The deep links between auditory perception and memory

Daniel Pressnitzer

Laboratoire des Systèmes Perceptifs, CNRS & Département d'études cognitives, École normale supérieure

Introduction

"A tumbled entanglement of the most different kinds of motion, complicated beyond conception". H. Helmholtz (1877)

- Auditory perception and memory are deeply intertwined
- Illusions are a unique window on these links
- Musicians knew all this all along...

Perception and Memory

- Prelude: "Laurel" and "Yanny"
- Auditory memory acquisition
- Prior knowledge and auditory scene analysis
- Prior context and basic auditory features

Perception and Memory

- Prelude: "Laurel" and "Yanny"
- Auditory memory acquisition
- Prior knowledge and auditory scene analysis
- Prior context and basic auditory features

Do you hear "Laurel" or "Yanny"?

This is the way the world ends. Not with a bang but a "laurel". Or a "yanny". No one can decide.

When everyone's brain makes a little world out of sensory input, and everyone's world is just a little bit different, can you really know anyone? (ALYSSA FOOTE

- "Laurel" in low frequencies, "Yanny" in high frequencies
- Online experiment, "Do you hear Laurel or Yanny?"
- How confident are you?

- The same sound may produce very strong individual percepts
- Correlations with gender, musicianship, English/French...
- A possible interpretation: interaction between acoustics and auditory experience, *i.e.* "memory"

Perception and Memory

- Prelude: "Laurel" and "Yanny"
- Auditory memory acquisition
- Prior knowledge and auditory scene analysis
- Prior context and basic auditory features

- Noise to observe the time-course of new auditory memories
 - never heard before
 - meaningless
 - unpredictable

Our task

- 1s noise sample
- Repetition detection task
- RefRN identical throughout block

-> Improvement for RefRN=learning

Results

- Performance advantage for reference samples
- Due to an increase in sensitivity during the block
- Decrease for RN: criterion effect

- Modest increase on average
- But inter-blocks variability

- Modest increase on average
- But inter-blocks variability: no learning

- Modest increase on average
- But inter-blocks variability: almost perfect learning

- Learning either absent, or perfect
- When it occurs, extremely fast and long-lasting

Agus, Thorpe, & Pressnitzer, Neuron, 2010

Results

- Performance advantage for RefRN
- Due to a rapid improvement from chance to near perfect

Long-term memories

Agus, Thorpe, & Pressnitzer, Neuron, 2010 Agus & Pressnitzer, J. Acoust. Soc. Am., 2013 Kang, Agus, & Pressnitzer, J. Acoust. Soc. Am., 2017

- No obvious acoustic landmarks
- Noise exemplar becomes salient through learning

• Event-related potentials after learning

"Memory-evoked" potentials

- Early latency and topography suggest sensory origin
- Can be decoded in single trials

Andrillon, Kouider, Agus, & Pressnitzer, Current Biology, 2015

Diverted attention

No task-directed attention needed

Andrillon, Kouider, Agus, & Pressnitzer, Current Biology, 2015

Seeing auditory memory in pupil size

- Pupil size reflects neurotransmitter release, related to memory
- In the active task, memorized sounds induce different pupil sizes

Kang & Pressnitzer

Seeing auditory memory in pupil size

- Passive listening without a task?
- Sounds *being implicitly memorized* decoded from pupil size

Kang, di Liberto & Pressnitzer

Learn while you sleep!

