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The entropy metric derived from information theory provides a means to quantify the amount of information
transmitted in acoustic streams like speech or music. By systematically varying the entropy of pitch sequences, we
sought brain areas where neural activity and energetic demands increase as a function of entropy. Such a relationship
is predicted to occur in an efficient encoding mechanism that uses less computational resource when less information
is present in the signal: we specifically tested the hypothesis that such a relationship is present in the planum
temporale (PT). In two convergent functional MRI studies, we demonstrated this relationship in PT for encoding, while
furthermore showing that a distributed fronto-parietal network for retrieval of acoustic information is independent of
entropy. The results establish PT as an efficient neural engine that demands less computational resource to encode
redundant signals than those with high information content.

Citation: Overath T, Cusack R, Kumar S, von Kriegstein K, Warren JD, et al. (2007) An information theoretic characterisation of auditory encoding. PLoS Biol 5(11): e288. doi:10.
1371/journal.pbio.0050288

Introduction

We are constantly required to perceive, distinguish, and
identify signals in our acoustic environment. A critical first
stage of these processes is the encoding of the information
into a robust neural code that allows efficient subsequent
processing in the auditory system [1]. We investigated the
properties of such a robust neural code at the level of the
cortex by varying the amount of information—or entropy—
in the acoustic signal.

In the context of information theory [2,3], entropy (H)
denotes the uncertainty associated with an event and thus
provides a metric to quantify information content: a rare—or
uncertain—event carries more information than a com-
mon—or predictable—event. The properties of many in-
formation transmitting systems can be characterised in terms
of entropy. Indeed, Shannon originally applied information
entropy to describe transitional probabilities in language [2]:
in English, less common letters (e.g., ‘‘k’’) have a lower
probability (or higher uncertainty) than more common
letters (e.g., ‘‘e’’), and therefore carry higher information
and entropy. Similarly, entropy can be used to characterise
pitch transition probabilities in simple musical melodies [4,5].
We used entropy to quantify the information content of pitch
sequences.

‘‘Fractal’’ pitch sequences based on inverse Fourier trans-
forms of f –n power spectra [6,7] provide a means to control
directly the entropy of the sequence via the exponent n
(Figure 1). For n ¼ 0, the excursion of the pitch sequence is
equivalent to fixed-amplitude, random-phase noise and thus
is completely random (high entropy). In the context of
information theory, the high degree of randomness in this
signal does not correspond to noise that must be removed by
the system, but rather to a low predictability of the stimulus
that results in each individual element of the sequence
making a high degree of contribution to the information in

the sequence. As n increases, a single stream gradually
dominates the local pitch fluctuations and successive pitches
become increasingly predictable (low entropy). Such stimuli
are more predictable so that each element of the sequence
makes little contribution to the overall information in the
stimulus. These families of pitch sequences with different
values of n are statistical ‘‘fractals’’ [8] in the sense that their
statistical properties are scale-independent [7]. For present
purposes, the critical property of these pitch sequences that
we exploit here is not their fractal behaviour, but the
variation of entropy that is produced as n varies, whilst pitch
range, tempo, and pitch probability remain largely constant
(however, it is inherent to the system that for large exponents
n . 4, the pitch distribution approaches a sinusoid and
consequently is tilted toward the extremes of the pitch range
and also that the average interval size between successive
pitches decreases for increasing exponents n).
Entropy for pitch sequences generated with a given value

of exponent n can be determined by computing the sample
entropy (HSampEn) [9]. Intuitively, HSampEn is based on the
conditional probability that two subsequences of length m
that match within a tolerance of r standard deviations remain
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within a tolerance r of each other at the next point m þ 1.
Explicitly, for a signal or time series of length N, HSampEn is
defined as:

HSampEnðm; r;NÞ ¼ �ln
Arðmþ 1Þ
ArðmÞ

� �

where Ar(m) (or Ar(m þ 1)) denotes the probability that two
subsequences of length m (or mþ 1) match within a tolerance
r. Two sequences ‘‘match’’ if their maximum absolute point-
by-point difference is within a tolerance of r standard
deviations. That is, sample entropy is essentially a measure
of self-similarity, where highly self-similar time series signify
high redundancy and therefore low entropy, and time series
with low self-similarity represent a high degree of uncertainty
and therefore high entropy. Furthermore, sample entropy is a
nonparametric measure in the sense that it does not require a
priori knowledge of the true probability density function of
the underlying time series. In the present case, the param-
eters were chosen as m ¼ 2, r ¼ 0.5, and N represents the
number of tones of the pitch sequence.

By varying information theoretic properties of pitch
sequences, we address encoding mechanisms applied to
sounds at a level of generic processing that is not specific to
any semantic category. Even before such encoding mecha-
nisms are engaged, the auditory system must represent
spectrotemporal features of the stimulus in sufficient detail
such that a number of different aspects of the stimulus can be
encoded, in order to allow different types of subsequent
categorical and semantic processing. In the current context,
encoding constitutes the stage of analysis between the
detailed representation of the spectrotemporal structure of
the stimulus and the subsequent categorical analysis of
abstracted acoustic forms. A single sound may be associated
with more than one abstracted form: for example, we might
obtain vowel, speaker, and position from a single sound,
where each feature can undergo subsequent categorical and
semantic processing. Here we use information theory to
demonstrate encoding mechanisms in the brain that result in
the abstraction of a form of the stimulus.

