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Abstract

& Neurometric analysis has proven to be a powerful tool
for studying links between neural activity and perception,
especially in visual and somatosensory cortices, but conven-
tional neurometrics are based on a simplistic rate-coding hy-
pothesis that is clearly at odds with the rich and complex
temporal spiking patterns evoked by many natural stimuli. In
this study, we investigated the possible relationships between
temporal spike pattern codes in the primary auditory cortex
(A1) and the perceptual detection of subtle changes in the
temporal structure of a natural sound. Using a two-alternative
forced-choice oddity task, we measured the ability of human
listeners to detect local time reversals in a marmoset twitter
call. We also recorded responses of neurons in A1 of anes-
thetized and awake ferrets to these stimuli, and analyzed

these responses using a novel neurometric approach that
is sensitive to temporal discharge patterns. We found that al-
though spike count-based neurometrics were inadequate to
account for behavioral performance on this auditory task,
neurometrics based on the temporal discharge patterns of
populations of A1 units closely matched the psychometric
performance curve, but only if the spiking patterns were re-
solved at temporal resolutions of 20 msec or better. These re-
sults demonstrate that neurometric discrimination curves can
be calculated for temporal spiking patterns, and they suggest
that such an extension of previous spike count-based ap-
proaches is likely to be essential for understanding the neural
correlates of the perception of stimuli with a complex tem-
poral structure. &

INTRODUCTION

Neurometric analysis has been a powerful tool for link-
ing electrophysiological activity with perception, and has
made important contributions to our understanding of
vision and somatosensation (Liu & Newsome, 2005;
Luna, Hernandez, Brody, & Romo, 2005; Purushothaman
& Bradley, 2005; Krug, Cumming, & Parker, 2004; Parker,
Krug, & Cumming, 2002; Hernandez, Zainos, & Romo,
2000; Parker & Newsome, 1998; Merchant, Zainos,
Hernandez, Salinas, & Romo, 1997; Britten, Shadlen,
Newsome, & Movshon, 1992), but has been used to a
much lesser extent in auditory research (Narayan, Grana,
& Sen, 2006; Javel & Viemeister, 2000; Fay & Coombs,
1992; Relkin & Pelli, 1987). Classically, neurometric stud-
ies investigate whether stimulus-related changes in firing
rate within a population of sensory neurons could pro-
vide the ‘‘psychophysical signal’’ on which sensory dis-
criminations are based. In practice, firing rates are
measured over relatively long periods and are subjected
to receiver operating characteristic (ROC) analysis to
construct neurometric discrimination functions which
can be directly compared to psychometric functions mea-
sured in two-alternative forced-choice (2AFC) behavioral
experiments. This approach has proved useful for the

study of stimuli which vary along a single perceptual di-
mension. However, many natural stimuli are character-
ized by their complex and individual temporal structure,
which cannot easily be represented by a single spike
count variable. For example, the characteristic temporal
features of many animal vocalizations are encoded by
time-locked responses in the auditory nerve. Early stages
of the auditory pathway faithfully preserve this temporal
pattern code, using special adaptations such as unusu-
ally large and secure synapses (Trussell, 2002). As infor-
mation about a stimulus ascends the auditory pathway
toward the primary auditory cortex (A1), individual neu-
rons are increasingly less able to synchronize their dis-
charges to very rapid temporal modulations in their
inputs (Cariani, 1999), and the relationship between
discharge patterns and temporal features of the stimu-
lus becomes more complicated. Nevertheless, temporal
discharge patterns appear to continue to play a role in
representing some temporal features of acoustic stimuli
in A1 (Narayan et al., 2006; DeWeese, Wehr, & Zador,
2003; Lu, Liang, & Wang, 2001b; Wang, 2000; Winter &
Funkenstein, 1973), as well as aspects of complex visual
stimuli in visual cortical areas (Eskandar, Richmond,
& Optican, 1992). We have recently shown that tem-
poral discharge patterns in A1 of the ferret (Mustela
putorious) provide considerable amounts of information
about the identity of a set of unfamiliar natural soundsUniversity of Oxford, UK
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(natural and time reversed marmoset twitter calls) even
though spike rate codes read out over time scales coarser
than 40 msec are entirely uninformative (Schnupp, Hall,
Kokelaar, & Ahmed, 2006). However, if temporal coding
at a time scale of tens of milliseconds in A1 indeed plays an
important role in the perception of complex sounds, then
we would predict that the temporal patterns should be-
come increasingly harder to discriminate as the stimuli be-
come perceptually more difficult to distinguish. Here we
have tested this prediction by developing a ‘‘spike pat-
tern neurometric’’ analysis which enabled us to compare
the reliability of ferret A1 spike pattern codes directly with
the psychophysical performance of human listeners asked
to detect small changes in the temporal structure of a
complex natural sound. We found an excellent correspon-
dence between the psychometric and the neurometric
results, but only if neural responses were analyzed at
temporal resolutions of less than about 20 msec.

METHODS

Stimuli

For this study we required a complex, natural sound
with a rich temporal structure. Our aim was to then alter
the temporal structure of the stimulus in a manner that
would be progressively more difficult to detect percep-
tually. We used a digitized recording of a marmoset
‘‘twitter’’ call kindly provided by Dr. X. Wang (Wang &
Kadia, 2001). We manipulated the temporal structure of
this sound using a procedure similar to that previously
used in a study of speech recognition (Saberi & Perrott,
1999). Saberi and Perrott (1999) locally time-reversed
consecutive segments of speech and found that speech
intelligibility decreased when the width of the time-
reversed segments was 50 msec or longer. Saberi and
Perrott’s method of simply cutting sound samples into
segments, time reversing each, and rejoining the seg-
ments leads to amplitude transient artifacts at the seg-
ment boundaries because amplitude transitions at the
newly apposed segment boundaries are unlikely to be
smooth. In the manipulated speech samples used by
Saberi and Perrott, these transient artifacts are audible as
a ‘‘buzzing’’ that is superimposed on the manipulated
speech. These artifacts do not affect speech intelligibil-
ity, but in the study here, we set out to measure whether
the temporally manipulated sounds could be distin-
guished from the original signal, and transient artifacts
would have given a strong and rather trivial cue as to
which signals had been manipulated by local time re-
versals. We therefore had to ‘‘cross-fade’’ between con-
secutive time inverted segments, thus ‘‘smoothing out’’
transient artifacts and discontinuities at the boundaries
of the segments. To achieve this, we generated the
sound segments to be reversed by first modulating the
amplitude of the original signal within each segment
with a cosine window function. The sequential cosine

windows had 50% temporal overlap so that by simply
adding each time-reversed segment across the duration
of the stimulus, there was no net amplitude modulation
of the original signal. The time-reversed windows were
either 10, 20, 40, or 80 msec wide. For decreasing win-
dow durations, the locally time-reversed sound more
and more closely approximates the original stimulus
waveform, converging to the original sound ‘‘in the limit’’
as the window length approaches zero. For brevity, we
refer to the temporally manipulated stimuli as ‘‘flipped
twitters.’’ Figure 1 illustrates these stimuli. The sound files
and the Matlab (The MathWorks, MA, USA) code used
to temporally manipulate the original waveform are pro-
vided as supplementary material.

