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It is widely appreciated that the key predictor of the pitch of a sound is its periodicity. Neural structures
which support pitch perception must therefore be able to reflect the repetition rate of a sound, but this
alone is not sufficient. Since pitch is a psychoacoustic property, a putative cortical code for pitch must
also be able to account for the relationship between the amount to which a sound is periodic (i.e. its
temporal regularity) and the perceived pitch salience, as well as limits in our ability to detect pitch
changes or to discriminate rising from falling pitch. Pitch codes must also be robust in the presence of
changes in nuisance variables such as loudness or timbre. Here, we review a large body of work on the
cortical basis of pitch perception, which illustrates that the distribution of cortical processes that give rise
to pitch perception is likely to depend on both the acoustical features and functional relevance of
a sound. While previous studies have greatly advanced our understanding, we highlight several open
questions regarding the neural basis of pitch perception. These questions can begin to be addressed
through a cooperation of investigative efforts across species and experimental techniques, and, critically,
by examining the responses of single neurons in behaving animals.

� 2010 Published by Elsevier B.V.
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C1. Introduction

Many objects in nature, including vocal cords, can enter into
regular vibrations and create pressure waves in the air that repeat
periodically over a certain time interval. Our brains interpret these
periodic pressure waves as a sound with pitch. The American
National Standards Institute (1994) defined pitch as “that auditory
attribute of sound according to which sounds can be ordered on
a scale from low-to-high”. This definition emphasizes only one
dimension of pitch perception e pitch height. We can also classify
the pitch chroma, which is constant across pitch height differences
of an octave. For example, the “middle C” (C4) and higher C’s (C5, C6,
etc) on a Western musical scale differ in pitch height but all
collectively describe a single pitch class and therefore share the
same pitch chroma. Additionally, the perceptual strength, or
salience, of pitch can differ across sounds that have the same pitch
height and chroma. The current paper focuses on how listeners
perceive pitch along the height and salience dimensions, and how
this information is encoded by neurons in auditory cortex.
ndamental frequency; fMRI,
gyrus; IRN, iterated rippled
ally amplitude-modulated.
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In order for listeners to use periodicity cues effectively, the pitch
associatedwitha givenperiodicityof soundshouldbe independentof
other acoustical features, such as loudness or timbre. To a first
approximation, pitch perception exhibits such invariance. This allows
us to recognize amelodywhether it is played on aviolin or a piano, or
sung by a human or songbird, or even if it is generated artificially by
a computer. Despitemuch recent progress, there remains a great deal
of uncertainty regarding how neurons in auditory cortex encode
pitch, but suchmechanisms shouldbeable to account for a numberof
perceptual phenomena, including: a) the correlation of pitch salience
with relevant acoustical features such as temporal regularity and
harmonic spacing; b) listeners’ ability to detect differences in the
pitch of sounds with different repetition rates; c) listeners’ ability to
order the pitch of sounds along a low-to-high scale; and d) the
generalization of pitch perception across sounds that differ in other,
irrelevant perceptual attributes. This is not an exhaustive list of
criteria for identifying the neural substrate for pitch perception, but
meeting themwould advance our current understanding in thisfield.

Here, we explore evidence regarding how the activity of audi-
tory cortical neurons contributes to pitch judgments in humans and
animals. We begin by discussing the acoustical properties that
determine pitch, and we then address the validity of animal models
of pitch perception. Next, we will briefly review the representation
of pitch cues in auditory subcortical structures. Finally, we describe
studies of the relationships between auditory cortical activity and
listeners’ ability to discriminate, order, and generalize the pitch of
sounds.
f pitch: Recent results and open questions, Hearing Research (2010),
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2. Acoustical correlates of pitch

Pitch is related to the periodicity of sounds e the manner in
which their waveform repeats throughout time. Sounds with
a faster repetition rate evoke a “higher” pitch, and sounds that are
more temporally regular evoke a more salient pitch, but this
phenomenon only holds for repetition rates between approxi-
mately 30e5000 Hz (Krumbholz et al., 2000; Semal and Demany,
1990). Human listeners can hear frequencies of sound above the
upper pitch limit, but they have difficulties recognizing melodies
beyond this range. As an alternative to conceptualizing periodicity
as a temporal property of sound waves, we can also describe pitch-
evoking sounds in terms of their harmonic structure. When viewed
in the spectral domain, a periodic sound exhibits peaks in its
spectrum at frequencies which are integer multiples of a funda-
mental frequency (F0). The F0 corresponds to the inverse of the
sound’s period. The pitch of a sound is most salient when a sound is
composed of only such “harmonic” frequencies, and the pitch
height of such sounds corresponds to the F0. In many naturally
occurring sounds, the F0 is the lowest harmonic present, but even if
this frequency component is absent (in “missing fundamental”
sounds), listeners can perceive a pitch at the highest common
devisor of the sound’s remaining harmonics (Schouten, 1938). The
brain can therefore use the relationship between harmonics, rather
than the value of a physically-present F0, to compute pitch, and
there is no direct relationship between the perceived pitch and the
amount of sound energy at any one frequency.

Periodic sounds can take many forms. The pitch of a pure tone
corresponds to its frequency (Fig. 1a). A tone complex containing
frequencies that are harmonically related will be heard as a single
auditory event with a pitch at F0, at least when enough low-order
harmonics are present (Fig. 1b). When a pure tone is sinusoidally
amplitude-modulated (SAM), regions of “sideband” energy are
created that flank the original pure tone “carrier” frequency at
frequencies corresponding to: (a) the difference between the
carrier and modulation frequencies, and (b) the sum of the carrier
and modulation frequencies (Fig. 1c). If the carrier and modulation
frequencies are harmonically related, then such a sound has a pitch
corresponding to the modulation frequency. A periodic train of
clicks (i.e. brief, broadband events) will have an associated pitch at
the click repetition rate (Fig. 1d). This stimulus models the process
that animals use to produce vocalizations at specific pitches: the
controlled “clapping” of vocal folds at a desired rate. When
a broadband noise is repeatedly delayed by a brief time period and
added to the original signal, it becomes more temporally regular
with each iteration of the delay-and-add process, although its
waveform remains somewhat noisy (Fig. 1e). This stimulus is called
iterated rippled noise (IRN), and it evokes a pitch corresponding to
the inverse of the delay time. Pitch can even by evoked by
a broadband noise that is aperiodic at each ear, but whose wave-
form is correlated across ears within a limited spectral band
(Cramer and Huggins, 1958). This stimulus evokes a pitch (called
“Huggins pitch”) within the region of interaural correlation, and it
demonstrates that pitch can be extracted after the signals arriving
at each ear are combined. The varieties of pitch-evoking stimuli,
which are often only approximately periodic and sometimes not at
all, offers powerful tools for probing the neural mechanisms
listeners use to compute pitch.

