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Associative learning shapes the neural code for
stimulus magnitude in primary auditory cortex
Daniel B. Polley*, Marc A. Heiser, David T. Blake, Christoph E. Schreiner, and Michael M. Merzenich

Coleman Memorial Laboratory, W. M. Keck Center for Integrative Neuroscience, and Departments of Otolaryngology and Physiology, University of
California, San Francisco, CA 94143

Contributed by Michael M. Merzenich, October 12, 2004

Since the dawn of experimental psychology, researchers have
sought an understanding of the fundamental relationship be-
tween the amplitude of sensory stimuli and the magnitudes of
their perceptual representations. Contemporary theories support
the view that magnitude is encoded by a linear increase in firing
rate established in the primary afferent pathways. In the present
study, we have investigated sound intensity coding in the rat
primary auditory cortex (AI) and describe its plasticity by following
paired stimulus reinforcement and instrumental conditioning par-
adigms. In trained animals, population-response strengths in AI
became more strongly nonlinear with increasing stimulus inten-
sity. Individual AI responses became selective to more restricted
ranges of sound intensities and, as a population, represented a
broader range of preferred sound levels. These experiments dem-
onstrate that the representation of stimulus magnitude can be
powerfully reshaped by associative learning processes and suggest
that the code for sound intensity within AI can be derived from
intensity-tuned neurons that change, rather than simply increase,
their firing rates in proportion to increases in sound intensity.

intensity � plasticity � Pavlovian � sound � perceptual learning

A complete rendering of the neural code for a stimulus event
must portray not only how the stimulus engages the receptor

sheet over space and time but also how stimulus magnitude
impacts the spatiotemporal patterns of neural responses in
central sensory structures. Magnitude is an inherent property of
all stimuli, and its subjective perceptual estimation, when assayed
psychophysically, conforms to a power function whereby a
constant percentage increase in the stimulus magnitude pro-
duces a constant percentage increase in the sensed effect (1).
Neurophysiological recordings have shown that increasing stim-
ulus magnitude is transduced by peripheral sense organs follow-
ing the power law then ‘‘represented’’ by a linear increase in
response strength across sensory system levels feeding ‘‘primary’’
cortical areas (2–4). In the auditory system, the magnitude and
modulation of the sound-pressure envelope provide information
that is essential for the perception of the distance separating an
animal or human from other sound sources and convey critical
information for vocal communication (5). Although the psycho-
physical thresholds for human loudness discrimination (1, 6) and
putative neural codes for loudness based on firing rate or spatial
patterns of excitation have been described in the eighth nerve,
auditory midbrain and primary auditory cortex (AI) (7–13), very
little is known about how, or if, loudness discrimination thresh-
olds can be altered by training or how the effects of such
perceptual learning would affect the hypothesized ‘‘neural
codes’’ for loudness.

In the present study, we demonstrate that training animals to
associate changes in sound intensity with reward induced large-
scale plasticity in the neuronal response representation of sound
intensity in the AI. Rats were trained in three stimulus-reward
conditioning paradigms: (i) instrumental conditioning (IC), in
which reward delivery depended on motor actions guided by
auditory feedback; (ii) paired stimulus reinforcement (PSR), in
which particular sound intensities were reliably paired with

rewards without the requirement for motor responses; and (iii)
unpaired stimulus reinforcement (USR), in which exposure to
sound stimuli of varying intensity was not reliably paired with
reward. We adopted a yoked control experimental design to
ensure that IC, PSR, and USR rats received an identical sensory
stimulus controlled by the IC rat and differed only in their
requirements for reward delivery (Fig. 1a). After training,
discharge rate versus intensity level functions (RLFs) were
derived from neural responses in AI and compared with the
responses obtained from naı̈ve control (NC) rats.