Psychophysics

Human listeners (n = 6) performed a 2AFC oddity task
in a soundproof booth. For the psychophysical exper-
iment, the natural and flipped twitter stimuli were
generated in Matlab and presented at a comfortable
listening level over headphones (Sony MDR-CD250,
Surrey, UK) with an RM1 mobile processor (Tucker-
Davis Technologies, Alachua, FL, USA). On each trial,
three twitter stimuli were presented in sequence. The
sequences, chosen at random, were of the form ‘‘ABB,’’
‘‘BBA,’’ ‘‘AAB,’’ or ‘‘BAA,’’ where ‘‘A’’ stands for the
natural twitter and ‘‘B’’ stands for one of the locally
time-reversed stimuli. Thus, either the first or the last
stimulus in the sequence (but not both) differed from
the stimulus in the middle, and the middle stimulus
served as the ‘‘standard’’ for comparison. The listeners
were instructed to indicate by keypress whether the
first or the last stimulus differed from the other two. At
least one of the stimuli in the sequence was always a
natural twitter stimulus so that the experiment mea-
sured the ‘‘perceptual distance’’ of each of the tempo-
rally manipulated stimuli from the original sound.
Mutual perceptual distances between pairs of different
flipped twitter stimuli were not assessed. Catch trials
with ‘‘0 msec’’ time reversal windows (i.e., an ‘‘AAA’’
sequence) were also included in this paradigm to deter-
mine if first/third guesses were balanced. Subjects com-
pleted 10 demonstration trials (two trials per stimulus
condition) prior to testing in order to familiarize them-
selves with the experimental procedure. Training prior
to data collection was deliberately kept at a minimum so
that the human volunteers, like the animals in the elec-
trophysiology experiments, had very limited exposure
to this particular type of stimulus prior to data collec-
tion. The subjects then completed four blocks of 10
randomly interleaved test trials per stimulus condition,
and were permitted to rest between blocks. Informed
consent was received from each subject before they
began the experiment and the psychophysical proce-
dures were approved by the local ethical review com-
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mittee of the Experimental Psychology Department of
the University of Oxford.

Extracellular Recordings

All animal experiments were performed under license
from the UK Home Office in accordance with the Animal
(Scientific Procedures) Act 1986 and were approved by

the ethical review board of the Oxford University Animal
Care and Use Committee.

Anesthetized Preparation

In three normal adult ferrets, recordings were carried
out under local anesthetic. Anesthesia was induced by a
2-ml/kg intramuscular injection of alphaxalone/alpha-
dolone acetate (Saffan; Schering-Plough Animal Health,

Figure 1. Natural and

f lipped twitter stimuli.

(A) Schematic of our local

time reversals of the acoustic
stimulus. In the above panel,

the natural stimulus

(a marmoset twitter call)
waveform is shown in blue

with overlapping cosine

functions superimposed in

red. The ‘‘window’’ of the
stimulus falling within each

period of the waveforms was

amplified by the cosine

function and locally reversed
in time. (B) Spectrograms of

the natural stimulus (top

panel), and the ‘‘f lipped’’
stimuli with 10, 20, 40, and

80 msec f lipped window

widths (below).

FPO
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Welwyn Garden City, UK). The left radial vein was
cannulated, and anesthesia was switched to domitor
(0.022 mg/kg/hr) and ketamine (Vetalar, 5 mg/kg/hr)
via continuous infusion (Perfusor Secura FT infusor, B.
Braun Medical, USA), along with 5 ml/hr of saline sup-
plemented by 5% glucose. The trachea was cannulated
and the animal was artificially ventilated (7025 respira-
tor, Ugo Basile, Milan, Italy) throughout the experi-
ment with oxygen-enriched air.

The temporal muscles were retracted to expose the
skull, and a metal head holder was fixed to the skull with
stainless steel screws and dental acrylic (Simplex Rapid,
Austenal Dental, Harrow, UK). The auditory cortex was
exposed by craniotomy and removal of the dura. Mineral
oil was applied to the exposed cortex to prevent dehy-
dration. Expired CO2 and ECG were carefully monitored
to ensure stable anesthesia throughout (AS/3 monitor,
Datex Ohmeda, Finland). All electrophysiological data
were recorded in a sound-insulated chamber (Industrial
Acoustics Company, Winchester). Spike activity was re-
corded using 2 M� 4 � 4 silicon array ‘‘Michigan probes’’
(Centre for Neural Communication Technology, Univer-
sity of Michigan, USA). Signals were band-pass filtered
(300 Hz to 3 kHz) and digitized at 25 kHz using a TDT
three-multichannel recording system (Tucker-Davis
Technologies). BrainWare software (Tucker-Davis Tech-
nologies) was used to control stimulus presentation
and data collection. To characterize the responses of
A1 units, the natural and ‘‘flipped’’ twitter stimuli were
presented at 1.5-sec intervals. Each stimulus was pre-
sented between 10 and 40 times at a comfortable lis-
tening level in a randomly interleaved order. Stimuli were
generated using an RP2 real-time processor (Tucker-
Davis Technologies) and were presented diotically through
miniature earphones (Panasonic RPHV297, Bracknell,
UK) mounted on plastic otoscope speculae inserted into
both ear canals. The ferrets had no experience of these
stimuli prior to the experiment.

Awake Preparation

In one normal adult ferret, extracellular recordings were
carried out while the animal was awake and passively
listening to the stimuli. This awake ferret preparation
was fundamentally similar to that used in the laboratory
of Fritz, Shamma, Elhilali, and Klein (2003). A cranial
mount was surgically implanted a month before the first
recording session. Surgical anesthesia was induced with
a domitor (0.022 ml/kg) and ketamine (0.050 ml/kg)
intramuscular injection, and was maintained with oxygen-
enriched isofluorine. The temporal muscles were re-
tracted and partially removed to expose the skull and
the auditory cortex was exposed by craniotomy. An acrylic
cranial mount was fixed to the skull (Simplex Rapid). This
mount contained a metal well above the craniotomy that
allowed access to the dura, and could be sealed with a
rubber stop to protect the underlying tissue between re-

cording sessions. It also contained a metal fitting which
allowed the head to be restrained by fixing the head
mount against a solid recording frame. During the month
following implant surgery, the animal was allowed to re-
cover, and was trained with positive reinforcement (food
treats) to accept head restraint. Recordings were then
carried out on 14 days over the period of 1 month. The
animal’s head was fixed during recording sessions, and
quartz/platinum–tungsten electrodes were lowered through
the dura to record auditory cortical activity (Thomas
Recording, Giessen, Germany). Up to five electrodes could
be lowered into the brain at once, with a single 1–2 M�
recording site on each electrode. Stimuli were presented
in the free-field in an anechoic room via an Audax
TWO26M0 speaker (Audax Industries, Chateau du Loir,
France) located approximately 80 cm from the animal’s
head, at 308 contralateral from the midline. Each record-
ing session lasted up to 5 hr, less if the animal exhibited
signs of becoming uncomfortable or restless. All other
spike signal acquisition and stimulus presentation details
were as described for the anesthetized preparation.

