychoacoustic data as described in Chapter 3.



### Mécanismes possibles

- Codage adaptatif
- Colliculus inférieur, ou nerf auditif?



### Modèles



### **Application: recrutement**





### Application: recrutement

• Illustration par modèle périphérique



### **Application: recrutement**



| Original | Pertes | Recrutement |      |
|----------|--------|-------------|------|
|          |        |             | stop |



#### Ressources

https://www.phon.ucl.ac.uk/cgi-bin/wtutor?tutorial=loudness

# Plan du cours

I. Bases, méthodes et concepts acoustique, psychophysique, physiologie

II. Caractéristiques élémentaires et applications champ audible, masquage, bande critique, non-linéarités, MP3, implants

#### III. Attributs perceptifs

sonie, hauteur, localisation, timbre

IV. Analyse des scènes auditives organisation auditive, musique

V. Etudes en cours

mémoire auditive, effets de contexte



- Cours de Alain?
- ou -> workshop

# Plan du cours

I. Bases, méthodes et concepts acoustique, psychophysique, physiologie

II. Caractéristiques élémentaires et applications champ audible, masquage, bande critique, non-linéarités, MP3, implants

#### III. Attributs perceptifs

sonie, hauteur, localisation, timbre

IV. Analyse des scènes auditives organisation auditive, musique

V. Etudes en cours

mémoire auditive, effets de contexte

### Le problème à résoudre

•Position spatiale non représentée en périphérie



Culling & Akeroyd, 2010

#### Indices

• Différences inter-aurales de temps (ITD)



**FIG. 6.4** Interaural time differences (ITDs) plotted as a function of azimuth. Adapted from Feddersen *et al.* (1957).

#### Indices

- Différences inter-aurales de temps (ITD)
- Limité aux fréquences graves pour sons purs



Figure 12.5 1666-Hz tone presented from the right side of the observer. 12.5a: sinusoid arriving at the right ear; 12.5b: sinusoid arriving at the left ear. There is a 0.6-ms interaural temporal difference which equals the period of the 1666-Hz tone. At point A the waveforms are in phase.

#### Indices

- Différences inter-aurales d'intensité (ILD)
- Limité aux fréquences aigües pour sons purs





### Latéralisation

• Théorie "duplex"





Lord Rayleigh

### Localisation

Cône de confusion



**FIG. 6.7** A cone of confusion for a spherical head and a particular ITD. All sound sources on the surface of the cone would produce that interaural time delay. For details of how to calculate the cone of confusion see Mills (1972).

### Localisation

- Indice monaural: filtrage position-dépendant
- Head-related transfer function (HRTF)





### Localisation

- Indice monaural: filtrage position-dépendant
- Head-related transfer function (HRTF)
- Combinée avec la source



Fig. 3-15 Hauteur apparente de haut-parleurs en fonction de leurs positions réelles dans le plan vertical, suivant le type de signaux qu'ils émettent. (ROFFLER et BUTLER, 1968 a, b)

A : sons purs. a, 250 Hz ; b, 400 Hz ; c, 600 Hz ; d, 900 Hz ; e, 1 400 Hz ; f, 2 000 Hz ; g, 3 200 Hz ; h, 4 800 Hz ; i, 7 200 Hz ; j, toutes fréquences confondues.

B : sons purs et sons complexes.  $\Delta,\,600$  Hz ;  $\Box,\,4\,800$  Hz ;  $\Diamond,$  bande de bruit  $>2\,000$  Hz ;  $\bigcirc,$  bande de bruit  $>8\,000$  Hz ;  $\ast$ , bande de bruit  $>2\,000$  Hz ;  $\boxtimes$ , bruit à large spectre.

### Localisation

• HRTF unique à chaque personne





### Localisation et réverbération

Réflections multiples





### Localisation et réverbération

- Réflections multiples
- Effet de précédence



Hans Wallach



### Mécanismes

Sélectivité à ITD



### Modèles

- Corrélation inter-aurale (Jeffress, 1948)
- Canaux hémisphériques (Harper & McAlpine, 2004)





Α
## Plan du cours

I. Bases, méthodes et concepts acoustique, psychophysique, physiologie

II. Caractéristiques élémentaires et applications champ audible, masquage, bande critique, non-linéarités, MP3, implants

#### III. Attributs perceptifs

sonie, hauteur, localisation, timbre

IV. Analyse des scènes auditives organisation auditive, musique

V. Etudes en cours

mémoire auditive, effets de contexte

- Son contient des informations sur l'objet vibrant
- Décoder ces informations pour reconnaitre source
- Ou suivre son comportement (e.g. parole)



#### Définition

- "Ce qui distingue deux sons de même hauteur, sonie, durée"
- Spectre ?