Methods
Behavioral Training. Twenty-five adult Sprague–Dawley rats (age,
12–16 wk) were used in this study. Rats were divided into four
treatment groups: NC (n � 5), IC (n � 8), PSR (n � 5), and USR
(n � 7). Behavioral training took place over 4–7 wk in a
two-tiered behavioral apparatus contained within a sound-
attenuated chamber. Each tier was outfitted with a single
acoustically transparent wire cage (Fig. 1a). The top cage was
used for ‘‘bull’s-eye’’ IC, and the bottom cage was partitioned
into two separate zones, one dedicated for USR and the other
for PSR. The behavior of rats in the PSR and USR groups was
not measured. In the bull’s-eye task, rats were allowed to move
freely on a rectangular platform (58 � 38 cm) that rested on
force transducers. A LABVIEW program (National Instruments,
Austin, TX) triangulated the rat’s position in two-dimensional
space in real time according to the distribution of weight across
the force transducers. A speaker (Vifa, Danish Sound Technol-
ogy, Videbæk, Denmark) suspended 44 cm above the platform
continuously delivered an amplitude-modulated stimulus for the
duration of a single trial. The training stimulus was a band-
limited noise (0.65-octave bandwidth) with an amplitude enve-
lope modulated by 10% at 8 Hz. For each trial, the center
frequency of the band-limited noise stimulus was randomly
selected from a 2.2- to 28-kHz range. The intensity of the
band-limited noise was proportional to the distance between the
rat and bull’s-eye (see supporting information, which is pub-
lished on the PNAS web site, for details).

For each trial, the computer pseudorandomly selected a
circumscribed area on the platform to serve as a virtual bull’s-
eye. The rat’s task, on any given trial, was to use the sound
intensity cues to locate the position of the bull’s-eye within 3 min
to receive a pellet reward. As training progressed, the bull’s-eye
diameter was decreased from 10 cm to 4 cm, and the amount of
time the rat was required to continuously remain within the
perimeter of the bull’s-eye was increased from 0 s to 1.5 s to
discourage random search strategies and promote identification

Abbreviations: AI, primary auditory cortex; IC, instrumental conditioning; PSR, paired
stimulus reinforcement; USR, unpaired stimulus reinforcement; RLF, discharge rate versus
intensity level function; BL, best level; NC, naı̈ve control; SPL, sound pressure level; K–S,
Kolmogorov–Smirnov.
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of the bull’s-eye position through the use of sound intensity cues.
As a final test to ensure that the rat’s behavior was specifically
controlled by sound level, three rats that had been trained for
several weeks to locate bull’s-eyes associated with high-intensity
stimuli were subjected to a series of ‘‘catch trials’’ in which the
sound-level-reward contingency was suddenly reversed so that
the bull’s-eye was associated with a low-intensity stimulus. In all
cases, the path length and trial time exhibited an immediate and
substantial increase, demonstrating that behavior was truly
guided by sound level.

Electrophysiological Recording. Rats were anesthetized with so-
dium pentobarbital (50 mg�kg followed by �15 mg�kg supple-
ments as needed), the auditory cortex was surgically exposed,
and multiunit neural responses were recorded with parylene-
insulated tungsten microelectrodes (1–2 M�; FHC, Bowdoin-

ham, ME). Recording sites (�20 per mm2) were evenly distrib-
uted across the AI tonotopic map to sample neural responses
with characteristic frequencies ranging from 1 to 30 kHz. At each
site, the electrode was lowered 450–600 �m orthogonal to the
pial surface, roughly corresponding to layer IV. Frequency�
intensity response areas were reconstructed by presenting 50
pure-tone frequencies (20-ms duration, 5-ms raised cosine
ramps) at each of eight sound intensities to the contralateral ear.
The ipsilateral ear was plugged with sound-attenuating putty to
ensure that sound stimuli were presented monoaurally. AI was
defined based on short latency (8–20 ms) evoked onset responses
in the most medial auditory field containing a complete tono-
topic gradient running at �15° relative to the horizontal plane.
Recordings made outside of this frequency gradient that had
long latency responses, unusually high thresholds, or very broad
tuning were considered to be non-AI sites and were not included
in this analysis.