We hypothesise that if such encoding mechanisms are
efficient, they will use less computational resource for stimuli
that have a low information content compared with stimuli
that have high information content. This hypothesis is tested

by measuring the functional MRI (fMRI) blood oxygenation
level–dependent (BOLD) signal as an estimate of neural
activity and computational resource during the encoding of
auditory stimuli in which the information content is system-
atically varied. We further hypothesise that processing in
primary auditory cortex in the Heschl’s Gyrus (HG) corre-
sponds to a stage at which the detailed spectrotemporal
structure of sounds is represented [10–12] and where such a
relationship will not be observed. Instead, such a relationship
is expected to be observed in distinct auditory association
cortex in the planum temporale (PT), which we have

Figure 1. Stimuli

Examples of fractal waveforms (blue) and the related pitch sequences
(red, rounded to the nearest integer) based on inverse Fourier transforms
of f –n power spectra, with exponent n¼ 0 (top), n¼ 0.9 (middle), n¼ 1.5
(bottom). Equitempered pitch (ten-note octave, ranging over two
octaves, resulting in 21 possible pitches, with ordinal indices 0 to 21
corresponding to 300–1,200 Hz) is denoted on the y-axis, time (in
seconds) on the x-axis. Entropy is largest for the top pitch sequence and
decreases as exponent n increases.
doi:10.1371/journal.pbio.0050288.g001
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Author Summary

Understanding how the brain makes sense of our acoustic environ-
ment remains a major challenge. One way to describe the
complexity of our acoustic environment is in terms of information
entropy: acoustic signals with high entropy convey large amounts of
information, whereas low entropy signifies redundancy. To inves-
tigate how the brain processes this information, we controlled the
amount of entropy in the signal by using pitch sequences.
Participants listened to pitch sequences with varying amounts of
entropy while we measured their brain activity using functional
magnetic resonance imaging (fMRI). We show that the planum
temporale (PT), a region of auditory association cortex, is sensitive to
the entropy in pitch sequences. In two convergent fMRI studies,
activity in PT increases as the entropy in the pitch sequence
increases. The results establish PT as an important ‘‘computational
hub’’ that requires less resource to encode redundant signals than it
does to encode signals with high information content.



previously characterised as a ‘‘computational hub’’ [13] that is
required to convert spectrotemporal representations into
‘‘templates’’—sparse symbolic neural representations that are
the basis for categorical, semantic, and spatial processing. For
example, the spectral envelope of a sound would represent
such a template for vowel processing [14]. The model was
developed to account for the involvement of PT in the
analysis of a variety of complex sounds that can be processed
categorically (speech, music, and environmental sounds) as
well as different spatial attributes (for a review, see [13]).

Here we investigate the encoding of pitch sequences that
can be like melodies in their structure, but in which the
structure and information content is determined by stat-
istical rules. We sought brain areas that display a positive
relationship between the information content or entropy of
pitch sequences and neural activity as assessed by the BOLD
signal during encoding. Specifically, we hypothesised that
such a relationship exists in PT but not in earlier auditory
areas.

Results

Study 1
Participants were presented with pure-tone pitch sequen-

ces that were based on f –n power spectra with n ranging from
n ¼ 0–1.5 in five steps of 0.3. In a behavioural experiment
before scanning, we acquired full psychometric functions
demonstrating that all of the 22 participants could reliably
distinguish a nonrandom pitch sequence from a random (n¼
0) reference in a two-interval, two-alternative, forced-choice
(2I2AFC) paradigm (see Materials and Methods). Perceptual
thresholds for discriminating nonrandom from a random
pitch sequence lay between n ¼ 0.6 and n ¼ 0.9 for the
majority of participants.

In a sparse fMRI paradigm [15,16], participants listened to
pitch sequences of a given value for n and indicated whether
it was random or not. A parametric regressor based on the
mean sample entropy [9] value at each of the six levels of n
(Table 1) was used to probe for cortical areas that increased
their activity with increasing entropy. The fMRI analysis
revealed a BOLD signal increase in PT as a function of
increasing entropy at a significance level of p , 0.001
(uncorrected for multiple comparisons, see Figure 2 and
Table 2) and using a small volume correction for the anterior
part of PT at a significance level of p , 0.05 (see Materials and
Methods). No area increased its activity as a function of
decreasing entropy, i.e., increasing predictability or redun-
dancy.

These results suggest a greater computational and ener-
getic demand for encoding in PT as the information content
of acoustic sequences (as assessed by entropy) increases.
However, the present study has three potential confounds,
which we addressed in a second study. First, we considered
whether the effect of entropy in PT might reflect adaptation
of the sensory cortical representation of frequency, as the
pitch sequences were based on pure tones: for low values of
exponent n, the frequency excursions are greater on average,
so that the signal moves more between specific frequency
representations, and PT might adapt less and thus produce a
greater local activity. Such a mechanism would also be
expected to occur in primary and secondary auditory cortex
within HG. We therefore explored the specific relationship
between fractal exponent and local activity in HG and PT by
extracting the first eigenvariate of the BOLD signal in left and
right HG as well as the local maxima in PT (see Materials and
Methods). No significant difference across entropy levels was
demonstrated in HG (2 Hemisphere (left, right) 3 6 Entropy
Level (1–6) repeated measures analysis of variance (ANOVA):
no main effect of Entropy Level (F(5,17) ¼ 1.11, p . 0.1);
Figure 2). Furthermore, a 2 Area (PT, HG) 3 6 Entropy Level
(1–6) 3 2 Hemisphere (left,right) repeated measures ANOVA
demonstrated a significant difference in the relationship
between BOLD signal across entropy levels in PT versus HG:
Area 3 Entropy Level interaction (F(5,17)¼ 4.86, p , 0.001).
The existence of the effect in auditory association cortex in

PT, the absence of an effect in HG, and a significant
interaction between effects in the two areas are indirect
evidence against an explanation of the results based on
sensory adaptation. Nevertheless, we addressed a putative
sensory explanation in a second study by using regular-
interval noise, where sounds have identical passband regard-
less of their pitch [17–19].
Second, we also considered whether the effect of entropy

might reflect perceptual adaptation at the level of the
representation of pitch. Again, such an effect would not be
expected in association cortex, but in a proposed ‘‘pitch
centre’’ in lateral HG [20–22]. The second study therefore
incorporated a more suitable design to detect a potential
differential response to the entropy of the acoustic stimuli in
cytoarchitectonic [23] and functional [20] subdivisions of HG
in medial, central, and lateral HG.
Finally, we controlled for the fact that, in the first study,

participants were explicitly required to assess whether the
sequences were random or not. This made it possible that the
results reflected a category judgment rather than a funda-
mental encoding mechanism. To test this, the second study
differentially examined encoding and retrieval components
as a function of entropy but independent of any other
stimulus-related classification task.