3. Do animals perceive pitch?

Sounds generated by animals are often periodic, and it is of great
survival value for animals to form a robust representation of this
acoustical feature. For example, the F0 of a resonant cavity is
a function of both its volume and density, so a pitch-perceiving
Please cite this article in press as: Walker, K.M., et al., Cortical encoding o
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animal can tap a coconut to determine whether it is full or empty.
Since pitch is defined as a perceptual attribute, it is difficult to
demonstrate conclusively whether non-human animals experience
pitch in a manner similar to us, but there is much evidence to
suggest that they might.

For humans, pitch perception has not only made the devel-
opment of music possible, but it also provides important vocal
communication cues. The pitch of speech can inform listeners
about the age or gender of a speaker (Gelfer and Mikos, 2005;
Smith et al., 2005), as well as the emotional state of the speaker
- excited speakers tense their vocal folds, thereby raising the F0 of
their vocalizations (Fuller et al., 1992; Reissland et al., 2003). In
tonal languages, or when a speaker uses intonation, F0 can change
the meaning of a spoken word. Many animals generate vocaliza-
tions in an entirely analogous pulse-train-resonance fashion to
humans, and these species similarly use periodicity and spectral
cues to interpret vocalizations. Chimpanzees (Pan troglodytes;
Kojima et al., 2003), rhesus monkeys (Macaca mulatta; Koda and
Masataka, 2002), sparrows (Spizella pusilla; Nelson, 1989), and
bullfrogs (Rana catesbeiana; Capranica, 1966) have been shown to
identify con-specifics based on the periodicity of their
vocalizations.

Animals exhibit the four properties of pitch perception out-
lined above (see Introduction). While human frequency and pitch
discrimination thresholds are smaller than those of most other
species (Shofner, 2005), animals can detect changes in the peri-
odicity of complex sounds, including click trains (Marvit and
Crawford, 2000), harmonic tone complexes (Dooling et al., 2002;
Shofner, 2002), sinusoidally amplitude-modulated noise bursts
(Dooling and Searcy, 1981; Long and Clark, 1984; Moody, 1994),
and iterated rippled noises (Fay et al., 1983; Shofner et al., 2007).
Furthermore, animals can generalize their learning on a pitch
discrimination task across very different stimulus types (Cynx and
Shapiro, 1986; Heffner and Whitfield, 1976; Shofner, 2002). They
are truly sensitive to periodicity, since rhesus monkeys (Tomlinson
and Schwarz, 1988), European starlings (Sturnus vulgaris; Cynx and
Shapiro, 1986) and cats (Felis silvestris catus; Heffner and
Whitfield, 1976) can all be trained to respond to the pitch of
missing fundamental sounds. Ferrets (Mustela putorius furo;
Kalluri et al., 2008) and songbirds (Taeniopygia guttata and
Melopsittacus undulates; Lohr and Dooling, 1998) can detect mis-
tuned harmonics in tone complexes. Starlings (S. vulgaris; Hulse
et al., 1995) and monkeys (Macaca fuscata and M. mulatta; Izumi,
2000; Wright et al., 2000) are also sensitive to the consonance
and dissonance of complex sounds, and rhesus monkeys can
generalize pitches across octaves to make pitch chroma judgments
(Wright et al., 2000).

Monkeys (Macaca mulatta, Cebus apella and M. fuscata; Brosch
et al., 2004; D’Amato, 1988; Izumi, 2001), rats (Rattus norvegicus;
D’Amato, 1988) and birds (S. vulgaris, T. guttata, and Columba livia;
Cynx,1995; Page et al., 1989) can judge sequences of tones based on
the direction of change in their pitch height, suggesting that they
can judge the relative pitch of sounds on a low-to-high scale.
However, these studies emphasize that animals are not easily
trained to discriminate sounds based on their relative pitch. The
animals preferred to judge periodic sounds according to their
absolute pitch height. In our lab, we have trained ferrets on a task in
which they hear two sequential artificial vowel sounds (i.e.
formant-filtered click trains) and respond at one of two water
spouts to indicate whether the second was higher or lower in pitch
than the first (Fig. 2a). These experiments show that ferrets can
respond to complex sounds based on the height of their periodicity
along a high-to-low scale (Walker et al., 2009c). Since the reference
was kept constant during a given testing session, the task could be
solved by either responding to the direction of pitch change
f pitch: Recent results and open questions, Hearing Research (2010),
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Fig. 1. Some examples of periodic sounds. Each row shows the spectrum (left panel) and waveform (right panel) of a sound with an F0 of 400 Hz: (a) Pure tone; (b) Harmonic tone
complex, containing tones at 400, 800 and 1200 Hz; (c) sinusoidally amplitude modulated (SAM Q5) tone, with a carrier of 1000 Hz modulated by 400 Hz; (d) A train of clicks, with one
click presented once every 2.5 ms; and (e) iterated rippled noise (IRN), with a delay period of 2.5 ms and 20 iterations.
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Nbetween the two vowels or the absolute pitch height of the second

vowel. Probe trials in highly trained ferrets indicated that these
animals adopted the latter of these strategies, attending to the
absolute pitch of the target sounds. Therefore, ferrets, like rats,
birds and monkeys, seem to attend more strongly to the absolute
pitch of individual sounds than to relative pitch shifts.

Together, these experiments provide evidence that non-human
animals are sensitive to many of the same periodicity cues as
humans, with the caveat that animals may be less inclined to
respond to the relative pitch of sequential sounds. Given the
similarities in pitch perception across species, animal models may
offer useful insights into common neural processes that give rise to
pitch perception in a variety of species, including humans.
Please cite this article in press as: Walker, K.M., et al., Cortical encoding o
doi:10.1016/j.heares.2010.04.015
4. Subcortical representations of sound periodicity