Once we were certain that AI had been identified, we began
a more thorough analysis of intensity tuning in AI neurons. Spike
RLFs were derived from a subset of recording sites by presenting
tone pips (100-ms duration with 500-ms interstimulus intervals)
at the characteristic frequencies defined for a particular site at
sound levels ranging from 0- to 80-dB sound pressure level (SPL)
in 2-dB SPL increments. Sound levels were presented in a
random order and repeated 10 times each. The neural response
strength at each sound level was obtained by calculating the
average spike rate within a 30-ms window beginning at the onset
response and subtracting the average baseline spike rate col-
lected during the 50 ms preceding stimulus onset. The following
measures were derived from each RLF: (i) minimum response
threshold, (ii) transition point, (iii) best level (BL), and (iv)
monotonicity. If the spike rate remained at zero for two con-
secutive sound levels, all sound levels less or equal to the greater
of the two levels were considered subthreshold. Minimum
response threshold was defined as the first sound level in the
suprathreshold region of the RLF (see Fig. 3, arrow). In many
cases, the RLF consisted of a fast-growing low-level portion and
a saturated or decreasing response function at higher sound
levels. The transition point was defined as the highest sound level
within the fast-growing region (see Fig. 3, star). BL was defined
as the sound level that evoked the greatest magnitude response
(see Fig. 3, diamond). Monotonicity was defined as the slope of
the RLF between the transition point and the highest sound level
estimated by a linear regression analysis. In the event that the
RLF increased linearly above the minimum response threshold
(e.g., see Fig. 3a) and a transition point could not be determined,
a linear regression analysis was performed on all sound levels
above threshold. In both cases, the slope of the regression
function was used as a quantitative measure of monotonicity,
whereby a negative slope corresponded to a nonmonotonic
response and a slope of zero or greater corresponded to a
monotonic response function. All analyses were performed blind
to experimental condition.

Results
We created a loudness discrimination task in which the IC rat
had to remain motionless over a small region on a two-
dimensional platform (the bull’s-eye) to obtain a food reward.
The virtual bull’s-eye target was consistently associated with
either the high (70-dB SPL) or low (20-dB SPL) end of a 50-dB
intensive spectrum. The spatial position of the bull’s-eye varied
randomly for each trial. In an adaptive procedure, the loudness
of band-limited noise stimuli were proportional to the distances
between the rat and bull’s-eye, which required that rats use
sound intensity as the cue to locate the bull’s-eye location.

All IC rats learned to discriminate fine changes in loudness to
approach the target intensity bull’s-eye then remain motionless
over the bull’s-eye until rewarded. In the initial days of training,

Fig. 1. Design and performance measurements in an auditory learning task.
(a) Rats in IC, USR, and PSR training groups were simultaneously exposed to the
same amplitude-modulated stimulus. A computer continuously adjusted the
sound intensity in real time as a function of the distance between the rat and
the virtual bull’s-eye, a randomly selected spatial location associated with
either a 20- or 70-dB SPL stimulus. IC rats identified and navigated a sound
intensity gradient to find the bull’s-eye and obtain a food reward. Reinforce-
ment in USR and PSR rats was independent of their behavior. In PSR rats, the
reward was paired to reward delivery for the IC rat and, therefore, paired with
a particular sound intensity, and, in USR rats, food was available ad libitum.
The filled black circle, the X, and the red circle drawn in the computer monitor
illustrate the current position of the IC rat, the position of the bull’s-eye, and
the diameter of the bull’s-eye, respectively. The color gradient on the bull’s-
eye platform represents the gradient of sound levels the rat experienced for
a particular trial. (b) Black lines represent a rat’s path in a single trial over three
stages of training. The starting point for the trial is indicated by the star; the
position and diameter of the bull’s-eye are represented by an X and red circle,
respectively. (Scale bar, 10 cm.) (c) Average path length per day shown relative
to the behavioral breakpoint for all rats. Arrows indicate when the single path
data from training days 21 (b2) and 32 (b3) shown in b occurred relative to the
breakpoint. (d) Change in path length before, immediately after, and 1 wk
after the behavioral breakpoint. Asterisks indicate P values �0.0005 from
paired t tests.
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rats remained along the perimeter of the bull’s-eye platform
(Fig. 1b Left). Over a period of several weeks, the path length to
the bull’s-eye decreased (Fig. 1b Center and Right). The average
path length initially f luctuated around a relatively high level over
several days and then increased slightly for 1 d, operationally
defined as the ‘‘behavioral breakpoint,’’ before dropping to
consistently lower values for the remainder of training (Fig. 1c).
The decrease in path length between the breakpoint and the
following day was significant (t � 4.93, P � 0.005), but the
increase between the breakpoint and the prior day was not (t �
1.89, P � 0.05). Furthermore, the average path length after the
behavioral breakpoint was significantly shorter than before the
behavioral breakpoint and continued to remain at a lower value
1 wk later (paired t test; P � 0.0005 for both comparisons) (Fig.
1d). The time required to find the bull’s-eye did not change
significantly over the course of training [F(16,64) � 1.36, P �
0.05], which, when considered in conjunction with the decrease
in path length, indicates that the rats moved more slowly as
training progressed.