Study 2
In a sparse fMRI paradigm [15,16], participants were

presented with fractal pitch sequences based on f –n power
spectra, with n ranging from n¼0–1.2 in four steps of 0.3. The
separate pitches corresponded to regular-interval noise [17–
19] (see Materials and Methods). By using broadband stimuli
and an increased number of silent trials, the second study
used a more suitable design to allow disambiguation of the
medial functional area in HG that corresponds to the
primary auditory cortex and areas in lateral HG that

Table 1. Mean Entropy Values

Study

Number

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Study 1 1.38 (0.25) 1.39 (0.24) 1.32 (0.21) 1.05 (0.19) 0.75 (0.19) 0.48 (0.16)

Study 2 1.49 (0.33) 1.54 (0.35) 1.39 (0.31) 1.18 (0.27) 0.87 (0.23) —

Mean sample entropy HSampEn [45] values (SEM in parentheses) of the pitch sequences
across levels in the two studies. The values for each level differ slightly between the
studies because pitch sequences in study 1 consisted of 38 notes, while those in study 2
consisted of 24 notes.
doi:10.1371/journal.pbio.0050288.t001
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correspond to secondary cortices, including the area within
which activity corresponds to pitch salience [20,21]. The
second paradigm also enabled the disambiguation of encod-
ing and retrieval mechanisms. Participants were scanned (1)
after being required to encode a pitch sequence with a
particular entropy value and (2) after listening to a second
pitch sequence that was either identical to the first sequence

or different from the first sequence but with the same
entropy value. Activity during the first scan reflects the
energetic demands of encoding the first sequence, whereas
activity during the second scan reflects encoding of the
second sequence, retrieval of the first, and comparison of the
two. In order to decorrelate the two scans [24], we introduced
a delay of one, two, or three scans between the pitch

Figure 2. Study 1 Functional Imaging Data: Effect of Entropy

Areas showing an increase in BOLD signal (p , 0.001, uncorrected for multiple comparisons across the brain) as a function of increasing entropy (red)
and areas that responded to sound in general ([sound–silence] contrast, p , 0.05, FWE corrected) (blue) rendered on a tilted (pitch:�0.4) axial section of
participants’ normalised average structural scan. Normalised mean percent BOLD signal change (6SEM) at the local maxima in the left and right PT
(bottom) and HG (top) is plotted for the six levels of exponent n.
doi:10.1371/journal.pbio.0050288.g002

Table 2. MNI Coordinates in PT

Hemisphere Study 1 Entropy Increase Study 2 Entropy Increase Geometric Distance

Study 1 Versus Study 2

x y z t-value x y z t-value

Left –62 –24 8 5.7 –56 –30 8 3.83 —

–60 –38 16 5.02 — — — — —

Mean –61 –31 12 –56 –30 8 6.48

Right 68 –20 0 4.74 66 –22 2 3.93 —

66 –30 4 4.39 — — — — —

66 –12 0 3.72 — — — — —

Mean 67 –21 1 — 66 –22 2 — 1.73

MNI coordinates of local maxima in PT as a function of increasing entropy in the two studies. Coordinates in italics depict the arithmetic mean of the geometric MNI coordinates for left
and right PT in the two studies. The last column lists the geometric distance between the arithmetic means; note that this is smaller than the smoothing kernel (8 mm) applied to the data.
doi:10.1371/journal.pbio.0050288.t002
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sequences (see Material and Methods and Figure 3). In
contrast to the first study, participants were not informed
about the nature of the pitch sequences and instead were only
told that they would hear pairs of pitch sequences and that
their task would be to say whether the second was same or
different.

Participants’ behavioural performance in the scanner was
assessed via hits (hit) and correct rejections (cr) percent scores
(see also Figure S2). Both mean hit (74.25% 6 3.14 standard
error of the mean [SEM]) and mean cr (73.42% 6 3.31 SEM)
scores were significantly above chance (50%) (one-sample t-
test, hit: t23¼ 7.73; cr: t23¼ 7.08, both p , 0.001). Furthermore,
a 2 Response (hit, cr) 3 5 Entropy Level (1–5) 3 3 Delay(1–3)
repeated measures ANOVA showed no main effect in any of
the three factors (F(23,1)¼0.33; F(20,4)¼1.1; F(22,2)¼0.53; all
p . 0.05, for Response, Entropy Level and Delay, respec-
tively). There was no Response 3 Entropy Level interaction
(F(20,4) ¼ 1.01, p . 0.05), indicating that participants’
performance was not influenced by the entropy level of the
pitch sequences. Participants had higher cr than hit scores for
delay 3, whereas there were more hits than cr for delays 1 and
2 (Response3Delay interaction; F(22,2)¼ 7.91, p¼ 0.001). An
Entropy Level 3 Delay interaction (F(16,8) ¼ 2.14, p , 0.05)
showed a performance increase for delay 1 from entropy level
1 to entropy level 5, but there was no such systematic effect
for delay 2 or delay 3. There was no Response3Entropy Level
3 Delay interaction (F(16,8)¼ 0.45, p . 0.1).

The imaging results replicate the findings of the first study,
demonstrating that activity in PT for encoding (as assessed by
both the first and second scan of each pair) increased
significantly as a function of entropy for the same significance
thresholds as in the first study (Figure 4 and Table 2). We
examined in detail the effect at the level of primary and
secondary auditory cortex by extracting the BOLD signal in
medial, central, and lateral HG [20,23] (Figure 4 and Figure
S1): three separate 5 Entropy Level (1–5) 3 2 Hemisphere
(left, right) repeated measures ANOVAs showed no main
effect of Entropy Level (F(4,20)¼ 0.85, F(4,20)¼ 0.77, F(4,20)¼
1.83, all p . 0.1, for medial, central, and lateral HG,
respectively).