Just as the acoustical correlates of pitch can be conceptualized in
the temporal or spectral domains, theories of how the brain may
extract pitch cues have also been based on temporal and spectral
properties of neural responses. Temporal theories pose that pitch is
computed from the timing of action potentials that are phase-
locked to the sound waveform, while spectral theories suggest that
pitch is represented as the place of activation across the tonotopic
map (i.e. the anatomical organization of frequency selectivity).
More recently, models of pitch extraction have tended to integrate
spectral and temporal encoding principles (Carlyon, 1998; de
Cheveigné, 2005).
f pitch: Recent results and open questions, Hearing Research (2010),
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FFig. 2. Ferrets’ discrimination performance on two F0 discrimination tasks. (a) Pitch direction judgment performance of one ferret on a two-alternative forced choice task (black

dots). On each trial, a reference artificial vowel (F0 ¼ 400 Hz, black open circle) was presented, followed by a second, target vowel of different F0 (x-axis). The ferret indicated, by
water spout choice (y-axis), whether the target vowel was higher or lower in pitch than the reference. The black curve is a probit fit to the ferrets’ spout choices. (b) The mean
(þstandard deviation) of ferrets’ Weber fractions on two F0 discrimination tasks are shown. The Weber fractions of 4 ferrets were measured on the pitch direction judgment task
described in (a), using references between 350 and 450 Hz (left; n ¼ 6 thresholds). The Weber fractions of 3 further ferrets were measured on a go/no-go pitch change detection task
(right). On each trial, the ferret was required to release a water spout upon when the F0 of a sequence of 400-Hz vowels changed. Detection of pitch increases and decreases were
tested in separate sessions (n ¼ 6 thresholds in total).
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Encoding the pitch of a pure tone is, in theory, relatively easy.
For a given sound level, the pitch can be derived as the place of
maximal stimulation along the tonotopic map as early in the
nervous system as the auditory nerve. However, for complex
sounds, there is no simple relation between pitch and frequency
composition, and so more sophisticated neural computations are
necessary to determine sound periodicity. Since auditory nerve
fibres phase-lock to sounds, their firing patterns in response to
a periodic sound are themselves periodic. A pure tone frequency
can therefore be derived as the periodicity (or first-order auto-
correlation) of spikes observed across responsive auditory nerve
fibres. For complex sounds, F0 is encoded within the all-order
autocorrelation of spikes across fibres (Cariani, 1999; Licklider,
1951; Meddis and O’Mard, 1997). Auditory nerve fibres phase-
lock to frequencies up to about 5 kHz in the cat (Johnson, 1980),
and this limit coincides closely with the upper limit of musical
pitch perception in humans (Semal and Demany, 1990). In addition
to this temporal signature of the sound waveform, the firing
activity across the bank of tonotopically-arranged auditory nerve
fibres provides an approximate spectrogram of the sound. The
harmonic profile of a periodic sound, and thus the pitch, can be
derived from this place code by the application of an appropriate
spectral filter to the tonotopic map (Cohen et al., 1995; Goldstein,
1973), provided that the harmonics of the sound are spaced widely
enough to produce resolved areas of activation. The limits of this
place code, like the temporal code, also have psychophysical
correlates. The strength of perceived pitch decreases for sounds
that contain less resolved harmonics. However, listeners can still
identify the pitch of sounds in which the harmonics are entirely
unresolved (for pitches up to about 300 Hz), so in these cases
temporal codes may be essential for pitch perception (Houstma
and Smurzynski, 1990; Pierce, 1991; Shackleton and Carlyon,
1994).

Auditory nerve fibres synapse onto cells in the cochlear nucleus
in the brainstem. The cochlear nucleus contains more than 20 cell
types, which are distinguishable based on their morphologies,
response properties, and projection targets (Brawer et al., 1974;
Pfeiffer, 1966). The functional role of many of these neuron types
is not yet known, but some exhibit firing properties that are ideally
suited to process sound periodicity. Primary-like cells have similar
response properties to auditory nerve fibres, and so they preserve
information about the fine temporal structure of sounds that might
be required for pitch extraction by higher brain areas (Winter and
Palmer, 1990). Chopper neurons respond to periodic inputs with
temporally precise, periodically occuring spikes, and the
Please cite this article in press as: Walker, K.M., et al., Cortical encoding o
doi:10.1016/j.heares.2010.04.015
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synchronous inputs they receive from auditory nerve fibres. These
cells represent the F0 of a complex sound as the reciprocal of their
inter-spike intervals, thereby converting the all-order inter-spike
interval code of stimulus periodicity in auditory nerve fibres into
a first-order inter-spike interval code (Winter, 2005). A functional
Magnetic Resonance Imaging (fMRI) study of the human auditory
system has shown that metabolic rate of the cochlear nucleus is
dependent upon the temporal regularity of sounds (Griffiths et al.,
2001). Although the temporal firing patterns, but not overall firing
rates, of onset chopper neurons have been shown to depend on
sound periodicity, mathematical models have suggested that the
synchronization of firing across neurons may lead to an overall
increase in firing rate that could be measurable with fMRI (Chawla
et al., 1999).

In the next station of the classical auditory pathway, the supe-
rior olive, sound signals from both ears are first combined. The
existence of binaural pitch suggests that mechanisms for pitch
extraction exist at or beyond this level of the auditory system
(Cramer and Huggins, 1958). Neurons in the superior olive project
to the inferior colliculus, where the spectral features of sounds are
further processed via lateral inhibition across the tonotopic map.
This may serve to sharpen the neural representation of the spectral
peaks of complex sounds, aiding template-matching (i.e. place
code) approaches to pitch extraction (McLachlan, 2009). Similar
mechanisms have also been observed in the cochlear nucleus
(Rhode and Greenberg, 1994). Many neurons in the inferior colli-
culus show band-pass sensitivity to the frequency of sinusoidal
amplitude modulation of sounds (Rees and Møller, 1987). This
sensitivity is evident in phase-locked responses to stimuli with
modulations of up to 500 Hz, but is encoded with unsynchronized
spike rates for faster modulations, up to 1 kHz (Langner and
Schreiner, 1988). Using SAM tones as stimuli, Langner et al.
(2002) have suggested that a “periodotopic” map of best modula-
tion frequency exists in the inferior colliculus, running orthogonal
to the direction of the tonotopic map. This would constitute the
earliest map of periodicity present in the auditory system, although
the results of McAlpine (2004) suggest that these organized
responses may be explained by the presence of cochlear distortion
products rather than periodicity encoding (further discussed in
Section 5.1). Further evidence for a contribution of the inferior
colliculus to the representation of periodicity is provided by the
finding that, in humans, the blood oxygenation response to periodic
sounds in the cochlear nucleus is enhanced in the inferior colliculus
(Griffiths et al., 2001).
f pitch: Recent results and open questions, Hearing Research (2010),
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5. Pitch processing in auditory cortex