Substantial changes in the cortical encoding of sound intensity
were recorded in IC (n � 8, 170 sampled sites) and PSR (n � 5,
95 sites) rats compared with NC (n � 5, 64 sites) and USR (n �
7, 107 sites) rats after 4–7 wk of intensity discrimination training.
AI was distinguished from other auditory cortical fields based on
tonotopic maps reconstructed from high-density (�20 penetra-
tions per mm2) sampling of characteristic frequency tuning. AI
was reliably identified by a continuous and complete low–high

tonotopic gradient running caudal to rostral at an �15° angle
relative to the horizontal plane. RLFs were derived from a subset
of recording sites judged to be within AI. Neural firing rate
recorded in NC and USR rats typically increased continuously
(monotonically) with increases in sound intensity, and the sound
intensity that evoked the greatest response, the BL, was clustered
around the highest sound intensities (Fig. 2a Upper). After either
PSR or IC training, neural responses were more frequently tuned
to a restricted range of sound intensities, and BLs were more
evenly distributed across the intensive range (Fig. 2a Lower).
Quantitative comparison of the BL distributions from NC rats
revealed a significant skewness toward high intensities compared
with either PSR or IC rat BL distributions [two-sample Kol-
mogorov–Smirnov (K–S) tests: PSR, P � 0.005; IC, P � 0.0001]
(Fig. 2 c and d). BL distributions from NC rats were not different
from the distributions recorded in USR rats (two-sample K–S
test; P � 0.05) (Fig. 2b).

By using a 50% decrease in firing rate at the highest sound
intensity relative to the firing rate at the BL as a rough index of
a nonmonotonic response, we observed that 14% and 18% of
recording sites were nonmonotonic in NC and USR rats, re-
spectively. By contrast, 38% and 32% met that criterion in PSR
and IC rats, respectively. A quantitative analysis of monotonicity
distributions between NC and USR recordings confirmed that

Fig. 2. Associative learning changes the encoding of sound intensity in AI
neurons. (a) Neurograms depict all RLFs recorded within AI from a single
animal in each group. Each row represents a RLF from a single recording site,
with the firing rate represented by a pseudocolor scale. Rows are sorted by BL
such that BLs that correspond to lower sound intensities are presented at the
bottom of each neurogram. Response at each intensity are normalized to the
response evoked by the BL (100%�blue). (b–d) Cumulative percentage histo-
grams compare the distributions of BL values for NC rats (black line for all
graphs) with USR (b), PSR (c), and IC (d) rats. Significant differences in BL
distributions obtained with a two-sample K–S test are indicated for each
comparison.

Fig. 3. Associative learning increases the proportion of nonmonotonic RLFs.
(a–c) Example RLFs illustrate the minimum response threshold, transition
point, and BL with an arrow, star, and diamond, respectively. (a) Note that in
linearly increasing RLFs, the transition point cannot be defined. The red
dotted line in each example depicts the slope of the linear regression line used
to calculate monotonicity. (d) Decrease in path length (after breakpoint–
before breakpoint) is significantly correlated with the average RLF slope. The
relationship is fit with a linear regression. (e–g) Cumulative percentage func-
tions depict the distribution of monotonicity values in USR (e), PSR ( f), and IC
(g) rats. The distribution of monotonicity values from NC rats is shown as a
black line in each graph for comparison.
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RLF slopes were predominantly monotonic in both groups and
that their distributions did not differ (two-sample K-S test, P �
0.05) (Fig. 3e). In PSR and IC rats, by contrast, the distributions
of slope functions were significantly shifted toward nonmono-
tonic values compared with NC distributions (two sample K–S
tests: PSR, P � 0.005; IC, P � 0.0005) (Fig. 3 f and g). As a result,
a significantly greater proportion of neural responses were tuned
to restricted ranges of moderate or low sound intensities in
trained animals.