Isolating Unit Activity

Neural units were isolated from the digitized signal
in BrainWare, using a k-means clustering algorithm
(Martinez & Martinez, 2005) to group data according
to spike features such as amplitude, width, and area. The
number of clusters for each site was chosen by assessing
cluster separability based upon the similarity of spike
shapes across and within the candidate clusters. Clusters
with highly homogeneous spike shapes and clear evi-
dence of a refractory period in their interspike-interval
histograms were regarded to be single units (i.e., re-
sponses from one neuron), whereas all others were
termed multiunits (i.e., responses from a small collec-
tion of neurons).

Spike-timing data from acoustically responsive units
were exported to Matlab for all further analyses. Unit
responses to twitter stimuli were visualized as raster
plots, which displayed spike events as a function of time
for each stimulus presentation (a response ‘‘sweep’’).
Based on a visual inspection of the raster plots, only
units that exhibited stimulus-driven responses were
included in further analyses. Only the first 1280 msec
of response data following onset of each twitter stimulus
was analyzed because the vast majority of spikes oc-
curred within the first 800 to 1200 msec of responses,
and 1280 was a convenient logarithmic step value for our
sampling rate analyses (see below).

Principal Components Analysis

To prepare the neural response data for statistical anal-
ysis, poststimulus time histograms (PSTHs) of the re-
sponses of each unit were generated so that each
1280 msec long response ‘‘sweep’’ was represented as a
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vector of consecutive spike counts. Each vector formed a
row in a unit’s PSTH matrix. The dimensionality of this
vector was dependent upon the bin widths (or temporal
resolution) at which spike counts were sampled over
the duration of the stimulus presentation. A bin width of
5 msec, which divided the 1280 msec long response into
256 time bins, was used for all analyses, except those
which specifically examine the effects of bin sizes. The
vector of spike counts across bins can be conceptualized
as a point in a 256-dimensional space. Principal compo-
nents analysis (PCA) was carried out to reduce the di-
mensionality of this response space. PCA remaps data in a
high-dimensional vector space onto a new orthogonal
coordinate system such that the smallest number of these
new principal component dimensions can explain the
largest proportion of the variance in the data (Hernandez
et al., 2000). Often, most of the ‘‘structure’’ of the data
can be captured by a relatively small number of high-order
principal components, whereas many of the low-order
principal component dimensions are largely attributable
to ‘‘noise’’ and can be discarded. Here, we only used
the first five principal components to represent each
response pattern. Thus, each response pattern was first
quantified as a PSTH of 256 bins, each 5 msec wide, and
then represented as a five-dimensional point in princi-
pal component space. Finally, each principal component
value was multiplied by the corresponding eigenvalue of
that principal component, in order to weight the prin-
cipal components by the amount of response variance
they explained.

Receiver Operating Characteristics

The Euclidean distance between two 5-element re-
sponse vectors in pc-space provided a measure of sim-
ilarity between these responses because responses with
more similar temporal discharge patterns would be
closer in pc-space. The Euclidean distance between
two responses to the same stimulus was referred to
as a within-category distance, and across-category dis-
tances were measured between responses to natural
and flipped twitters. For each unit, the distributions of
all within-category and across-category Euclidean distan-
ces were collected for each flipped twitter condition. In
the psychometric oddball task described above, human
subjects had to compare one natural and one flipped
target stimulus to a standard, and we assume that these
stimuli evoked responses in their A1, which are essen-
tially similar to those we recorded in the auditory cortex
of the ferrets. The subjects thus had to decide which of
the target responses was more similar to the standard,
and here we model this decision process by comparing
one within-category and one across-category distance
drawn at random from the observed distributions. Con-
sequently, a unit should support good psychometric
discrimination ability if the across-category distances
were reliably greater than the within-category distances

(i.e., if there is little overlap in the within- and across-
category distributions). Like previous authors (e.g.,
Britten et al., 1992), we used ROC analysis to construct
neurometric curves for each unit. We constructed ROC
curves for each flipped twitter condition by comparing
the differences in within-category and across-category
distances against a wide range of possible criterion val-
ues. The area under the resulting ROC curves provides
a measure of discrimination performance (expected
proportion of correct responses) that is independent
of potential criterion bias and can be directly compared
with the performance on our human psychophysics task
(Green & Swets, 1974).

The standard error of an ROC curve (Hanley & McNeil,
1982) was calculated as:

SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að1 � AÞ þ ðnb � 1ÞðQ1 � A2Þ þ ðnw � 1ÞðQ2 � A2Þ

nwnb

s
;

where A is the area under the curve, nb and nw are the
number of between- and within-category distances,
respectively, and Q1 and Q2 were estimated by:

Q1 ¼ A

2 � A
; and Q2 ¼ 2A2

1 þ A
:

RESULTS

Psychophysics

Six human subjects completed a 2AFC oddity task in
which they were asked to discriminate a natural mar-
moset twitter call from locally time-reversed (‘‘flipped’’)
copies of the stimulus (see Methods and Figure 1).
Flipped twitters with ‘‘0 msec’’ reversed window widths
are natural, unmanipulated twitters. Discrimination
scores for each subject across flipped twitter condi-
tions are shown in Figure 2. The performance of human
listeners in discriminating natural and flipped twitter
stimuli declined as the width of the flipped time bins
decreased. Performance on the discrimination task was
near perfect for all subjects when the reversed windows
were 80 msec wide, and was impaired for most subjects
with 40 msec wide flipped windows. When the windows
were 20 msec wide, the mean discrimination perfor-
mance was near chance, and subjects could not discrim-
inate 10 msec flipped from natural twitters ( p > .05,
based on a binomial distribution with 20 trials). Perfor-
mance did not significantly differ between trials on
which the nonstandard stimulus came first in the se-
quence versus those in which it was the last in the se-
quence (Wilson score interval, p > .05) (Wilson, 1927).

Neurometrics of Individual Units

Multielectrode extracellular recordings of responses to
natural and flipped twitters were collected in the left
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primary auditory cortex of three adult, anesthetized fer-
rets. In total, 142 stimulus-driven units were identified:
77 in the first ferret, 28 in the second, and 37 in the third.
These included 120 single units and 22 multiunit clusters.