5.1. Representations of sound periodicity in auditory cortex

While neurons in subcortical nuclei of the auditory pathway
encode periodicity cues, lesion studies suggest that auditory
cortical function is necessary for pitch perception. In mammalian
species, the auditory cortex consists of several fields, which are
distinctive in terms of their physiological responses to sound
(Bizley et al., 2005; Downman et al., 1960; Merzenich and Brugge,
1973; Thomas et al., 1993), and their anatomical connections
(Bajo et al., 2007; Budinger et al., 2000; Hackett, 2008; Winer and
Lee, 2007). The functional organization of the higher cortical fields
is poorly understood, but these regions appear to divide into
anatomically segregated processing streams that process sound
features for distinct behavioural purposes (Lomber and Malhotra,
2008; Rauschecker et al., 1997; Romanski et al., 1999). In humans,
the primary and a secondary auditory cortical field are found on an
anatomical landmark known as Heschl’s gyrus (HG), and higher
centres of auditory cortex can be found both anteriorly, on the
planum polare, and posteriorly, on the planum temporale. The roles
of these cortical regions in pitch processing have been investigated
using a variety of techniques, but two very fundamental questions
continue to be debated. Firstly, whether ordered representations of
pitch (“periodotopic” maps) exist in auditory cortex, and secondly,
whether cortical representations of pitch are present in primary
auditory cortex or arise from the specialized processing of higher
cortical fields.

The frequency of pure tones is represented as a place code along
the tonotopic map of primary auditory cortex (A1), as well as some
secondary cortical fields. Some reports have suggested that, in
addition to its tonotopic map, A1 may also feature a periodotopic
arrangement. Pantev et al. (1989), using magnetoencephalography
(MEG), found that the same regions of A1 were activated by pure
tones and missing fundamental tone complexes that were of the
same F0. They concluded that the tonotopic map of A1 is actually
a periodotopic one. In contrast to this result, Langner et al. (1997)
found that MEG responses in auditory cortex showed the expec-
ted topographic arrangement for pure tones, but an orthogonal
periodotopic map for the pitch of missing fundamental tone
complexes. The discrepancy in these results may be explained by
differences in the use of stimulus controls. Missing fundamental
sounds are known to produce a mechanical artefact in the cochlea,
which is centred at the F0 within the tonotopic map of the basilar
membrane. Neural responses to this F0 artefact could result in
tonotopic activation in A1. Such responses could also manifest as
activation along the maps of sound bandwidth or intensity that
have been proposed to lie orthogonal to the A1 tonotopic gradient
(e.g. Heil et al., 1992). Pantev et al. (1989) aimed to control for this
artefact by including a noise band centred at the F0 within their
tone complex. However, because this noise band was as intense as
the tone complex itself, the neural response to the sound’s peri-
odicity may be simply accounted for as a response to the noise. The
presentation of a similar noise band at an intensity that was suffi-
ciently low so as to not evoke the MEG response would have
controlled for this possible confound. On the other hand, Langner
et al. (1997) did not include a control for cochlear distortion
products. While this may account for why their results are different
from those of Pantev et al. it similarly leaves room for doubt about
whether the responses they observe result from the sound peri-
odicity or cochlear artefacts. The same caveat may be raised about
the demonstrations of periodotopic maps in A1 of the Mongolian
gerbil (Meriones unguiculatus), where SAM tones where presented
without controls for cochlear distortion products (Schulze et al.,
2002). The relevance of orthogonal representations of periodicity
Please cite this article in press as: Walker, K.M., et al., Cortical encoding o
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and frequency to pitch perception is not immediately obvious. One
might expect that if a map of stimulus periodicity exists in A1, it
should be independent of sound spectrum and thus lie along the
tonotopic map, since pure tones have a well-defined periodicity
and evoke a pitch that is comparable to that of their tone complex
counterparts. Thus, while the idea of a periodotopic map in audi-
tory cortex is appealing, the experimental evidence for such an
arrangement, and its contribution to pitch perception, remains
inconclusive.

Patterson et al. (2002) used fMRI to distinguish among the
relative contributions of auditory cortical fields to pitch processing.
They measured the blood oxygenation response in human listeners
during the presentation of iterated rippled noise and broadband
noise bursts, and found that only a select region of auditory cortex,
the lateral HG, was more strongly activated by pitch-evoking
stimuli than by the aperiodic noises. In support of this result,
Penagos et al. (2004) found that fMRI activation in lateral HG
correlated with pitch salience e that is, the number of resolved
harmonics present in tone complexes. Gutschalk et al. (2002)
measured the magnetic field associated with the presentation of
regular and irregular click trains, and found that the activity of
a current source located in lateral HG was dependent on the
temporal regularity of the stimulus, but not sound level. Moreover,
this activity was only associated with periodic sounds when they
were presented above the lower pitch limit. Schönwiesner and
Zatorre (2008) were able to study the function of lateral HG more
directly by recording local field potentials with depth electrodes
that were implanted into the superior temporal lobe of a patient in
preparation for surgical treatment of epilepsy. They showed that
the presentation of iterated rippled noises elicited a stronger
response in the lateral portion of HG than aperiodic noises, while
the opposite result was found in medial HG. Furthermore, only the
lateral portion of the superior temporal plane was sensitive to the
onset of IRN within continuous noise.

These studies suggest that a particular region of auditory cortex
is specialized for processing pitch. However, to confirm and extend
such a conclusion it is necessary to discover how single neurons
within auditory cortex encode stimulus periodicity in their spike
responses and to show that those responses are correlated with
behavioural measurements of pitch perception. While subcortical
stations may represent the periodicity of pitch-evoking sounds
within their inter-spike intervals, auditory cortical neurons are less
able to synchronize their firing to fast rates of modulation (Wang
et al., 2008). Instead, sound periodicities within the pitch range
are more likely to take the form of spike rate modulations or more
sparse timing codes at the level of auditory cortex. Click trains with
repetition rates up to about 300 Hz are represented isomorphically
in the phase-locked discharges of a subset of A1 neurons in the
awake Macaque monkeys, while a separate group of A1 neurons
usemonotonic increases in spike rate to represent faster repetitions
(Steinschneider et al., 1998). This upper limit of phase locking in A1
is near the upper limit of temporally-based pitch perception for
unresolved harmonics (Pierce, 1991). Lu et al. (2001) studied
spiking responses to click trains in A1 of awake marmoset monkeys
(Callithrix jacchus), and they found a similar combination of
synchronized and spike rate representations of click train period-
icity in separate neural populations. They observed that monotonic
spike rate representations were preferred over synchronized
responses for click rates beyond about 40 Hz, which is near the
lower limit of pitch perception in humans (Krumbholz et al., 2000).
The representation of periodicities in the pitch range in the form of
both spike rate and temporal pattern codes seems to occur, at least
in part, already in the auditory midbrain (Langner and Schreiner,
1988; Schreiner and Langner, 1988). The synaptic mechanisms
underlying the conversion of an explicit temporal encoding of
f pitch: Recent results and open questions, Hearing Research (2010),
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stimulus periodicity to a spike rate code have not yet been
identified.