Furthermore, the relationship between entropy and BOLD
signal was significantly different between PT and all three

subdivisions of HG: three separate 2 Area (PT, (medial,
central, or lateral) HG) 3 5 Entropy Level (1–5) 3 2
Hemisphere (left, right) repeated measures ANOVAs carried
out for medial, central, or lateral HG showed an Area 3

Entropy Level interaction (F(4,20) ¼ 2.61, p , 0.05; F(4,20) ¼
3.31, p , 0.05; F(4,20) ¼ 5.55, p , 0.001, for medial, central,
and lateral HG, respectively).
The cardiac gated image acquisition in Study 2 further-

more allowed an examination of a potential effect of stimulus
entropy in subcortical auditory structures. We examined the
relationship between entropy and the activity in the medial
geniculate body (MGB) and inferior colliculus (IC) using a
smaller smoothing kernel (4 mm full width at half maximum
[FWHM]) that is appropriate for these subcortical structures
(Figure 5). This analysis showed no main effect of entropy on
the BOLD response in these areas (two separate 5 Entropy
Level (1–5) 3 2 Hemisphere (left, right) repeated measures
ANOVAs: F(4,20)¼0.35, p . 0.1, for IC; F(4,20)¼1.32, p . 0.1,
for MGB). Due to the different spatial smoothing, no
meaningful interaction with the response in cortical struc-
tures can be computed.
A second analysis based on the contrast between the second

and first scans sought areas involved in retrieval and
comparison, but not encoding. This contrast highlighted
activity within a bilateral fronto-parietal network, including
the anterior insulae and frontal opercula, inferior parietal
sulci, medial superior frontal gyri, and dorsolateral prefron-
tal cortex (p , 0.05, family-wise error (FWE) corrected for
multiple comparisons; Figure 6 and Table S1). A further
contrast was carried out to identify an effect of entropy on
retrieval and comparison, but not encoding. No effect of
entropy on retrieval and comparison was demonstrated.

Discussion

We have demonstrated an increase in the local neural
activity as a function of the entropy of encoded pitch
sequences in PT but not in HG. The results are consistent
with a computational process in PT that requires increasing
resource and energetic demands during encoding as the
entropy of the sound stimulus increases.
In the first study, the use of pure tones could not exclude a

Figure 3. Schematic of the Experimental Design in Study 2

Depicted are three consecutive trials with pairs of pitch sequences drawn from entropy levels 5, 1, and 2. Coloured boxes indicate the presentation of a
pitch sequence, black boxes indicate the acquisition of a scan volume, and the white gaps between scans denote silent periods. Identical colours within
one trial indicate that the two pitch sequences of a pair are identical (trial 1), whereas slightly different hues indicate trials where the second pitch
sequence was different from the first one, but drawn from the same entropy level (trials 2 and 3). There were three possible delays within and between
trials: for example, trial 1 has a within-trial delay of two scans before the presentation of the second pitch sequences, and a between-trial delay of three
scans before the beginning of the subsequent trial. Trial 2 has within-trial and between-trial delays of one scan, etc. Visual cues as depicted above the
schematic of the design were presented to guide participants through the experiment. Participants received immediate feedback (correct/incorrect)
after giving their response.
doi:10.1371/journal.pbio.0050288.g003

PLoS Biology | www.plosbiology.org November 2007 | Volume 5 | Issue 11 | e2880005

Information Theory and Auditory Encoding



possible alternate explanation of the data in terms of sensory
adaptation within cortical frequency representations. The
existence of the relationship in PT, but not in HG, was
indirect evidence against such sensory adaptation. However,
in the second study we used broadband stimuli that
continually activate a broad range of cortical frequency
representations irrespective of pitch, rendering explanations
based on sensory adaptation untenable.

Another interpretation of these results could be based on
perceptual adaptation within cortical correlates of pitch (as
opposed to sensory adaptation of the stimulus representa-
tion). Previous studies have demonstrated mapping of activity
within secondary auditory cortex in lateral HG as a correlate
of the perceived pitch salience, whether the stimulus
mapping was in the temporal domain [20] or frequency
domain [21]. An explanation of the results of either study
might therefore be based on adaptation within the pitch
centre in lateral HG for pitch sequences with higher fractal
exponent n. In the second study, we were able to identify
separate activations in medial, central, and lateral HG.
Contrary to an interpretation based on adaptation in pitch-
sensitive channels, there was no relationship between the
entropy and local activity in any of the subregions of HG that
would have supported such an explanation. Furthermore, the

interaction between HG and PT provides additional evidence
for an effect of entropy that is specific to PT.
The most compelling explanation of these results is in

terms of greater computational activity (and therefore local
synaptic activity and BOLD signal [25]) as a function of the
information content or entropy of the encoded sound. This is
the first explicit demonstration of such a relationship. The
results suggest an efficient form of encoding within PT,
whereby sequences are encoded by a mechanism that
demands less computational resource for sequences carrying
low information content and high redundancy (due to the
predictability of the sequence) than that required to encode
sequences with little or no redundancy. ‘‘Sparse’’ [26–28] and
‘‘predictive’’ [29–31] coding both constitute such mechanisms
and bases for PT acting as a computational hub [13].
In contrast, retrieval and comparison do not depend on

entropy in the same way, which we propose reflects the
decreased computational and energetic demands of retriev-
ing and comparing stimuli at symbolic levels beyond stimulus
encoding. The initial encoding process depends on a
computationally expensive process that must abstract fea-
tures from a complex spectrotemporal structure. Beyond this
stage, the subsequent categorical retrieval and comparison
mechanism does not depend on the detailed spectrotemporal
structure. Indeed, the computational hub model [13] states

Figure 4. Study 2 Functional Imaging Data: Effect of Entropy

Areas showing an increase in BOLD signal (p , 0.005, uncorrected for multiple comparisons across the brain) as a function of increasing entropy (red)
and areas that responded to sound in general ([sound–silence] contrast, blue) rendered on a tilted (pitch:�0.5) axial section of participants’ normalised
average structural scan. Normalised mean percent BOLD signal change (6SEM) at the local maxima in the left and right PT (bottom) and central HG
(cHG, top) is plotted for the five levels of exponent n. See Figure S1 for corresponding plots of BOLD signal in medial and lateral HG.
doi:10.1371/journal.pbio.0050288.g004
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that PT gates its output towards higher-order cortical areas
that perform analysis at a symbolic and semantic level. We
suggest that at least part of the function of PT is to compress
the neural code corresponding to the initial acoustic signal
(e.g., via sparse or predictive coding), and that subsequent
processing is not dependent on stimulus entropy.