Visual inspection of standard raster plots indicated
that a subset of the units in A1 responded to twitter

stimuli with reliable and stimulus-specific temporal dis-
charge patterns (Figure 3A and B), as observed previ-
ously (Schnupp et al., 2006; Wang, Merzenich, Beitel, &
Schreiner, 1995). Although the spike latencies and spike
counts of these units varied somewhat as the same
stimulus was repeatedly presented, and although their
temporal discharge patterns appeared to contain noise
from spontaneous activity across trials, this subset of
units, nevertheless, exhibited reproducible temporal dis-
charge patterns which, if appropriately decoded, ought
to support the discrimination of the natural from some
of the flipped twitter calls. PSTHs were generated for
each unit, in which the response to each twitter presen-
tation was represented as a vector of spike counts in
5-msec time intervals following stimulus onset. For each
unit, PCA was used to reduce the dimensionality of these
response vectors (see Methods). The first five principal
components together were sufficient to explain between
13% and 60% (mean 27.3%) of the response variance for
each unit (Supplementary Figure 1).

A discrimination algorithm was designed to attempt to
distinguish natural from flipped twitters based on the
information available in the temporal discharge patterns
of A1 units (see Methods). If the temporal discharge
pattern of a unit was reliably similar for repeated pre-
sentations of the same stimulus and sufficiently differ-
ent when another stimulus was presented, then two
responses of that unit to the same twitter stimulus (a
‘‘within’’ twitter comparison) should be closer in pc-
space than two responses to different twitter stimuli (an
‘‘across’’ twitter comparison). But if the responses lacked
reproducible and stimulus-selective spiking patterns, then
their distances in pc-space would be uninformative about

Figure 2. Human discrimination performance. Psychometric curve

showing the percentage of correct responses in the 2AFC auditory

discrimination task. ‘‘Flipped window width’’ of +20 msec and
�20 msec both refer to oddball stimuli which were locally time

reversed with 20 msec windows, but a negative value indicates that

the oddball stimulus was the first of the three stimuli presented in

the trial, whereas positive values indicate that the oddball stimulus was
presented last. The six different types of symbols show the mean

percentage of ‘‘last’’ responses for each subject as a function of

stimulus condition. The continuous line shows the mean across the
six subjects.

Figure 3. Responses of two

ferret A1 units to the

presentation of twitter stimuli.
(A) Raster plot displays

showing the responses of one

unit to the natural twitter call

(top panel) and the four
locally time-reversed calls

(below). Each row of dots

shows the response to a single

presentation of the stimulus,
with each dot showing the

time of occurrence of an action

potential after stimulus onset.
(B) Raster plots showing the

responses of a different unit.
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the categorization of the twitter stimuli to which they
were responding. Histograms of within- and between-
category distance distributions for each flipped twitter
condition for the two units illustrated in Figure 3A and B
are shown in Figure 4A and B, respectively. Using analyses
derived from signal detection theory, ROC curves were
calculated for each flipped twitter condition (Figure 4C
and D) (Green & Swets, 1974), and a neurometric dis-
crimination curve for each unit was then derived from
these ROC curves (Figure 4E and F; see Methods).

The neurometric functions of all 142 units are plotted
along with the psychometric function in Figure 5A. From

this figure, it is clear that neurometric discrimination
curves varied widely from unit to unit. Neurometric per-
formance at each flipped twitter condition ranged from
chance performance up to psychometric means. As is il-
lustrated in Figure 6, the neurometric scores for many
units were significantly above chance (standard error of
the ROC curve, p < .05), and the discrimination perfor-
mance of these units improved as f lipped window
widths increased.

Figure 5B shows the results of the same neurometric
algorithm when a single spike rate variable, calculated
over the whole response period, is used instead of

Figure 4. Calculating

neurometrics for two ferret

A1 units. (A, B) Distributions

of within-category response
distances (filled black

circles) and across-category

distances (open gray circles)
for the units shown in

Figure 3A and B,

respectively. (C, D) ROC

curves constructed from the
distributions shown in A and

B, respectively. ROC curves

are shown for the 0 (blue),

10 (green), 20 (yellow),
40 (magenta), and 80 msec

(red) stimulus conditions.

(E, F) Neurometric
functions (black circles) for

the two units, constructed

by plotting the area under

the ROC curves shown in
C and D. The average

psychometric performance

of the human volunteers

with standard error bars is
also shown for comparison

(black asterisks).

FPO
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temporal pattern information. These neurometrics did
not reach psychometric performance values, and they
did not show systematic improvement in discrimination
as the flipped windows widened. Of course, one might
ask whether the much poorer performance of the sin-

gle spike rate neurometric compared with the spike pat-
tern neurometric might not simply be attributable to
the fact that the temporal bin width of 5 msec used
for the temporal pattern analysis is a more fortuitous
choice then the 1280-msec-wide window used in the
spike rate analysis shown in Figure 5B. In other words,
if one were to use a single spike rate measure obtained
from a single, suitably chosen 5-msec interval, would one
be able to match the neurometric performance reached
by the pattern analysis? To test this, we calculated sin-
gle spike rate neurometrics for each 5-msec-wide time
bin, from 0 to 1280 msec in 5-msec-wide steps, and for
each unit chose the 5-msec-wide time bin that gave
the best neurometric performance (i.e., the greatest
area under the neurometric curve). The neurometrics ob-
tained in this way for each of the 142 units are shown in
Figure 5C. Although these neurometrics based on the
single best 5 msec bin for each unit are considerably bet-
ter than the average spike rate neurometrics shown in
Figure 5B, they, nevertheless, fail to reach the same level
of performance as the full pattern neurometrics shown in
Figure 5A, nor do they approximate human psychomet-
ric performance as well as the pattern neurometrics do.
Figure 5D plots the difference between the spike pattern
neurometric and the best 5-msec bin neurometric for all
units that reach at least 70% performance in either

Figure 5. Neurometric

functions for a population

of A1 units in anaesthetized

ferrets. (A) Temporal pattern
neurometrics for all 142 units

in our sample are plotted

superimposed (gray circles).
The average psychometric

performance (with standard

error bars) of the human

listeners is also shown for
comparison (black asterisks).

(B) Spike rate neurometrics for

the same 142 units (gray

circles) are plotted, along with
the average psychometric

curve (black asterisks with

standard error bars). (C) Spike
rate neurometrics calculated

for each of the 142 units from

the spike rates observed in a

single, optimally chosen,
5-msec-wide time bin. (D)

Difference between temporal

pattern neurometric curves

shown in A and ‘‘best bin’’
neurometric curves shown

in C, shown for all those

units whose neurometric
performance reaches at least

70% in either analysis for any

stimulus parameter.

Figure 6. More A1 units show significant neurometric discrimination

for wider f lipped windows. Histogram showing the number of units

achieving a discrimination performance significantly above chance

(at p < .05, standard error of the ROC curve) as a function of
stimulus condition.
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neurometric curve for any of the stimuli. Such a compar-
ison is of little interest for units which perform poorly
with all neurometric algorithms, and they were therefore
not plotted in Figure 5D in order not to clutter the graph
unnecessarily. These differences are positive (i.e., pattern
neurometric performance exceeds single best bin neuro-
metric performance) in the large majority of cases. We
also repeated this analysis using 10, 20, and 40 msec wide
optimally chosen time bins and obtained very similar
results (not shown). Full-pattern neurometrics consis-
tently outperformed single best bin neurometrics, and
single best bin neurometrics never closely matched the
human psychometric curve. These results suggest that in
A1, the discharge pattern, and not simply the number of
spikes in any one time window, carries important infor-
mation about the identity of temporally varying complex
sounds.