The increased proportion of nonmonotonic RLFs in trained
animals was not simply the byproduct of an overall greater level
of cortical inhibition after training. Spontaneous (8.47 � 0.6
versus 7.04 � 0.41 spikes per s; t � 1.91, P � 0.05) and BL-evoked
(121.51 � 3.93 versus 119.37 � 4.09 spikes per s; t � 0.36, P �
0.05) firing rates measured in trained (average of IC and PSR
groups) versus untrained (NC rats) animals respectively were not
different after training. Spectral tuning curve bandwidths mea-
sured 20 dB above threshold were significantly broader in trained
(average of IC and PSR groups) animals than in NC (1.25 � 0.03
versus 1.09 � 0.03 octaves; t � 3.66, P � 0.0005). This difference
is likely attributable to the spectral bandwidth (0.65 octave) used
in the training stimulus, given that continuous exposure to wide
band noise has been shown to increase receptive field size in
younger rats (14). Thus, cortical response features unrelated to
sound intensity were either unchanged or slightly more excitable
in PSR and IC rats, whereas cortical responses to higher intensity
stimuli became selectively suppressed.

Importantly, nonmonotonicity was significantly correlated
with the extent of behavioral improvement in the bull’s-eye task.
Upon screening all measured physiological variables as a cor-
relate of the instrumental learning (see supporting information),
only the mean slope value was significantly correlated with the
behavioral improvement (r2 � 0.73, P � 0.01), whereby rats with
more negative (nonmonotonic) RLF slopes also showed the
greatest decrease in path length after the behavioral breakpoint
compared with that before the behavioral breakpoint (Fig. 3d).

We observed several important differences between the plas-
ticity expressed in IC versus PSR rats that directly pertain to the
different behavioral requirements in the two tasks. In the
instrumental learning task, the IC rat located the bull’s-eye by
following a sound intensity gradient. In IC rats, therefore, all
intensities, including the target intensity, provided information
crucial for obtaining rewards. For PSR rats, in contrast, only
intensities at or near the target intensity predicted the onset of
reward. Based on this difference, we formulated two hypotheses:
(i) The specific conditioning strategy (high- versus low-intensity
sounds paired with reward) would potentiate the neural response
to stimuli presented at the target intensities in PSR, but not IC,
rats, and (ii) BL values in IC rats should be better contained
within the range of intensities encountered in the bull’s-eye task
(20- to 70-dB SPL) than in PSR rats. Subsequent analysis upheld
both of these predictions. We found that neural response
strengths evoked by tones played at or near the intensity that
immediately preceded rewards were selectively potentiated in
PSR rats but not in IC rats (Fig. 4a). The difference in neural
responses at each intensity (mean firing rate in high-intensity-
trained rats minus mean firing rate in low-intensity-trained rats)
was strongly correlated with an idealized difference function in
which the responses were selectively potentiated at or near the
target intensity (Fig. 4a, gray shading) in PSR rats (r � 0.9, P �
0.001) but not in IC (r � 0.42) or USR (r � �0.31) rats. The
correlation strength was stable across a broad range of idealized
difference function models (see supporting information). Fur-
thermore, we found that a significantly greater proportion of
recordings sites had BL values distributed within the range of
sound intensities encountered in the bull’s-eye task (20- to 70-dB
SPL) in IC rats (81%) compared with PSR rats (69%; �2 � 4.2;
P � 0.05). Therefore, the different behavioral requirements

between IC and PSR learning correspond to predictable differ-
ences in the expression of plasticity. The distribution of mono-
tonicity and minimum response threshold did not differ between
high-intensity-target-trained versus low-intensity-target-trained
animals in the USR, PSR, or IC groups (two-sample K–S tests,
P � 0.05 for all tests).