That PT might even perform this type of analysis in more
general or supra-modal terms is suggested by work in the
visual domain [32], demonstrating activation in Wernicke’s
area and its right-hemisphere homologue as a function of the
entropy within a sequence of visually presented squares,
irrespective of whether or not participants were aware of an
underlying sequence. However, later studies using similar
visual stimuli did not replicate this finding [33,34].

The retrieval and comparison phase highlighted a fronto-
parietal network consisting of the anterior insulae and
frontal opercula, inferior parietal sulci, medial superior
frontal cortex, and dorsolateral prefrontal cortex. This
activation pattern is common in the retrieval and comparison
phase of (auditory) delayed match-to-sample tasks (e.g.,
[35,36]). The anterior insula in particular has been proposed
as an additional auditory processing centre that allocates
auditory attention, specifically with respect to sound sequen-
ces (see [37] for a review). Similarly, the parietal cortex is
generally regarded as being important for attention to and

binding of sensory information [38], whereas activity in the
prefrontal cortex is often associated with response prepara-
tion and selection [39].
Our main aim was to study generic neural mechanisms of

sound encoding as a function of entropy, and the range of
pitch sequences we used included those approximating f�1

(‘‘one-over-f’’) power spectra, which resemble many naturally
occurring acoustic phenomena [40]. Notably, music and
speech display f�1 power spectra characteristics, reflecting
the relative balance of ‘‘surprises’’ (e.g., musical transitions)
and predictability in such signals [41,42]. Pertaining specif-
ically to the signals used here falling in the range of f�1, two
recent electrophysiological studies demonstrated preference
within primary sensory cortices for f�1 signals [43,44]. We did
not demonstrate any ‘‘tuning’’ to particular values of
exponent in HG (no main effect of Entropy Level; Figures 2
and 4 and Figure S1). Although we do not dismiss the
possibility of neuronal preference for particular natural
sequence categories at the level of HG in humans, the current
studies addressed the computational and energetic demands
of the perceptual encoding of sounds, rather than their
sensory representation.
We have used entropy to characterise pitch sequences, but

the information theoretic approach could be used to
characterise sequences containing rhythm or more complex

Figure 5. Study 2 Functional Imaging Data: Response in Subcortical Structures

Entropy increase (p , 0.001, uncorrected) (red) and [sound–silence] (p , 0.05, FWE corrected) (blue) contrasts superimposed on a horizontal section (z¼
�10) of participants’ normalised average structural scan that covers IC and MGB (note that z coordinates vary slightly between maxima and arrows,
therefore they are only indicative of the exact location). Normalised mean percent BOLD signal change (6SEM) at the local maxima in left and right IC
(bottom) and MGB (top) is plotted for the five levels of exponent n.
doi:10.1371/journal.pbio.0050288.g005
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natural sound sequences. The hypothesised mechanism in PT
is not a specific pitch mechanism and also predicts a similar
relationship between information content and the encoding
of more natural stimuli. In summary, the present data
implicate PT as a neural engine within which the computa-
tional and energetic demands of encoding are determined by
the entropy of the acoustic signal.

Materials and Methods

Study 1. Participants. 30 right-handed human participants (aged 18–
43 y, mean age ¼ 24.9 y; 19 females) with normal hearing and no
history of audiological or neurological disorders provided written
consent prior to the experiment. None of the participants was a
professional musician. The experiment was approved by the Institute
of Neurology Ethics Committee, London. Eight participants had to be
excluded due to excessive head movements (more than 5 mm
translation or 58 rotation within one session) or not meeting the
psychophysical assessment criteria (see below), leaving a total of 22
participants (aged 18–40 y, mean age¼ 24.2 y; 12 females).

Stimuli. All stimuli were created digitally in the frequency domain
using Matlab (http://www.mathworks.com). Stimuli were fractal sine
tone sequences based on inverse Fourier transforms of f –n power
spectra [6,7] for six levels of n (0, 0.3, 0.6, 0.9, 1.2, and 1.5), where pitch
sequences ranged from totally random (n¼ 0; high entropy) to more
coherent or predictable (n ¼ 1.5; low entropy). By randomising the
phase spectrum, each exemplar is unique while at the same time
displaying the same characteristic correlational properties of a given
level. The pitch range spanned two octaves from 300–1,200 Hz, with
each octave split into ten discrete equidistant pitches. Pitch
sequences were presented at a tempo of five notes per second, with
a total duration of 7.6 s for each pitch sequence (38 notes per
sequence). There were 60 exemplars for n ¼ 0 and 30 exemplars for
the remaining five levels of n.

We calculated the mean entropy for each level of exponent n using
the sample entropy HSampEn [9] measure, as described in the
Introduction:

HSampEnðm; r;NÞ ¼ �ln
Arðmþ 1Þ
ArðmÞ

� �
:

Ar(m) denotes the probability that two subsequences of length m
match within a tolerance r, i.e., Ar(m) is the ratio of [all pairs of
subsequences of length m that match] divided by [all possible pairs of
subsequences of length m]; the same applies to Ar(m þ 1). Guided by
Lake and colleagues [45], we chose tolerance r ¼ 0.5 and length of
subsequence m ¼ 2 as parameter values. As Eke et al. [8] point out,
taking a subset of data points from a fractal time series essentially
introduces noise into the resulting time series, leading to lower n and
consequently higher entropy estimates relative to the original values.
Table 1 therefore lists the mean sample entropy values for the time
series of the 38 notes in each pitch sequence.