In the neurometric algorithm above, the temporal
discharge patterns across 256 time bins was quantified
using only the first five principal components. It is pos-
sible that incorporating more information about re-
sponse variation into the decision algorithm by including
more principal components would improve the neu-
rometric performance. An investigation of this question
demonstrated the importance of the present method of
weighting the principal components by their eigenvalues.
When neurometrics were calculated using the raw princi-
pal component values, performance varied considerably
depending upon the number of principal components
used to represent the response. Initially, using more than
one principal component in the algorithm improved neu-
rometric performance for some units, but increasing the
number of principal components beyond the first three
caused a decline in performance for most units. This
interpretation of neural responses would require an ob-
server to consider an optimum number of principal com-
ponents for each cell in order to maximize discrimination
performance. In contrast, when the principal components
were multiplied by their eigenvalues to account for their
relative importance in explaining the response variance,
using only the first five principal components yielded near-
maximum discrimination performance for all neurons
(Supplementary Figure 2).

From Figure 5A, it is clear that most units’ individual
neurometric curves were considerably flatter than the
psychometric curve, and only a small proportion of
neurometric curves approached the psychometric curve
closely. One might expect that the perceptual decision-
making process operating in an observer engaged in a
sensory discrimination task might pool or combine
information across a number of neurons rather than just
rely on one single neuron in the auditory cortex, and it is
of interest to ask what sort of pooling mechanisms
might be able to explain psychometric performance. In
past studies, there have been at least two commonly
used methods of combining information across units:
‘‘enveloping’’ of neurometrics and pooling of responses

(Parker & Newsome, 1998). Here, both techniques
were used to examine the neurometric performance of
groups of units.

Enveloped Neurometrics

If a distinction between several stimuli is required, be-
havioral decisions might be based only on the outputs
of those neurons that respond most selectively to these
stimuli (Barlow, 1972). The consequences of this pro-
cess of listening to the outputs of only the ‘‘highest
performing’’ neurons on each discrimination task can be
represented graphically by drawing an optimum or
‘‘best’’ envelope along the contour of the best neuro-
metric curves (Parker & Newsome, 1998). By applying
this best envelope approach to our data, we found that
the three ‘‘best’’ units in our sample proved sufficient
to obtain a neurometric curve that closely matched psy-
chometric discrimination performance (Figure 7).

In the past, enveloping has most often been used in
investigating more peripheral areas of the nervous sys-
tem (Parker & Newsome, 1998). Generally speaking, how
the brain might implement an algorithm that is equiva-
lent to the enveloping of neurometric functions is as
yet unclear. Thus, perhaps a more appropriate alterna-
tive to enveloping best neurometrics is to pool the re-
sponses of several simultaneously active neurons to
determine how the algorithm would perform using
the temporal patterns of a summed spike input. This is
especially relevant in A1, where complex stimuli are

Figure 7. Upper limit of neurometric performance curves across

individual A1 units. ‘‘Best envelope’’ neurometric curve (black circles)

constructed from the three most informative units in our sample is
shown, along with the individual neurometrics of these three units

(gray circles). The average psychometric performance (with standard

error bars) of the human listeners is also shown (black asterisks).
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thought to be encoded as the distributed firing across
populations of units with varied frequency tuning (Wang
et al., 1995).

Pooled Neurometrics

The 4 � 4 Michigan electrodes used in the anesthetized
ferret experiment can simultaneously collect responses
from several neural units at each of 16 electrode record-
ing sites during each penetration into the brain. This
allowed us to examine the temporal spiking patterns of
neural populations by pooling the responses of neural
units in each penetration. To preserve spike timing
information, the 256-element response vectors for each
trial were summed across all units. Once the responses
had been pooled for the complete set of trials, they
were transposed using PCA and temporal discharge
neurometrics were calculated as for individual units.
Neurometrics of pooled units across 14 multielectrode
penetrations are shown in Figure 8. The neurometric
curves of each individual unit are also shown for com-
parison, as are the human psychophysics data.

In all 14 penetrations, the pooled neurometric dis-
criminated twitters better than most individual units
alone, demonstrating that the contribution of simulta-
neous activity from multiple units tends to improve
neurometric performance even if some of these units
themselves have noisy, poorly informative responses to
the stimuli. The performance of the pooled neuromet-
rics varied considerably from site to site. In Penetration
2, neurometrics based on each individual unit per-
formed near chance, but the neurometric performance
of the pooled activity of all these units closely matched
the human psychometric curve. In four other penetra-
tions in which the individual neurometrics performed
poorly, even the activity of pooled units performed at
chance. The collection of pooled neurometrics varied in
performance from chance up to human psychometric
values (Figure 9A), demonstrating again a correspon-
dence between the discrimination capacity of A1 re-
sponses and the perceptual performance of human
listeners.

In some previous neurometric investigations of spike
rate codes (e.g., Britten et al., 1992), the responses of
single units recorded on separate occasions have been
pooled by summing their spike counts. Correlations in
firing across neurons may limit the amount of indepen-
dent information that a further neuron can add to the
pool, so these studies incorporated an interneuronal
correlation term into their pooling models to account
for this effect. When neural responses are pooled for the
purposes of examining temporal spiking patterns, the
effects of interneuronal correlations are less clear. Each
spike in a response may be a part of the neural ‘‘signal’’
that represents the sound if its timing is determined by
the stimulus. Or it may contribute to the neural ‘‘noise’’
if its timing is unrelated to the sound being presented.

Pooling information across a neural population can en-
hance the signal-to-noise ratio and lead to better neuro-
metric performance only if noise correlations in the
pooled population are small, so that each neuron in
the pool gives a more-or-less independent look at the
stimulus. To directly investigate whether noise correla-
tions affected the pooled neurometric performance
obtained from our data, we removed correlations be-
tween neural responses in the pool by ‘‘shuffling’’ re-
sponses obtained on separate stimulus presentations,
and compared these neurometrics to those derived from
pooling only synchronously recorded activity. The ratio-
nale behind this approach is similar to that motivating
the use of shift-predictors in cross-correlation histogram
analysis (Moore, Perkel, & Segundo, 1966). For each unit
in a pool, the order of responses was randomized within
each stimulus condition prior to summing the responses
across units. Therefore, the response sweeps of each neu-
ron were added to responses of other neurons in the
pool that were evoked by the same stimulus, but at dif-
ferent points in time. The neurometric performances of
these ‘‘shuffled’’ pools for the 14 penetrations are shown
in Figure 9B. The pooled neurometric performance for
most penetrations improved with shuffling, indicating
that noise correlations across units do reduce the bene-
fit obtained from pooling simultaneously recorded re-
sponses. The upper envelope of these pooled neurometrics
was largely similar to the psychometric curve, with the
exception of the 10-msec condition where the neuro-
metric of one penetration performed better than human
listeners.