A1 neurons are also sensitive to spectral cues of sound period-
icity, since some of the neurons found there respond to harmonics
of their characteristic frequency (Kadia and Wang, 2003; Qin et al.,
2005; Sutter and Schreiner, 1991). These neurons not only respond
to these harmonics when they are presented in isolation, but can
also show an enhanced response to their characteristic frequency in
the presence of harmonics. These neurons would be ideal candi-
dates for template-matching theories of pitch extraction, but the
characteristic frequencies of those neurons identified so far lie
outside the pitch range (> 5 kHz). A small proportion (

e

12%) of
neurons in A1 and in the anterior auditory field of the ferret have
spectrotemporal receptive fields with multi-peaked frequency
tuning properties that reliably distinguish between harmonic and
inharmonic tone complexes (Kalluri et al., 2008).

The findings described so far point to an important role for the
spike rates of auditory cortical neurons in representing pitch. Since
pitch sensitivity in the human lateral Heschl’s gyrus is evident
with fMRI, MEG and measurements of local field potentials, it
appears to take the form of a net modulation of firing activity in
large neural populations, across relatively wide time periods.
Single unit studies have demonstrated that primary auditory
cortical neurons are equipped to represent both temporal and
spectral periodicity cues, although unlike in brainstem structures,
these cues are predominantly represented as spike rate modula-
tions rather than phase-locked temporal discharge patterns. Many
neurons throughout A1 exhibit spike responses that are modu-
lated by the periodicity of complex sounds, and while there has
been some evidence for periodotopic responses to missing
fundamental sounds, the majority of studies have failed to
demonstrate a topographic arrangement of the periodicity pref-
erences of cortical cells (e.g. Bendor and Wang, 2005; Cansino
et al., 2003; Fishman et al., 1998; Nelken et al., 2008; Schwarz
and Tomlinson, 1990).

5.2. Cortical correlates of pitch change detection

We have seen that activity in Heschl’s gyrus of the human
auditory cortex is sensitive to the temporal regularity of complex
sounds, and we now ask how this sensitivity may contribute to
listeners’ ability to detect changes in pitch height. Neurological
patients with bilateral damage to HG are impaired in detecting
changes in the frequency of pure tones (Kazui et al., 1990; Tramo
et al., 2002), as well as pitch changes in tone complexes and
missing fundamental sounds (Tramo et al., 2004). Bilateral ablation
of auditory cortex in rhesus monkeys (Harrington et al., 2001) and
bilateral inactivation of A1 in rats (Talwar et al., 2001b) have also
been shown to impair the performance of animals on tasks in
which they must respond to a frequency change within a pure tone
sequence.

In humans, right auditory cortical infarctions are more likely to
impair pitch discriminations than damage to the left hemisphere
(Divenyi and Robinson, 1989; Robin et al., 1990; Sidtis and Volpe,
1988; Stewart et al., 2006). Furthermore, fMRI activation in the
right planum temporale of healthy listeners is correlated with the
size of frequency shifts presented between successive tones, but
this correlation is not present for left auditory cortical activity
(Hyde et al., 2008). This result may be interpreted to suggest that
the right auditory cortex has finer spectral resolution than the left,
and that pitch discrimination function is at least partially lateral-
ized. Hemispheric specialization for the detection of pitch changes
in sequential tones has not been documented in non-human
animals, and so this form of lateralization of pitch function may be
especially pronounced in humans.
Please cite this article in press as: Walker, K.M., et al., Cortical encoding o
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The cortical correlates of pitch change detection have been
examined using MEG. One line of research has focussed on the
“pitch onset response”, which is evoked in response to a change in
the pitch of an ongoing periodic sound, or to the onset of pitch in
continuous noise. The latency of the pitch onset response is
determined by the pitch height, and the amplitude is proportional
to the pitch salience (Krumbholz et al., 2003; Ritter et al., 2005).
Although the pitch onset response is transient, it has a longer
latency than the response to the onset of sounds in silence, which is
consistent with this neural activity resulting from pitch computa-
tions that are calculated over several cycles of the fundamental
period. The source of the pitch onset response is thought to reside
in lateral HG for transitions between IRNs that differ in pitch (Ritter
et al., 2005). It has been attributed to a slightly more medial source
in lateral HG for transitions from noise to pitch-evoking IRN
(Krumbholz et al., 2003). This may suggest that the anatomical lay-
out of the processes used to detect the onset of periodicity are
different from those used to detect a pitch change, but note that it is
impossible to determine the precise location of MEG sources with
absolute certainty (Wendel et al., 2009). The sources of MEG
responses are localized by solving a mathematical inverse model to
account for the results, but there are always multiple alternative
solutions that are consistent with the data. While the source
locations of MEG studies must be considered with this caveat in
mind, the attribution of the pitch onset response to lateral HG is
supported by independent results of fMRI (Patterson et al., 2002)
and depth electrode (Schönwiesner and Zatorre, 2008) studies,
which more directly measure the spatial distribution of neural
responses to pitch changes.

While the monotonic spike rate/periodicity functions of A1
neurons described in Section 5.1maybe able to account for listeners’
detection of pitch changes, this has not yet been studied in detail.
Preliminary results from our lab suggest that the spike rate
responsesof ferret auditorycortical neuronsare sufficient to support
ferrets’ pitch change detection thresholds for artificial vowel sounds
(Walker et al., 2009a). There has, however, beenmuch research into
the changes in frequency receptive field properties of auditory
cortical neurons that result from performing frequency change
detection tasks. The association of a pure tone frequency with an
aversive stimulus in classical conditioning studies (Bakin and
Weinberger, 1990; Blake et al., 2006; Edeline and Weinberger,
1993; Galvan and Weinberger, 2002), or the trained response to
a change in pure tone frequency on an operant conditioning task
(Blake et al., 2002; Fritz et al., 2003), results in an enhancement in
auditory cortical neurons’ response to the conditioned frequency.
This effect is usually accompanied by decrease in responsiveness to
anunconditioned tone, aswell as otheruntrained frequencies (Blake
et al., 2002; Edeline andWeinberger, 1993; Fritz et al., 2003; Galvan
and Weinberger, 2002). This selective pattern of inhibition and
excitation provides a spectral sharpening of the relevant frequency
contrast (Ohl and Scheich, 1997), which can occur over very rapid
time scales, and can last for hours (Fritz et al., 2005). Spectral
sharpening can also occur in these paradigms in the form of an
overall decrease in response to sounds, with a relative increase in
firing rate in response to the test frequency (Witte and Kipke, 2005).