Experimental design. In a behavioural experiment prior to scanning,
we acquired full psychometric functions from participants discrim-
inating the nonrandom pitch sequence against a random reference (n
¼ 0) in a 2I2AFC paradigm. Participants were not given feedback.
Stimuli were not the same as in the subsequent imaging paradigm and
there were 72 trials (12 trials per level). Psychometric functions and
75% correct thresholds were estimated via a Weibull boot-strapping
procedure [46]. Participants who did not reach at least 80%
performance for levels 5 or 6 were not included in the fMRI analysis.
In the functional imaging paradigm, participants were asked to
categorise whether or not the pitch sequence was random by pressing
the corresponding button at the end of each pitch sequence, bearing
in mind that pitch sequences of intermediate levels (n ¼ 0.6–0.9) are
neither completely random nor completely coherent (in these cases,
participants should nevertheless indicate their predominant per-
cept). Stimuli were presented via custom-built electrostatic head-
phones at 70 dB sound pressure level (SPL) using Cogent software
(http://www.vislab.ucl.ac.uk/Cogent/).

Gradient weighted echo planar images (EPI) were acquired with a
3-T Siemens Allegra MRI system (Erlangen, Germany), using a sparse
temporal sampling technique [15,16] (time to repeat/time to echo, TR/
TE ¼ 10,530/30 ms). A total of 246 volumes (42 slices, 3 3 3 3 3 mm
voxel resolution) were acquired over three sessions (82 per session),
including 60 volumes for n¼ 0 and 30 volumes for the other levels of
n, as well as 30 silent control trials (the first two volumes of each
session were discarded to allow for saturation effects). To correct for
geometric distortions in the EPI images due to B0 field variations,
Siemens fieldmaps were acquired for each participant [47,48]. A
structural T1 weighted scan was acquired for each participant [49].

Image analysis. Imaging data were analysed using statistical para-
metric mapping software (SPM2, http://www.fil.ion.ucl.ac.uk/spm).
Volumes were realigned and unwarped using the fieldmap parame-
ters, spatially normalised [50] to standard stereotactic space, and
smoothed with an isotropic Gaussian kernel of 8 mm FWHM.
Statistical parametric maps were generated using a finite impulse
response (FIR) box-car function in the context of the general linear
model [51]. The six conditions were parametrically modulated based
on the average sample entropy [9] value for each level of n (Table 1),
statistically evaluated using a random-effects model and thresholded
at p , 0.001 (uncorrected for multiple comparisons across the brain)
for areas where we had an a priori hypothesis, i.e., in auditory cortex
and specifically in PT. In addition, we carried out a volume-of-
interest analysis controlling for multiple comparisons within PT by
centering a sphere with 1-cm radius around the centroid of the
triangular anterior part of PT that is situated within the superior
temporal plane as opposed to the more posterior part that abuts the
parietal lobe (Montreal Neurological Institute (MNI) [x, y, z]
coordinates [–56, –28, 6] and [58, –24, 8] for left and right PT,
respectively). Our choice of volume was based on the identification of
the anterior part of PT in the studies that suggested the computa-
tional hub model [13]. For areas that were not predicted a priori, we
adopted a statistical threshold of p , 0.05 after FWE correction.

We investigated in detail a potential effect of adaptation in
frequency bands at an earlier sensory level. Study 1 did not allow
disambiguation of the three cytoarchitectonically [23] and function-
ally [20] distinct areas in HG, namely medial, central, and lateral HG
(see Study 2 below for further discussion). Therefore, we identified
single coordinates based on local maxima of a sound minus silence
contrast for left [–46,�24, 6] and right [50, –24, 8] HG that are most
similar to central HG as defined by references [20,23] and extracted
the first eigenvariate of the BOLD signal at these coordinates (see
Figure 2).

The BOLD signal was extracted using a standard procedure in
SPM: the time series of a given voxel (e.g., the peak activation voxel
for the entropy effect) is provided by SPM via a voxel-of-interest
(VOI) routine. At the second-level statistical analysis, this results in a

Figure 6. Study 2 Functional Imaging Data: Retrieval and Comparison

Areas that show stronger activation (p , 0.05, FWE corrected) for
retrieval and comparison than encoding, rendered on coronal (y¼22 and
y¼�48, top left and right, respectively), and sagittal (x¼ 6, bottom left)
sections of participants’ normalised average structural scan. See also
Table S1 for exact MNI coordinates.
doi:10.1371/journal.pbio.0050288.g006
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time series for each contrast where each data point corresponds to a
participant. The routine is executed for each contrast, in the current
case either six (Study 1) or five (Study 2) [Level–Silence] contrasts,
resulting in a 22 3 6 or 24 3 5 matrix (22 or 24 participants,
respectively), where each row corresponds to a participant and each
column to a contrast. The threshold at which the BOLD signal was
extracted was p , 0.05 (uncorrected for multiple comparisons). The
values are then normalised to the maximum value.

Note that the interaction described here between the BOLD signal
in HG and PT across levels assumes that the coupling between
neuronal response and the haemodynamic BOLD signal is identical
in the two brain regions. While we have no reason to assume the
contrary, it has also not been proven that this is indeed the case.

Study 2. Participants. 30 right-handed participants (aged 20–44 y,
mean age¼ 28.0 y; 16 females) with normal hearing and no history of
audiological or neurological disorders provided written consent
prior to the experiment. The experiment was approved by the
Institute of Neurology Ethics Committee, London. Six participants
had to be excluded because of excessive head movements (more than
5-mm translation or 58 rotation within one session), leaving a total of
24 participants (aged 20–44 y, mean age¼ 28.58 y; 12 females).