Changes in sound intensity representation described at indi-
vidual recording sites translate into distinct cortical population

Fig. 4. Plasticity of the cortical population intensity code. (a–d) Data from
NC, USR, PSR, and IC rats are shown in black, red, green, and blue, respectively.
(a) Plot of the difference between neural response magnitude at each sound
intensity in low-target-trained rats (20 dB) and responses to each sound
intensity in high-target-trained rats (70 dB). Gray shading represents a hypo-
thetical difference function in which responses were potentiated near the
target intensity. The correlation between the actual response and the ideal-
ized response was calculated, and the Pearson correlation coefficient is
shown. (b) Population growth of magnitude functions created by averaging
all individual RLFs in NC, USR, PSR, and IC rats. (c) Absolute change in response
strength between consecutive 8-dB intensity bins. Yellow shading indicates a
40-dB range over which the absolute change in response remained fairly
constant for all groups. Asterisks indicate significant differences in absolute
change by using pair-wise comparisons between trained (average of PSR and
IC) and untrained (average of USR and NC) rats. (d) Percentage of recording
sites in which response strength either increased (values above the dotted
zero line) or decreased (values below the dotted zero line) by �10%. (e and h)
Theoretical output from an array of monotonic (e) and nonmonotonic ( f)
neurons. (g and h) Population responses created from the sum of monotonic
or nonmonotonic response functions (g) can be used to predict the probability
of detecting changes in sound intensity (h).
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codes used to represent sound intensity between trained and
untrained animals. The neuronal population growth of response
functions, created by averaging all normalized RLFs for each
group, showed how a population-rate code might serve as a code
for sound intensity in control and conditioned animals. Because
minimum response thresholds varied and RLFs were mostly
monotonic in NC and USR rats, it is not surprising that the
population growth of magnitude functions increased linearly
with sound intensity in both groups (linear regression analysis,
P � 0.01 for both groups) (Fig. 4b). By contrast, the population
growth of magnitude functions in PSR and IC rats were signif-
icantly different from NC rats [PSR, F(1,157) � 7.77, P � 0.01;
IC, F(1,232) � 14.86, P � 0.001]. Population growth of magni-
tude functions in trained animals increased rapidly and then
flattened out across the upper half of the intensive range (Fig.
4b). This nonlinear appearance was attributable to steep initial
RLF slopes and a nearly equal mixture of monotonic RLFs with
flat or positive slopes and nonmonotonic RLFs with negative
slopes that collectively produced a flat slope across the range of
higher intensities.

At first glance, the population-rate code for sound intensity in
USR and NC rats appeared superior because each intensity
evoked a unique response level, whereas, in IC and PSR rats,
responses changed by less than a standard error across a 100-fold
increase in sound intensity. However, a more detailed analysis of
the population firing-rate code in trained animals revealed the
emergence of a combined rate and spatial code for sound
intensity. Comparison of the absolute changes in firing rate
across the entire range of intensities, independent of whether
responses increased or decreased, demonstrated a significantly
greater proportional change in response strength over the lower
half of the intensive range in trained animals compared with
untrained animals, but, importantly, the absolute change in
response strengths remained surprisingly flat across the upper
half of the intensive range and was similar between all four
groups [F(3,434) � 0.99, P � 0.05) (Fig. 4c). Therefore, the
change in firing rate over a 100-fold change in sound pressure
level (Fig. 4c, yellow shading) was linear in IC and PSR rats, yet
the increase in firing rate was nonlinear. The bidirectional coding
scheme that emerged after training confers several advantages.
First, bidirectional coding permits a marked increase in firing
rate across the lower intensities while still allowing for a pro-
portional change in response strength across higher intensities
without reaching saturation; second, it suggests that a change in
the spatial code for sound intensity emerges with training. In
USR and NC rats, an increase in sound intensity is dispropor-
tionately represented by a population of neurons that increase
firing rate. In PSR- and IC-trained rats, there was an approxi-
mately equal contribution from two distinct neural populations:
one that decreased firing rate and another that increased their
firing rate across a range of higher intensities (Fig. 4d). There-
fore, both place- and rate-based cortical population codes pro-
vide for a greater overall dynamic range in trained animals.