Frequency discrimination studies in animals have also reported
an enlargement in the area of representation of the test frequency
within the tonotopic map of A1, up to 9 times that of control
animals (Polley et al., 2006; Recanzone et al., 1993; Rutkowski and
Weinberger, 2005). This process is thought to be mediated, in part,
by inputs to auditory cortex from the nucleus basalis (Kilgard and
Merzenich, 1998). However, at least one other study has failed to
find tonotopic map reorganization in cats following frequency
discrimination training (Brown et al., 2004), so this form of plas-
ticity may be highly dependent on the association between reward
f pitch: Recent results and open questions, Hearing Research (2010),
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and presentation of test stimuli in the experimental paradigm.
Talwar and Gerstein (2001) artificially induced an enlargement in
the representation of certain frequencies in the A1 tonotopic map
using intracortical microstimulation, and this form of map reor-
ganization did not affect frequency discrimination behaviour in the
rat. Therefore, an increase in the tonotopic representation of
a frequency band alone is not sufficient to induce perceptual
learning on change detection tasks. To further complicate matters,
Recanzone et al. (1993) observed an increase in the latency of A1
neuron responses to the test frequency following discrimination
training in owl monkeys (Aotus azarae), while Brown et al. (2004)
found that cat A1 neurons had shorter latency responses to test
stimuli resulting from such training. Clearly, many questions
remain about how cortical plasticity may underlie learning on tasks
that require the discrimination of pure tone frequencies. In
comparison, even less is known about the cortical mechanisms that
allow us to detect fine changes in the pitch of complex sounds.

5.3. Representations of the direction of pitch shifts in auditory
cortex

The ability to perceive the pitch of periodic sounds along
a continuous scale, from low to high, can allow a listener to esti-
mate continuous properties of the sound source, such as large or
small, relaxed or tense, empty or full. A high/low pitch classification
is not equivalent with themere detection of a pitch change. For very
small pitch shifts, listeners can sometimes detect that the period-
icity of a sound has changed, but are unable to determine whether
the pitch increased or decreased. This effect has been demonstrated
in children with cochlear implants (Vongpaisal et al., 2006), as well
as healthy, adult listeners (Semal and Demany, 2006). This effect
has also, somewhat counter-intuitively, been found to be reversed
in listeners with superior pitch discrimination thresholds (Semal
and Demany, 2006). We have observed that ferrets can detect
a change in the F0 of a train of artificial vowel sounds at very fine
resolutions, while their F0 difference thresholds are much higher
when they are required to judge the direction of pitch change
between these sounds (Fig. 2b; Wilcoxon rank-sum test; p < 0.01).
We are currently investigating the auditory cortical correlates of
ferrets’ performance across these tasks (Walker et al., 2009a).

The results of auditory cortical damage in human neurological
patients suggest that pitch change detection and direction judg-
ments involve, to some extent, anatomically distinguishable neural
processes. Tramo et al. (2002) have shown that while control
listeners show similar thresholds on a frequency change detection
and direction discrimination task, bilateral damage to auditory
cortex does not result in similar degrees of impairment on these
tasks. Rather, a patient with bilateral auditory cortical infarcts
produced thresholds on the direction discrimination task that were
about twice as large as those for frequency change detection.
Similarly, an impairment in pure tone frequency direction judg-
ments, but not frequency change detection thresholds, has been
observed in patients with surgical lesions of the right temporal
gyrus that included lateral HG (Johnsrude et al., 2000). Pitch
discrimination performance was within normal limits on both
these tasks for patients with auditory cortical lesions that included
only left hemisphere structures or for those in which the lateral
portion of HG was spared. Tramo and colleagues have also reported
elevated frequency direction judgment thresholds in a patient with
damage to the right temporal, but not superior temporal, gyrus
(Tramo et al., 2005). In a thorough review of studies that examine
pitch perception in neurological patients, Stewart et al. (2006)
show that impairments on both these pitch tasks are often found
in patients with damage to lateral HG, planum temporal, and the
parieto-temporal junction, especially in the right hemisphere.
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These authors also suggested that pitch difference detection is
associated with subcortical structures and primary auditory cortex,
whereas pitch direction discrimination is more often associated
with lateral HG.

Another form of lateralization for pitch direction judgments has
been highlighted in healthy listeners, usingMEG and structural MRI
(Schneider et al., 2005). As in the neurological studies above,
subjects were asked to report the direction of a pitch change
between two successive sounds. But here, instead of pure tones,
tone complexes with missing fundamentals were used as stimuli.
The stimuli were designed such that if listeners derived pitch
purely from the spectral content of the sound (i.e., the lowest
harmonic present), they perceived a pitch shift of opposite direc-
tion than if they responded to the missing fundamental pitch (i.e.,
based on harmonic spacing). Listeners who made missing funda-
mental judgments had stronger MEG responses to pitch shifts in
the left HG, and MRIs showed that these individuals also had
a greater volume of grey matter in left lateral HG than in the right
hemisphere. The opposite lateralization of HG activation and grey
matter volume was found in subjects who used a spectral pitch
strategy. This suggests that the impairment in pitch direction
judgments reported in neurological patients with right temporal
lobe damage may result from an inability to analyse the spectral
content of sounds. However, this interpretation is at odds with the
results of Zatorre (1988), who found that right, but not left, HG
lesions impair missing fundamental judgments.

Together, examinations of neurological patients seem to suggest
that while the effects of right and left auditory cortex damage on
frequency discrimination tasks are additive (that is, the most
profound deficits result from bilateral damage), the right non-
primary auditory cortex often plays a necessary role in pitch
direction judgments. The involvement of secondary auditory cortex
lesions is in general agreement with the results of fMRI (Patterson
et al., 2002; Penagos et al., 2004) and MEG (Gutschalk et al., 2002)
studies, which proposed that lateral HG makes a unique contribu-
tion to pitch processing. However, a right hemisphere dominance
for pitch processing at the level of lateral HG has not been observed
in fMRI investigations of healthy listeners (Patterson et al., 2002;
Penagos et al., 2004). Perhaps both hemispheres contribute to
pitch judgments in the healthy human brain, but the role of the
right hemisphere may be a more necessary (i.e., more unique) one.
Additionally, there may be a bias towards finding pitch impair-
ments in individuals with right hemisphere lesions, as damage to
the left temporal cortex often results in language impairments that
make musical testing difficult and low-priority (as suggested by
Stewart et al., 2006). Along similar lines, surgical lesions of
temporal cortex for the treatment of epilepsy tend to be more
restricted in the left hemisphere, due to the danger of impairing
language function on this side of the brain.