Effects of Temporal Resolution and
Integration Windows

Given that the discrimination algorithm used to calcu-
late neurometric curves makes use of temporal pattern
information, one would expect its performance to de-
cline if the temporal resolution at which these patterns
are read out is inappropriate. Binning spike data can
reduce noise that results from temporal jitter in the
stimulus-locked responses of auditory neurons (Hill,
Stange, & Mo, 1989) and provide a more efficient en-
coding of information about the stimulus, but if the
binning is too coarse, important temporal patterning can
be lost. Therefore, there should be a range of resolu-
tions at which A1 responses can be binned to provide
the most efficient spike pattern code without disrupting
discrimination performance. To explore the possible ef-
fects of sampling rate, enveloped neurometrics were
constructed as for Figure 7, but the spike patterns were
binned using a range of bin sizes in logarithmic steps
from 2.5 to 1280 msec. The results of this analysis,
shown in Figure 10, indicated that the discrimination
algorithm performed best when the spike data were
sampled at the finest temporal resolutions, as might be
expected because these contain the most information
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about spike timing. However, Figure 10 also shows that
neurometric performance remained high when the res-
olution was dropped to 10 msec. For resolutions be-
tween 20 and 40 msec, neurometric performance remained
near perfect for the easiest discrimination task (i.e.,
80 msec flipped twitters), but was impaired for more dif-
ficult twitter discriminations. At still coarser resolutions,

performance was severely impaired across the entire
stimulus set.

Analyzing the responses at an appropriately fine tem-
poral resolution seems clearly important, but it may not
be necessary to subject the whole neural response to
neurometric analysis. Analyzing only the first few 100 msec
of the response after stimulus onset might suffice to

Figure 8. Neurometric curves of pooled activity within each electrode penetration. Each plot shows the neurometric curve obtained from
the pooled simultaneous responses of all the units recorded in a given electrode penetration (black circles), along with the individual

neurometrics of each of these units (gray circles). The average psychometric performance (with standard error bars) of the human listeners

is also shown (black asterisks).
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achieve adequate neurometric performance. To investi-
gate this possibility, we repeated the neurometric analysis
described above at a 5-msec temporal resolution, but we
progressively shortened the length of the analyzed re-
sponse from the full 1280 msec to the first 800, 400, 200,
100, and 50 msec. The result of this analysis is shown in
Figure 11. Reducing the analyzed response duration to
400 msec can be seen to have little impact on the
neurometrics, and even if only the first 200 msec of the
response are analyzed, a proportion of the units are able
to maintain good neurometric performance. However,
when the analyzed response periods were reduced fur-
ther to 100 msec or less, neurometric performance col-
lapsed. Our results are therefore broadly similar to those
observed by Narayan et al. (2006), who reported optimum
temporal resolutions for the analysis of song bird auditory
forebrain responses to complex vocalizations of about 10–

20 msec, and best temporal integration windows on the
order of several hundred milliseconds (597 msec median).
It would be interesting for future studies to investigate
how these temporal integration windows might relate to
reaction times in listeners.

Neurometrics in the Awake Animal

If the above similarities between psychometric and A1
neurometric curves indicate that perceptual perfor-
mance is limited by the resolution of temporal spiking
patterns in A1, these similarities should hold when we
use the same neurometric algorithm to interpret the
auditory cortical responses of an awake animal. An un-
anesthetized animal more closely resembles the behav-
ioral state of the human listeners. Figure 12 shows the
neurometric performance of 29 auditory cortical single
units recorded in an awake ferret. As shown in the anes-
thetized ferret, neurometrics based on the temporal dis-
charge patterns of auditory cortical neurons in the
awake ferret vary from chance performance up to hu-
man psychometric values, such that the best envelope
of these curves closely matches the psychometric curve
(Figure 12A). In contrast, neurometrics based on the
spike rates of these responses do not reach behavioral
performance levels (Figure 12B).

A Note on the Stimulus–Response Relation

Many previous studies have investigated the temporal
and spectral characteristics of neural firing in response
to complex stimuli (Narayan et al., 2006; Theunissen,
Sen, & Doupe, 2000; Wang et al., 1995). Although sig-
nificant progress has been made in this area, some as-
pects of the stimulus–response relation remain unclear.
In the present study, rather than focus on the nature of
the stimulus–response relation, we have focused on the
relation between neural responses and psychophysical
performance. However, a simple visual inspection of the
pooled temporal discharge patterns of A1 units in

Figure 9. Summary of pooled

neurometric curves across all

penetrations. (A) Neurometric

curves derived by pooling
simultaneously recorded

activity in each multielectrode

penetration are shown (gray
circles) along with the human

psychometric curve (black

asterisks with standard error

bars). (B) Neurometric curves
derived from the same data,

but activity is pooled after

randomly shuff ling the order

of responses for each unit to
disrupt stimulus-independent trial-to-trial correlations in the activity in each penetration are shown (gray circles), where the order of each unit’s

response sweeps was scrambled prior to pooling. The human psychometric curve is shown for comparison (black asterisks with standard error bars).

Figure 10. Sensitivity of the neurometric curves to changes in
temporal resolution. Best-envelope neurometrics were constructed as

for Figure 7 (colored circles), but the temporal resolution (bin width)

used to represent the raw response pattern vectors was varied as
shown in the legend. Note that some lines are partially occluded by

others. The average psychometric performance (with standard error

bars) of the human listeners is also shown (black asterisks).

Neurometrics are comparable to psychometric performance only at
relatively fine temporal resolutions.

FPO
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anesthetized ferrets suggests that the cortical population
as a whole responded with correlated firing to discrete
events in the spectro-temporal acoustic pattern of the
stimulus (Figure 13A). The pooled PSTH was similar for
auditory cortical neurons recorded in the awake animal,
but with stronger responses to the onset and offset of
the sound (Figure 13B). This type of synchronization of
auditory cortical firing with transients in complex vocal-
izations has been previously described in other species
(Wang et al., 1995; Winter & Funkenstein, 1973). At the
single-unit level, the stimulus–response relationship may
be more complex, but a more complete description of
this relation was not attempted here.

DISCUSSION

Previous studies that have compared neurometric func-
tions in the sensory cortex and psychometric perfor-

mance have focused almost exclusively on spike rates
(Liu & Newsome, 2005; Krug et al., 2004; Britten et al.,
1992; Tolhurst, Movshon, & Dean, 1983). To our knowl-
edge, only one previous study (Hernandez et al., 2000)
has explored potential links between neurometrics
based on temporal discharge patterns and psychometric
performance. Hernandez and colleagues investigated
the respective roles that spike rate and periodic dis-
charge patterns in the primary somatosensory cortex
might play in encoding the frequency of a vibrating tac-
tile stimulus. They found that spike rate-based neuro-
metrics were adequate to account for psychophysical
thresholds, whereas neurometrics derived from the pe-
riodicity of neural discharge resulted in thresholds that
were much lower than those obtained behaviorally.
These results served to reinforce the notion that, in the
sensory cortex, mean spike rates correlate with percep-
tion, whereas temporal discharge patterns do not. Our

Figure 11. Effect of

reducing the total analysis

time window on

neurometric performance.
Neurometric curves

calculated at 5 msec

temporal resolution and
plotted as in Figure 5A,

but the duration of the

analyzed response period

is progressively reduced
from the full 1280 msec

duration as indicated above

each panel.