Stimuli. Similar to Study 1, pitch sequences were again based on f –n

power spectra for five levels of n (0, 0.3, 0.6, 0.9, and 1.2). Each pitch
was based on regular-interval noise [17–19] with 16 iterations. The
pitch range spanned two octaves from 150–600 Hz, with each octave
split into ten discrete equidistant pitches. Pitch sequences were
presented at a tempo of four notes per second, with a total duration
of 6 s for each pitch sequence (24 notes per sequence). The mean
entropy values for each level of n are depicted in Table 1 and are
slightly different from Study 1, because each pitch sequence had 24
notes instead of 38. There were 30 exemplars for each level of n, and
stimuli were presented via custom-built electrostatic headphones at
70 dB SPL using Cogent software (http://www.vislab.ucl.ac.uk/Cogent/).

Experimental design. In a sparse imaging paradigm [15,16], partic-
ipants were scanned (1) after being required to encode a pitch
sequence with a particular entropy value and (2) after listening to a
second pitch sequence that was either the same sequence or a
different sequence from the same entropy level and indicating
whether this was the same pitch sequence or different (see also Figure
3). To de-correlate [24] activations due to the first and second pitch
sequence, the second pitch sequence followed the first pitch sequence
either immediately in the next TR, or with two or three TR’s delay
(within-trial delay). Similarly, the first pitch sequence of the next pair
could follow the second pitch sequence of the previous pair
immediately, or with one or two TR’s delay (between-trial delay).
There were 20 pitch sequence pairs for each level, amounting to 100
encoding and 100 retrieval stimuli across the five levels of exponent n.
In addition, there were a total of 100 within-trial volumes and 100
between-trial rest volumes. For each level of exponent n, 10 out of 20
pairs were identical, and 10 were different. Stimuli were counter-
balanced between participants.

To guide participants, a ‘‘1’’ was displayed at the centre of the
screen from the start of the first pitch sequence until the start of the
second pitch sequence, when a ‘‘2’’ was displayed. At the end of the
second pitch sequence, participants briefly saw a ‘‘?’’ to indicate they
should now give their response as to whether they thought the second
pitch sequence was the same as or different from the first pitch
sequence. Participants received immediate feedback. During the rest
period between trials, participants saw a fixation cross ‘‘þ’’ at the
centre of the screen and were instructed to relax.

Gradient-weighted EPIs were acquired with a 3-T Siemens Allegra
MRI system (Erlangen, Germany), using a sparse temporal sampling
technique [15,16], where each volume was cardiac gated to reduce
motion artefacts (TR/TE¼;8,800/30 ms). A total of 404 volumes (42
slices, 33 33 3 mm voxel resolution) were acquired over two sessions
(the first two volumes of each session were discarded to allow for
saturation effects). Subsequent to the functional paradigm, a
structural T1 weighted scan was acquired for each participant [49].

Image analysis. Imaging data were analysed using statistical para-
metric mapping software (SPM5, http://www.fil.ion.ucl.ac.uk/spm).
Volumes were realigned and unwarped, spatially normalised [50] to
MNI standard stereotactic space, and smoothed with an isotropic
Gaussian kernel of 8-mm FWHM. Statistical parametric maps were
generated by modelling the evoked haemodynamic response to the
stimuli and the delay period in the context of the general linear
model [51].

To probe for an effect of entropy on encoding, a contrast was
carried out to identify areas in which the BOLD signal in the first and
second scans increased as a function of a parametric regressor based
on the mean sample entropy value at each level (see Table 1). A

second contrast investigated the effect of retrieval and comparison
independent of encoding by subtracting the effect of encoding of the
first stimulus only (corresponding to the first scan) from that to
encoding of the second stimulus, retrieval of the first, and
comparison of the two (corresponding to the second scan). A third
contrast examined the effect of entropy on retrieval by subtracting
[first scan entropy increase] from [second scan entropy increase].
Statistical results are based on a random-effects model and thresh-
olded at p , 0.001 (uncorrected for multiple comparisons across the
brain) for areas where we had an a priori prediction, i.e., PT, in
addition to the same small volume correction (p , 0.05 corrected for
multiple comparisons) as in Study 1. For areas that were not
predicted a priori, we adopted a more conservative statistical
threshold of p , 0.05 after FWE correction.

The second study was better suited to identify the three
cytoarchitectonically [23] and functionally [20] distinct areas within
HG based on the sound minus silence contrast because of (1) the
greater number of silent trials and (2) the use of broadband stimuli.
Three activations were identified in HG in either hemisphere,
primarily to locate the lateral area previously implicated in
perceptual pitch analysis [20,21] and to allow a comparison of the
effect of entropy on activity here with that in PT (for individual
coordinates see Table 2 for PT, Figure 2 for central and Figure S1 for
medial and lateral HG).

Cardiac gating in Study 2 produced a reliable signal in subcortical
structures IC and MGB (Figure 5). We reanalysed the data with a 4-
mm FWHM smoothing kernel that is appropriate to these structures.
Local maxima based on a sound minus silence contrast were
identified in left IC ([–6, �34, �12]) and right IC ([6, –34, –10]) and
left MGB ([–14,�26, �8]) and right MGB ([12, –24, –8]).

For further analysis considerations see Text S1, Figures S3 and S4,
and Table S2.

Supporting Information

Figure S1. Effect of Entropy in Medial and Lateral HG

Normalised BOLD signal change (y-axis) in left and right medial (top)
and lateral HG (bottom) (mHG and lHG, respectively) plotted against
the five levels of exponent n (x-axis) for study 2. See Figure 4 for
corresponding plots of BOLD signal in central HG.

Found at doi:10.1371/journal.pbio.0050288.sg001 (601 KB JPG).

Figure S2. Behavioural Data from Study 2

Hits (hit) and correct rejections (cr) are displayed for the three delay
periods (1, 2, 3) across the five levels of exponent n. A repeated
measures ANOVA showed no main effect of either Response (hit vs.
cr), Delay (1, 2, 3) or Entropy Level (1–5). There was no Response 3
Entropy Level interaction, but there were a Response 3 Delay and
Delay 3 Entropy Level interaction (for detailed statistical data, see
Results section for study 2).