A model was created that illustrated the theoretical advan-
tages conferred by nonmonotonic RLFs for a firing-rate-based
code representing changes in sound intensity (see supporting
information). The model featured separate neuronal popula-
tions comprised exclusively of either monotonic or nonmono-
tonic response types to represent the two theoretical extremes.
As was roughly observed in our trained rats, each extreme had
identical distributions of response thresholds and each covered
the same range of sound intensities. In the monotonic population
(Fig. 4e), each neuron monotonically increased its firing rate
from the same minimum to the same maximum. Each nonmono-
tonic neuron increased to an identical firing rate achieved at a
variable sound intensity then monotonically decreased back to
the minimum firing rate at higher stimulus levels (Fig. 4f ).
Population growth of magnitude functions were generated for

each population. Comparison of the experimental (Fig. 4b) and
simulated (Fig. 4g) data revealed a close similarity between the
monotonic response function and the NC and USR growth of
response functions. The PSR and IC rat response functions
appeared intermediate to the montonic and nonmonotonic
extremes, reflecting the mixture of monotonic and nonmono-
tonic response functions described in these animals. Because
nonmonotonic neurons encoded stimulus-intensity changes with
both increasing and decreasing firing-rate changes, the non-
monotonic population had twice the firing-rate change for a
given change in sound intensity compared with the monotonic
population, translating to enhanced receiver–operator charac-
teristics. In the IC and PSR groups, therefore, the larger fraction
of the population with nonmonotonic RLFs directly implies an
increased detectability of changes in sound intensity (Fig. 4h).

Discussion
Several aspects of the animal model and recording techniques
are worth mentioning. First, unlike other species, such as the
mustached bat or cat, that have a significant proportion of
nonmonotonic RLFs in AI (9, 15), recordings strictly limited to
the middle cortical layers of AI in the rat have shown that the
vast majority of RLFs are monotonic (16, 17), in agreement with
our findings. Second, monotonicity estimation is also influenced
by single versus multiunit recording techniques (11). However,
in the present study, the emphasis is placed on plasticity, or
difference, in the proportion of nonmonotonic neurons in
trained versus untrained rats. Because identical recording meth-
ods were used in all groups, multiunit recordings could influence
absolute estimation of nonmonotonic neurons recorded but
would not create a bias in estimations made in trained versus
untrained animals.

It is well known that spectral and temporal selectivity can be
modified by associative learning in the adult auditory system.
Learning-based plasticity in the spectral and temporal domains
is typically expressed as a change in receptive field bandwidth or
preferential tuning (18–22) and�or selective modulation of firing
rate to reinforced and nonreinforced stimuli (23–25). In the
present study, we have demonstrated that the proportion of
nonmonotonic RLFs is significantly increased in PSR- and
IC-trained animals, tantamount to a sharpening of the receptive
field in the intensive domain. Furthermore, we have shown that
response strength can be selectively potentiated at or near the
target intensity in PSR animals. Therefore, both the response
selectivity and response strength of AI neurons can be reshaped
in the intensive domain, similar to training-induced changes in
spectral or temporal domains. It is clear, however, that exposure
to the same stimuli, when not reliably coupled to reward, had no
measurable impact on monotonicity, BL distributions, or pop-
ulation response functions compared with NC.

After loudness listening training, we have shown that a linear
population growth of magnitude function became more strongly
nonlinear, in clear contradistinction to the linearly increasing
functions that have been traditionally reported (in nonloudness-
conditioned animals) by others (2–4, 7). The absolute change in
firing rate, however, remains constant across the upper half of
the intensive range, suggesting that a neural ‘‘change code’’ can
effectively represent loudness. This finding can be interpreted as
upholding the general form of Weber’s law, which states that
changes in response must bear a constant ratio to changes in
stimulus intensity (26, 27). At the same time, this finding refutes
the specific, widespread neurological interpretation that an
increase in stimulus magnitude is represented by a monotonically
increasing growth of response strength. This marked plasticity in
the neuronal response representation of stimulus intensity that
emerges after associational learning clearly requires a reconsid-
eration of our classical and contemporary views about neural
magnitude coding explaining perceptual magnitude estimation.
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