Figure 12. Neurometric
functions for a population of

A1 units in an awake ferret.

(A) Temporal pattern

neurometrics for all 29 units
in our sample are plotted

superimposed (gray circles).

The average psychometric

performance (with standard
error bars) of the human

listeners is also shown

for comparison (black
asterisks). (B) Spike rate

neurometrics for the same

29 units (gray circles) are

plotted, along with the
average psychometric curve

(black asterisks with

standard error bars).
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present results suggest that this may not be the general
case for all stimuli. We found that spike rate-based neuro-
metrics failed completely to account for behavioral per-
formance, whereas the spike pattern-based neurometric
analysis we devised here closely matched the psycho-
metric curve. There are, of course, many important dif-
ferences between our study and that of Hernandez et al.
(2000), the most important of which is likely to be the
nature of the temporal change in the stimuli that is to be
detected. Hernandez et al. investigated a tactile frequency
discrimination task, whereas in our case, subjects were
required to detect a change in the fine structure of a
complex natural sound, which might be best described
perceptually as a change in the ‘‘rhythm’’ of the sound.
In addition, the neurometric analysis used by Hernandez
et al. was limited to the examination of temporal dis-
charge patterns that are periodic, whereas our approach
allows one to investigate temporal discharge patterns of
any form.

We envisage that the adapted neurometric method
which we introduced here may prove to be a valuable
tool in future studies of auditory cortex function. De-
spite dramatic progress in our understanding of the
functional organization of the auditory cortex in recent
years, many aspects of the roles played by the auditory
cortex in perception remain uncertain. Early lesion
studies on monkeys suggested that damage to the au-
ditory cortex impaired an animal’s ability to perform
cognitive tasks involving sound localization (Heffner &
Masterton, 1975) or the discrimination of con-specific
vocalizations, but these studies also noted that cortical
lesions did not impair reflex-like orientation toward
unexpected sounds. More recent observations on a
human patient who had suffered extensive bilateral
auditory cortex damage appear to confirm that such
lesions lead to a total loss of auditory awareness, a
‘‘cortical deafness,’’ even though accurate reflexive ori-
enting behavior to sudden sounds remains intact (Garde
& Cowey, 2000). These observations suggest that the
auditory cortex may play a critical role in every aspect of

the conscious perception of sound, even if sophisticated
subconscious auditory processing seems to be possible
without it. In recent years, a number of researchers have
investigated whether particular aspects of auditory per-
ception can be ascribed to particular auditory cortical
areas. The most commonly used approach investigates
stimulus-induced changes in discharge patterns in vari-
ous cortical areas (Narayan et al., 2006; Wallace, Rutkowski,
& Palmer, 2005; Recanzone, Guard, Phan, & Su, 2000;
Middlebrooks, 1999; Rauschecker, 1998), but to link this
cortical neural activity to perception, one must also
demonstrate that the neural responses correlate with
perceptual decisions as assessed in psychometric experi-
ments. Ideally, this should be done on a trial-by-trial
basis in an animal engaged in the perceptual task.
Studies which have managed to achieve this in the visual
(Britten et al., 1992) and somatosensory (Hernandez
et al., 2000) systems have been very influential, but
similar experiments have not yet been attempted in
the auditory system, perhaps, in part, because the
simple rate coding assumption inherent in conventional
neurometric analysis appears inappropriate for the au-
ditory cortex. Many recent studies have emphasized the
importance of the temporal patterning of responses in
the auditory cortex in the encoding of acoustic stimuli
(Narayan et al., 2006; Schnupp et al., 2006; Nelken,
Chechik, Mrsic-Flogel, King, & Schnupp, 2005; Furukawa
& Middlebrooks, 2002; Gehr, Komiya, & Eggermont,
2000; Brugge, Reale, & Hind, 1996). Consequently, the
neurometric approach may have to be adapted to be
sensitive to differences in spike pattern rather than in
spike rate before it can usefully be applied to the
auditory cortex. An important contribution made by
the present study is to show that this can, indeed, be
done successfully.

The psychophysical task used here probes a form of
temporal pattern judgment that is sometimes necessary
to discriminate complex natural sounds. Listeners dis-
criminated natural from ‘‘flipped’’ twitters with near-
perfect accuracy when local time reversals extended

Figure 13. Pooled neural

responses are locked to

discrete stimulus events.

(A) The normalized
poststimulus time histogram

(PSTH) of the pooled

responses of 142 units from
the anesthetized dataset

is shown (black line)

superimposed on the

waveform of the natural
twitter stimulus (gray line)

to which it is responding.

Stimulus onset occurs at

250 msec. (B) Normalized
pooled PSTH for the 29 units

recorded in the awake dataset.
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over 80 msec but performed near chance with time
reversals of 20 msec or below. There are several other
lines of evidence to suggest that the ordering of auditory
events is limited to time frames of 20 msec or longer. In
humans, accurate temporal order judgments of click
trains with varying amplitude require interclick intervals
greater than 20 msec (Hirsh, 1959), and those of two
pure tones presented simultaneously but with asynchro-
nous onsets require stimulus onset asynchronies of ap-
proximately 20 msec (Stevens & Weaver, 2005; Pastore,
1983; Efron, 1963). Interestingly, it has been suggested
that the range of rates of change of stimulus events in
spoken language, which is in the order of 2–50 Hz (Rosen,
1992), contains temporal modulation frequencies that
the auditory system can detect. The limited temporal
resolution of these perceptual phenomena may be
attributable to limitations in the accuracy of temporal
pattern codes in the underlying neural circuitry. Our
analysis of temporal discharge patterns of ferret A1 units
is consistent with this hypothesis. As time-reversed
windows become narrower, inaccuracies in stimulus-
locked firing result in a failure to reflect the fine differ-
ences in the temporal structure of the stimuli. Other
previous studies on the responses of cat, monkey, and
human auditory cortical neurons have observed similar
limitations in the temporal resolution of cortical response
patterns to discrete auditory events. For example, re-
sponses to stop-consonant syllables exhibit characteristic
temporal response patterns when voice onset times are
longer than about 20–40 msec, but not for shorter voice
onset times (Steinschneider et al., 2005; Steinschneider,
Fishman, & Arezzo, 2003; Sharma, Marsh, & Dorman,
2000; Eggermont, 1995). Here, the temporal discharge
patterns of a subset of A1 units were found to discrimi-
nate natural from flipped twitters if the latter contained
temporal manipulations that were at least 20 msec
long. In addition, discrimination based on the stimulus-
synchronized firing of A1 units approximated human
psychometric performance only when the responses were
read out in time bins that were 20 msec or finer. Schnupp
et al. (2006) found similar optimum temporal resolutions
for sampling A1 discharge patterns for twitter classifica-
tion, in their case, between 10 and 50 msec. Taken to-
gether, these results suggest that psychophysical thresholds
for ordering sequential acoustic events may often lie near
20 msec because the temporal discharge patterns that
auditory cortical neurons use to encode these stimuli are
unable to represent finer time scales accurately.