Sleep study

• REM induces learning,

Andrillon, Pressnitzer, Léger, & Kouider, Nature Communications, 2017

Musical interlude

Lower Limits of Auditory Periodicity Analysis

NEWMAN GUTTMAN AND BELA JULESZ

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey (Received 10 January 1963)

 The original use of noise to probe auditory memory was from a pioneer of computer music

Musical interlude

Christian Fennesz, "Happy Audio"

- Memory is at the core of many classical forms
- In some cases, memory seems the main structural factor

- Auditory memory is fast and efficient
- Unsupervised/incidental learning without focused attention
- Leaves an instant trace in sensory cortex
- -> We probably memorize more about sounds than we "know"

Perception and Memory

- Prelude: "Laurel" and "Yanny"
- Auditory memory acquisition
- Prior knowledge and auditory scene analysis
- Prior context and basic auditory features

- Ill-posed problem, impossible to solve as is
- Memory to internalize prior knowledge as additional cues

• Illusions can reveal how internal knowledge shapes perception

Organisation verticale

- Sources "complexes"
 - regrouper ce qui appartient à une source
- Sources "transparentes"
 - séparer ce qui appartient à des sources distinctes
- Indices possibles:
 - Localisation
 - Synchronie
 - Harmonicité

Organisation verticale: Harmonicité

Organisation horizontale

- Sources étendues dans le temps
 - suivre une source en dépit d'interruptions potentielles

Indices possibles:

- Localisation
- Proximité en fréquence
- Proximité en temps
- Timbre

Organisation horizontale et verticale

- Une grande variété d'indices
- Concordants ou non

• A useful rule: similar sounds tend to come from a same source

Pressnitzer & Hupé, Current Biology 2006

Bistabilité auditive et visuelle

- Comparaison alternances perceptives dans deux modalités
- Le dilemme de l'organisation perceptive: Grouper ou Séparer?
- Caractéristiques de la bistabilité visuelle:
 - * Exclusivité
 - * Aléatoire
 - * Inevitabilité

[Leopold and Logothetis, 1999]

Exclusivité

• Percepts auditifs (et visuels) sont mutuellement exclusifs

Aléatoire

- Durée de phase stable après le 1^{er} percept (groupé)
- Indépendance statistique entre phases successives

Aléatoire

- Distribution log-normale pour la durée des percepts
- Identiques pour les deux modalités

Inévitabilité

Contrôle volontaire

- Effet de l'intention, mais alternances inévitables
- Pas d'augmentation de la durée des percepts cibles [Levelt, 1968]

Biais Audition et Vision

Indépendance des biais idiosyncratiques entre modalités

- Same acoustics, different conscious percept
- A powerful tool to explore inter-individual differences

Kondo, Pressnitzer et al., Scientific Reports, 2018

Musical interlude

Implied polyphony

Davis, S. Music Perception, 2006

Davis, S. Music Theory Online, 2011

- Prior knowledge provides necessary information to solve the illposed problem of auditory scene analysis
- When sensory information is ambiguous, knowledge decides
- Similar to classic bistable illusions in vision

Wittgenstein, 1953/1958

Perception and Memory

- Prelude: "Laurel" and "Yanny"
- Auditory memory acquisition
- Prior knowledge and auditory scene analysis
- Prior context and basic auditory features

You will hear a sequence of tones, a short pause, and then two final tones. Does the pitch go up or down between the two final tones?

• What you have just heard: Shepard tones

Shepard, R. J. Acoust. Soc. Am., 1964

•Ambiguous pitch shift at 6 semi-tones interval

• Perception can be almost *fully* determined by context

Time-course

How long does it take?

• Bias observed for a 20-ms long context

How much does it last?

• Bias persists for over 30s

Something to do with Shepard tones? -

Random spectra

• Generalisation to random spectra, limited by resolvability

Neural correlates (MEG)

• MEG response suppression correlates with behavior

Speculation

- "Hidden states" to encode memory
- Same neurons could process information and encode memory

Stokes, TICS, 2015 Hasson, Chen, & Honey, TICS, 2015

Musical interlude

• Proximity cues and cyclic Shepard tones for "infinite" scale

- Perception of large frequency shifts can be biased by context
- Bias is fast and long-lasting
- Contextual memory processes, possibly based on adaptation

Summary

- Auditory perception and memory are deeply intertwined
- Illusions are the rule, not the exception
- Often they match the world, sometimes they are crafted by scientists or musicians