Found at doi:10.1371/journal.pbio.0050288.sg002 (851 KB JPG).

Figure S3. First Comparison of Analysis Techniques

(Left) Comparison of results for study 1 when analysing the data with
respect to the original six exponent n levels (red) or collapsing across
levels 1 to 3, resulting in a total of 4 levels (blue). (Right) Comparison
of results for study 2 when analysing the data with respect to the
original five exponent n levels (red) or collapsing across levels 1 to 3,
resulting in a total of 3 levels (blue). Results are thresholded at p ,
0.001 (uncorrected) rendered on the tilted (pitch¼�0.5) normalised
mean structural of the 22 versus 24 participants. (See also Text S1.)

Found at doi:10.1371/journal.pbio.0050288.sg003 (291 KB JPG).

Figure S4. Second Comparison of Analysis Techniques

Comparison of results for the three types of analyses in the two
studies (study 1, left; study 2, right). Original analysis based on mean
entropy value of the six levels derived from exponent n (red); analysis
based on individual sample entropy value of each pitch sequence
(analysis (a) (see Text S1), blue); analysis based on categorisation
derived from entropy values irrespective of the exponent n value
from which the stimuli were derived (analysis (b) (see Text S1), cyan).
Results for study 1 are thresholded at p , 0.001 (uncorrected); results
for study 2 are thresholded at p , 0.005 (red) and p , 0.05 (blue and
cyan) and are rendered on the tilted (pitch¼�0.5) normalised mean
structural of the 22 versus 24 participants. (See also Text S1.)

Found at doi:10.1371/journal.pbio.0050288.sg004 (287 KB JPG).
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Table S1. MNI Coordinates for Retrieval and Comparison

Local maxima coordinates for the main effect of retrieval and
comparison (contrast: [second scan–first scan]) at p ,0.05 (FWE
corrected for multiple comparisons across the brain). IPS, intra-
parietal sulcus; mSFG, medial superior frontal gyrus; VLPFC,
ventrolateral prefrontal cortex; IFG, inferior frontal gyrus.

Found at doi:10.1371/journal.pbio.0050288.st001 (19 KB XLS).

Table S2. Pitch Sequence Classification

Descriptive data for the pitch sequences in the two studies with a
classification scheme based on the sample entropy estimates. (See also
Text S1.)

Found at doi:10.1371/journal.pbio.0050288.st002 (18 KB XLS).

Text S1. Analysis Considerations

Found at doi:10.1371/journal.pbio.0050288.sd001 (33 KB DOC).

Acknowledgments

We thank Karl F. Friston, Klaas E. Stephan, Lauren Stewart, and
Lillian B. Pierce for helpful discussion and comments.

Author contributions. TO designed the studies, acquired and
analysed the data, and wrote the manuscript. RC contributed to the
design, analysis, and interpretation of both studies. SK was involved
in the design of the first study and information theoretic analysis of
the results. KvK helped acquiring and analysing the data. JDW was
involved in the conceptualisation of the stimulus. MG contributed to
the design of the first study. RPC contributed to the design of the first
study and interpretation of the results. TDG created the stimulus,
designed the studies, and wrote the manuscript.

Funding. This work was funded by the Wellcome Trust (UK). TO is
supported by the German Academic Exchange Service. JDW is
supported by a Wellcome Trust Intermediate Clinical Fellowship.

Competing interests. The authors have declared that no competing
interests exist.

References
1. Lewicki MS (2002) Efficient coding of natural sounds. Nat Neurosci 5: 356–

363.
2. Shannon CE (1948) A mathematical theory of communication. Bell Syst

Tech J 27: 379–423, 623–656.
3. Attneave F (1959) Applications of information theory to psychology: a

summary of basic concepts, methods, and results. New York: Holt, Rinehart,
and Winston.

4. Pearce MT, Wiggins GA (2006) Expectation in melody: The influence of
context and learning. Music Percept 23: 377.

5. Pearce MT, Wiggins GA (2004) Improved methods for statistical modelling
of monophonic music. J New Music Res 33: 367–385.

6. Patel AD, Balaban E (2000) Temporal patterns of human cortical activity
reflect tone sequence structure. Nature 404: 80.

7. Schmuckler MA, Gilden DL (1993) Auditory perception of fractal contours.
J Exp Psychol Hum Percept Perform 19: 641–660.

8. Eke A, Herman P, Kocsis L, Kozak LR (2002) Fractal characterization of
complexity in temporal physiological signals. Physiol Meas 23: R1–R32.

9. Richman JS, Moorman JR (2000) Physiological time-series analysis using
approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol
278: H2039–H2049.

10. Schnupp JW (2001) Linear processing of spatial cues in primary auditory
cortex. Nature 414: 200–204.

11. Nelken I, Rotman Y, Bar Yosef O (1999) Responses of auditory-cortex
neurons to structural featues of natural sounds. Nature 397: 154–157.

12. deCharms RC, Blake DT, Merzenich MM (1998) Optimizing sound features
for cortical neurons. Science 381: 1439–1443.

13. Griffiths TD, Warren JD (2002) The planum temporale as a computational
hub. Trends Neurosci 25: 348–253.

14. Warren JD, Jennings AR, Griffiths TD (2005) Analysis of the spectral
envelope of sounds by the human brain. Neuroimage 24: 1052–1057.

15. Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, et al.
(1999) ‘‘Sparse’’ temporal sampling in auditory fMRI. Hum Brain Mapp 7:
213–223.

16. Belin P, Zatorre RJ, Hoge R, Evans AC, Pike B (1999) Event-related fMRI of
the auditory cortex. Neuroimage 10: 417–429.

17. Yost WA, Patterson R, Sheft S (1996) A time domain description for the
pitch strength of iterated rippled noise. J Acoust Soc Am 99: 1066–1978.

18. Patterson RD, Handel S, Yost WA, Datta AJ (1996) The relative strength of
the tone and the noise components in iterated rippled noise. J Acoust Soc
Am 100: 3286–3294.
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