It is important to note, however, that this limited tem-
poral resolution may not apply in higher-order cortical
areas or in the context of other types of auditory tasks,
such as pitch judgments, which, at the level of the au-
ditory cortex, may be performed through a specialized
set of rate coding pitch neurons (Bendor & Wang, 2005),
or gap detection, where very short gaps will result in
transients that affect the spectrum of the signal. Nor
might it apply to the perception of transients within a

frequency channel, such as ramped and damped tones
(Lu, Liang, & Wang, 2001a). Some physiological results
suggest that auditory processes operating at temporal
time scales either below or above the ‘‘lower pitch limit’’
(i.e., ca. 30–50 Hz) may be processed by separate sub-
groups of A1 neurons. More rapid (i.e., >50 Hz) tran-
sients within an auditory perceptual channel (i.e., within
a pure-tone frequency) are encoded in the spike rates
of some A1 neurons (Lu et al., 2001a, 2001b), whereas
slower modulations elicited stimulus-synchronized dis-
charges in other A1 neurons (Lu et al., 2001b). This is
consistent with the present findings, where among a
sample of A1 units that were driven by our complex
stimuli, only a subset exhibited temporal discharge
patterning that supported discrimination of the stimuli.
Therefore, although temporal pattern-based neuromet-
rics have been shown to perform better than spike rate
neurometrics on a task of discriminating relatively slow
(<50 Hz) changes in the envelopes of complex stimuli,
spike count-based neurometrics might be expected to
perform better on tasks that require the discrimination
of very fast (>50 Hz) transients within a single-frequency
channel. This idea does not require that these two types
of encoding be carried out in separate neural popula-
tions, although the work of Lu et al. (2001b) suggests
that this might be the case.

It is also important to stress that a 10- to 20-msec limit
in the temporal resolution at which sequential auditory
events can elicit spikes in A1 neurons would not imply
that the temporal precision of the spikes in represent-
ing the onset of each of these auditory events is limited
to 50–100 Hz. On the contrary, the temporal jitter in
evoked spikes across repeated presentations of a stim-
ulus can be considerably less than 10 msec for some A1
neurons (Elhilali, Fritz, Klein, Simon, & Shamma, 2004;
Wehr & Zador, 2003).

We have shown that the temporal discharge patterns
of some A1 units were sufficiently distinguishable that
the output of the three best discriminating units was
sufficient to match human psychophysical performance.
Therefore, the activity of a small number of cortical units
is, in principle, sufficient to account for psychophysical
data, provided these units are preselected to be the
most informative. However, it is far from clear whether
perceptual decision-making processes do, indeed, rely
on only a small number of units, and how the most ap-
propriate neurons for the particular task at hand would
be chosen. Also, results such as those of Britten et al.
(1992) challenge this ‘‘best envelope’’ notion. They show
that many MT neurons have spike rates that outper-
form the behaving animal on a visual discrimination task,
and psychometric performance, in this case, is closely
approximated by the median of neurometric perfor-
mance across units. Therefore, approaches that attempt
to interpret the activity of pooled populations of simul-
taneously active neurons may be a preferable way to
interpret cortical data.
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Using a simple, linear pooling of simultaneously active
neurons, we have shown that the responses of even in-
dependently uninformative neurons can provide a tem-
poral activation pattern that supports discrimination of
complex sounds that matches behavioral measures.
Further, the temporal spiking patterns of A1 neurons
appears to be quite robust in that the neurometric per-
formance of informative neurons was largely unimpaired
when their responses were pooled with noisy units. It
would certainly be possible to conceive of alternative
and potentially more powerful pooling algorithms than
the one used here, however, the algorithm we have
chosen is a biologically plausible one. A convergence
of connections with simple synaptic summation would
achieve this type of pooling of raw spike responses. Past
neurometric studies have often used highly complex
rules to pool responses in order to match psychomet-
ric findings. For instance, Purushothaman and Bradley
(2005) offered a detailed examination of the effects of
varying pool size, weighting of neural inputs into the
pool, and pooling nonlinearity on MT neurometric
performance. Furukawa, Xu, and Middlebrooks (2000)
found that the responses of at least 128 randomly cho-
sen A2 cat units are needed to reduce the median errors
in a sound localization task to psychoacoustic thresh-
olds. Although these analyses are interesting in their
own right, the interpretation of such models can be
problematic. For any one task, optimal pooling will re-
quire only a few cells, and optimization of performance
on a slightly different task will likely require a different
pool. This returns to a problem with enveloping the
responses of a few best neurons, namely, that it is un-
clear how the brain might isolate the activity of these
pools from task to task. We have shown that neuro-
metrics based on the pooled activity of A1 neurons using
a simple linear summation can closely approximate
behavioral performance, provided that the neural activ-
ity is recorded simultaneously.

One might expect response properties of auditory
cortical neurons to differ in anesthetized and awake an-
imals, but there are as yet no published studies which
have carried out carefully controlled comparisons of
awake and anesthetized recordings to demonstrate clear
and fundamental differences in response properties. In
the present study, we recorded responses of auditory
cortex neurons to the same stimulus set in both anes-
thetized and awake ferrets. Although the awake and the
anesthetized datasets were not ‘‘fundamentally differ-
ent,’’ there, nevertheless, appeared to be subtle differ-
ences. For example, there seemed to be a somewhat
higher proportion of neurons with good neurometric
performance in the awake dataset (compare Figures 5
and 12). We also observed that the PSTHs of pooled
firing across units appeared to show stronger onset and
offset response in the awake cortex (Figure 13). How-
ever, when we recorded the awake data, we had to
switch to a different type of recording electrode as the

silicon probes used in the anesthetized prep cannot
penetrate the dura. We can therefore not be certain to
what extent any quantitative differences in the two
datasets may reflect differences in anesthetic state, or
to what extent they might be attributable to differences
in the sampling of the neural population which might be
inherent in the slightly different recording equipment
and methodology used in these two sets of electrophys-
iological experiments. This potential confound makes
quantitative differences in our awake and anesthetized
datasets difficult to interpret, which is why we did not
examine these differences here in greater detail, but fo-
cused instead on the clear and unambiguous similarities
in the two datasets. In both the anesthetized and the
awake data, the best envelope and pooled neurometrics
matched human psychometric performance. Stimulus-
locked temporal discharge patterns are present in both
states, and these firing patterns are able to support the
discrimination of complex sounds where a simple spike
rate-based analysis fails. The fact that these features are
observed regardless of anesthetic state suggests that the
temporal discharge patterns described here are a fun-
damental aspect of complex sound encoding in the
auditory cortex.
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1. Please define MT in the text. Does this stand for middle temporal?
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