In non-humans, missing fundamental perception has not been
found to be lateralized. Bilateral, but not unilateral, lesions of
auditory cortex in cats impair their ability to judge the direction of
pitch shifts in tone complexes with missing fundamentals
(Whitfield, 1980). Cats retain the ability to perform this pitch
direction task using pure tones or tone complexes that include F0.
Studies of frequency-modulated tone discrimination in gerbils (M.
unguiculatus) and rats have suggested that the right auditory cortex
of these animals may play a greater role in spectral judgments and
the left in processing temporal cues (Rybalko et al., 2006; Wetzel
et al., 1998, 2008). This is consistent with the lateralization of
function observed in humans, but the differential roles of right and
left auditory cortex in processing the pitch of complex sounds has
not yet been directly demonstrated in animal models, as most
extracellular recording studies are carried out in only one
hemisphere.
f pitch: Recent results and open questions, Hearing Research (2010),
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Higher auditory cortical regions may also be functionally special-
ized for different pitch tasks. Warren et al. (2003b) used fMRI to
measure cortical responses while human subjects passively listened
toa series of sounds thatvaried inpitch.Usingsubtractiontechniques,
they identified an area posterior to HG, in the planum temporale, that
responded selectively to changes in the height, but not the chroma, of
tone complexes. Therefore, while we have seen that lateral HG may
play a key role in processing the periodicity of sounds, areas of
auditory cortex beyond this regionmay be specialized for processing
different aspects of pitch, or for applying pitch cues to different
functional purposes. The functional lateralization of pitch processing
may continue beyond auditory cortical fields. An fMRI study of
healthy listeners has demonstrated that discriminating the direction
of pitch changes in speech sounds is associated with selective acti-
vation of right prefrontal cortex regions (Zatorre et al., 1992).

Given the dissociation between listeners’ ability to order and
discriminate pitch differences, we might expect to find separate
neural underpinnings for these judgments at the single neuron
level. Brosch and colleagues recorded from primary and secondary
auditory cortical neurons in rhesus monkeys, and showed that the
first tone in a two-tone sequence can inhibit or enhance the spike
rate response to the second tone (Brosch and Scheich, 2008; Brosch
et al., 1999). The response of any one neuron was often enhanced
specifically by either frequency increases or decreases, so that these
cells functioned as frequency shift detectors. However, the
frequency of the second tone was kept constant for each neuron, so
it is not yet known if cortical neurons can respond to a direction of
pitch change independently of the absolute frequency of the tones.
The same group has also trainedmonkeys to respond to downward,
but not upward, frequency shifts in tone sequences (Brosch et al.,
2004). Neural responses were recorded in A1 and the caudome-
dial belt while the monkeys performed this task, and two classes of
informative neural responses were identified (Selezneva et al.,
2006). Neurons exhibiting phasic responses to the tones reliably
represented the direction of frequency shifts presented, while other
tonically-responsive neurons had firing rates that correlated with
monkeys’ behavioural choices on the task. This important work
demonstrates that neurons in early auditory cortical stations
represent both stimulus parameters and perceptual decisions. In
a similar experiment, Yin et al. (2008) trained rhesus monkeys to
identify a 4-tone sequence. They also observed both stimulus-
specific modulations of responses to tones, and responses that were
U
N
C
O
R

Fig. 3. Neurometric analysis of how well monotonic auditory cortical codes of artificial vow
Neurometric “F0 discrimination” curves for a population of 26 auditory cortical neurons tha
neurometrics for each individual neuron, while the black curve shows the neurometric perf
the reference value. (b) The scatter plot compares the slopes of neurometric curves for popu
(x-axis) or relative first-spike latency (y-axis) as a response. (c) A comparison of ferrets’ psyc
psychometric slopes of ferrets on a two-alternative forced choice pitch direction judgmen
populations of auditory cortical neurons. Different symbols are used for populations from d
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time-locked to, and predictive of, the monkey’s behavioural
response. Both response types were found among A1 neurons, but
were more common within a secondary auditory cortex region
(field R).

We have also investigated the relations between cortical repre-
sentations of periodicity and animals’ pitch height judgments. In our
experiments, we used complex sounds, rather than pure tones, so
that the task could not be solved by simply attending to themaximal
place of activation along a tonotopic map. As described earlier
(Section 3), ferrets were presented with two sequential artificial
vowel sounds on each trial, and were required to indicate, by water
spout choice, whether the second sound was higher or lower in F0
than the first (Walker et al., 2009c). In separate neurophysiological
studies carried out in untrained, anaesthetized ferrets, we found that
the F0 of these artificial vowels modulated the spike rate responses
of 634 cortical units (i.e. single neurons and clusters of small
numbers of neurons) that were distributed through five fields of the
left auditory cortex in ferrets, including both primary and secondary
regions (Bizley et al., in press). Approximately 38% of neurons that
were sensitive to vowel F0 showedmonotonically increasing rates of
firing across the range of F0 tested (“high-pass” neurons), while
another 38% of neurons decreased their firing ratewith increasing F0
(“low-pass” neurons).

To investigate the potential behavioural significance of this
distributed representation of vowel periodicity, we used neuro-
metric analyses to determine whether this monotonic spike rate
representationwas sufficiently reliable to provide the physiological
signal uponwhich ferrets made their behavioural judgments. These
analyses described performance on our pitch discrimination task
by an observer of a neurons’ activity. If the neuron was high-pass,
the observer made “higher” and “lower” pitch judgments on each
trial based on whether the neuron’s firing rate in response to the
target was higher or lower than in response to the reference,
respectively (and vice versa for low-pass neurons). The spike rates
of individual neurons were rarely able to account for the discrim-
ination performance of ferrets, but the responses of small ensem-
bles of neurons (comprising 3e61 simultaneously recorded
neurons), when analyzed with a simple classifier, often discrimi-
nated periodicity changes as well as ferrets (Fig. 3a). The response
of a neural ensemble was represented as the vector of spike rate
responses of individual neurons in the ensemble. Each ensemble
response was then classified according to whether it more closely
el F0 support pitch discrimination judgments (modified from Bizley et al., in press). (a)
t were simultaneously recorded in an anaesthetized ferret. The light gray curves show
ormance based on the response of the population of 26 cells. The white circle indicates
lations of auditory cortical neurons when calculated using either the number of spikes
hometric and auditory cortical neurometric sensitivity. The black line shows the mean
t task, across a range of reference F0s. The symbols plot the neurometric slopes for
ifferent cortical areas, as shown on the legend.
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resembled (i.e. was smaller in Euclidean distance to) the ensembles’
average response to a high F0 or a low F0 target. Compared to single
neurons, the neurometric performance of neural ensembles was
much more robust across a wide range of reference periodicities
and sound levels. Codes based on either the relative first-spike
latency or spike count provided neurometric curves that reached
ferret behavioural thresholds (Fig. 3b). Highly sensitive ensembles
were particularly common in the anterior primary auditory field
and a posterior secondary field of auditory cortex, but neurometrics
capable of matching psychoacoustic performance were found in all
five cortical areas. Therefore, it appears that this particular form of
periodicity representation is not limited to a specialized pitch
centre (Fig. 3c).