#### Définition

- "Ce qui distingue deux sons de même hauteur, sonie, durée"
- Nombreux indices possibles



## **Dimensions perceptives**

Analyse multidimensionnelle



## **Dimensions perceptives**

• Espace de timbre pour instruments de musique





#### **Dimensions perceptives**



McAdams et al., 1995

#### **Dimensions perceptives**



McAdams et al., 1995





- Nouveaux "attributs" auditifs ?
- Variabilité entre études



#### Dimensions et reconnaissance

Demo [ASA 57]: gamme jouée sur 3 octaves par un basson, puis transposition sur 3 octaves d'une note de basson



#### Reconnaissance de sources

- Auditeurs humains excellents pour reconnaître les sources?
- Mesures comportementales de performance
  - Avec quelle rapidité reconnait-on un son ?
  - Quelle durée minimale est nécessaire pour la reconnaissance ?

#### Corpus



- Instruments de musique et voix
- Nombreux exemplaires par catégorie, même registre hauteur

#### Temps de réaction



- Reconnaissance rapide et précise
- Spécialement pour la voix

Agus, Suied, Thorpe, & Pressnitzer (2012) J. Acoust. Soc. Am.

#### Modèle auditif



Avantage de la voix non prédit par modèle

Agus, Suied, Thorpe, & Pressnitzer (2012) J. Acoust. Soc. Am.

#### Gating



Reconnaissance pour sons extrêmement courts

Suied, Agus, Mesgarani, Thorpe, & Pressnitzer, (2014) J. Acoust. Soc. Am.

### Quels indices ?



- Indices spectro-temporels inspirés de physio puis SVM
- Classification précise (98.7%) & corrélat avec psychophysique

Patil, Pressnitzer, Shamma, & Elhilali (2012) PLoS Computational Biology

## Neuroimagerie

• Sélectivité à catégories de sons, e.g. la voix



## Neuroimagerie

• Sélectivité à catégories de sons, e.g. la voix vs instruments



#### Agus, Paquette, Suied, Pressnitzer, & Belin, 2017

## Neuroimagerie

• Sélectivité à catégories de sons, e.g. la voix vs chimères



#### Agus, Paquette, Suied, Pressnitzer, & Belin, 2017

### Neuroimagerie

- Sélectivité à catégories de sons, e.g. la voix
- Influence de la tâche





#### Deux approches ?



Pressnitzer et al., 2013 Agus et al., 2018

#### Deux approches ?



### **Application clinique**

• Comparaison normo-typiques (NT) et personnes autistes (ASD)



Lin, Agus, Suied, Pressnitzer, Yamada, Komine, Kato, & Kashino, 2016

## Plan du cours

I. Bases, méthodes et concepts acoustique, psychophysique, physiologie

II. Caractéristiques élémentaires et applications champ audible, masquage, bande critique, non-linéarités, MP3, implants

#### III. Attributs perceptifs

sonie, hauteur, localisation, timbre, rugosité

IV. Analyse des scènes auditives

organisation auditive, musique

V. Etudes en cours

mémoire auditive, effets de contexte

#### Définition





#### Approche spectrale





#### Approche temporelle





Terhardt, 1974

#### Modèle



Tramo, 1996

#### Consonance et dissonance

• Pythagore: parmi l'infinité d'intervalles possibles entre deux sons, certains sont 'consonants'



#### Consonance et dissonance

• Les consonances sont des rapports simples (1:1, 2:1, 3:2, 4:3)

| Consonances | octave, quinte, quarte |  |
|-------------|------------------------|--|
| Dissonances | autres intervalles     |  |

TAB. 4.1 - Les consonances pythagoriciennes, VIème siècle av. J.C.

#### Consonance et dissonance

• Harmonie tonale occidentale

| Consonances parfaites   | unisson, octave                           |
|-------------------------|-------------------------------------------|
| médianes                | quinte, quarte                            |
| imparfaites             | tierce majeure et mineure                 |
| Dissonances imparfaites | sixte majeure et septième mineure         |
| médianes                | seconde majeure et sixte mineure          |
| parfaites               | seconde mineure, triton, septième majeure |

TAB. 4.2 – La classification des consonances selon Jean de Garlande, ("De mensurabilis musice", env. 1250).

| Consonances parfaites | unisson, octave, quinte                                                      |
|-----------------------|------------------------------------------------------------------------------|
| imparfaites           | tierce majeure et mineure, sixte majeure et mineure                          |
| Dissonances           | (quarte), seconde majeure et mineure,<br>septième majeure et mineure, triton |

TAB. 4.3 – La classification des consonances selon Jean de Murs ("Ars Contrapuncti") ou Philippe de Vitry ("Ars contrapunctus"), fin du XIVème siècle. D'après Tenney (1988).

#### Consonance et dissonance

- La première expérience scientifique connue
- Kepler, Galileo Galilei, Newton, Leibniz, Euler, Rameau...
- Approche perceptive de Helmholtz




#### Intervalles consonants et dissonants



#### Intervalles consonants et dissonants



Centre Frequency (Hz) Time (ms)

Triton (45/32)

Quinte (3/2)

#### Modèle



Helmholtz, 1877

#### Modèle: composition spectrale



Demo [ASA 58]: un choral de Bach est joué:

- A) gamme diatonique, sons harmoniques
- B) gamme étirée, sons étirés
- C) gamme étirée, sons harmoniques
- D) gamme diatonique, sons étirés





### en musique?



McDermott et al., Nature, 2016