In summary, further research is necessary to clarify whether or
to what extent judging the direction of pitch shifts is a faculty that
is lateralized or localized to specialized cortical regions. On the
whole, human neurological, MEG and functional imaging studies
provide compelling evidence that at least some pitch functions are
lateralized to the right hemisphere and are carried out within
certain higher auditory cortical centers (namely, lateral HG and
planum temporal). However, the lateralization of function at the
level of HG is not always clear. In gerbils, the discrimination of
upward versus downward frequency modulations of continuous
sounds is also lateralized to the right hemisphere. On the other
hand, as these animals showno deficit following unilateral auditory
cortex lesions when trained to discriminate frequency modulated
sounds that are segmented (Wetzel et al., 2008), it is unclear how
their right auditory cortex function may relate to the lateralization
seen in humans for tasks inwhich subjects must judge the direction
of pitch shifts in discrete, sequential sounds (Johnsrude et al., 2000;
Tramo et al., 2002; Schneider et al., 2005). Pitch function may also
be less specialized across cortical fields in non-primates. In ferrets,
neurons that carry information about the F0 height of sounds, and
which can account for the pitch direction discrimination thresholds
of these animals, can be found throughout primary as well as
higher auditory cortical fields. Nevertheless, the role of these neural
populations in pitch discrimination performance has not yet been
directly tested, so it remains possible that even these animals will
show pitch discrimination deficits following inaction of specific
cortical fields. Bendor and Wang (2008) have suggested that the
subset of auditory cortical neurons that have monotonic spike rate/
F0 functionsmay be particularly advantageous for making high/low
pitch comparisons, while the non-monotonic rate codes of other
auditory cortical neurons may contribute more effectively to
detecting a change in F0. This intriguing hypothesis warrants
further investigation, ideally in awake, behaving animals.

5.4. Invariant representations of pitch in auditory cortex

Humans and animals alike can generalize pitches across sounds
with very different timbres. That is, a violin or a bird can produce
sounds that evoke the common pitch percept of 800 Hz. One might
thus expect to find auditory cortical neurons that encode the pitch of
sounds independent of other sound features, such as timbre and
loudness. This would require neurons with receptive field properties
that go beyond simple frequency tuning. One can test for invariant
pitch responses by examining cortical correlates of periodicity across
a range of stimuli, including those that almost never occur in nature,
such aspure tones or stimuli that evokeHuggins pitch.Wemight also
expect the response of an ideal pitch-selective neuron to vary with
pitch salience, and this can be tested with stimuli such as irregular
(“jittered”) click trains or sounds with unresolved harmonics.

In contrast to the prediction of the existence of an invariant
pitch representation, the cortical correlates of pitch perception
have most often been found to vary with the type of stimulus
Please cite this article in press as: Walker, K.M., et al., Cortical encoding o
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presented, and thus the type of computations required by neurons
to calculate F0. For example, while MEG investigations have local-
ized the pitch onset response associated with binaural Huggins
pitch stimuli in Heschl’s gyrus (Chait et al., 2006; Hertrich et al.,
2005), an fMRI study has suggested that the neural correlates of
Huggins pitch exist not in lateral HG, but rather in planum tem-
porale (Hall and Plack, 2007). Hall and colleagues further show that
the presentation of different types of periodic sounds, (including
pure tones, resolved and unresolved tone complexes, Huggins
stimuli, and IRN), activates different regions of auditory cortex in
human listeners (Hall and Plack, 2009). In agreement with previous
studies, they found that IRN stimuli evoked greater activity in
lateral HG than did noise bursts. The novel finding of Hall and Plack
(2009) was that other types of periodic sounds do not selectively
activate this region. Instead, each stimulus resulted in a unique
distribution of cortical activity, with the only area of overlap being
planum temporale. Taking a similar experimental approach, Nelken
et al. (2008) measured the intrinsic optical signals of primary and
secondary regions of ferret auditory cortex while presenting click
trains, SAM tones and iterated rippled noises across a common F0
range. The three types of periodic sounds resulted in three distinct
patterns of periodotopic activation spanning several auditory
cortical fields, but there was no consistent overlap in these F0
representations. Using the same methods, in addition to extracel-
lular recordings, Langner et al. (2009) found that while harmonic
tone complexes and SAM tones with the same periodicity often
maximally activated similar regions of A1, pure tones with the same
periodicity did not share this representation.

In contrast, Puschmann et al. (2010) have found, also using fMRI,
that the presentation of pitch sequences in the form of two types of
dichotic pitch or pure tones in noise results in selective activation of
lateral HG. One key difference between Puschmann et al. (2010)
and the studies by Hall and Plack (2007, 2009) and Nelken et al.
(2008) is that in the former, subjects carried out an auditory
discrimination task during the stimulus presentation and image
acquisition. They were asked to indicate, by keypress, whether each
sound sequence consisted of noise, a fixed pitch, or a melody. In the
studies by Hall and Plack (2007, 2009), subjects were asked to
attend to the pitch of sounds but did not perform a behavioural
task. The task-dependent plasticity results reviewed above indicate
that perceptual tasks can have significant effects on the receptive
field properties of cortical neurons. Therefore, differences in the
perceptual task could alter the observed sensitivity of neurons in
particular cortical fields to stimulus attributes such as pitch. For
instance, lateral HG neurons might be differentially recruited when
a subject is asked to isolate periodic sounds in the presence of
a noisy backgrounde an unavoidable function for all three periodic
stimuli used in Puschmann et al.’s experiment. Future studies
which more closely examine the task-dependent nature of neural
correlates of periodicity may provide a coherent account of these
seemingly contrary experimental results. For now, the bulk of
evidence has failed to isolate a universal “pitch centre” within the
auditory cortex of humans or animals, in which neurons represent
pitch invariantly to the spectral make-up of sounds.

In natural acoustic environments, sounds do not vary over only
one perceptual dimension independently (as they do in most
experiments), but pitch changes must be recognized in the pres-
ence of other forms of stimulus variance. For instance, a speaker
may move around the room, requiring the listener to de-convolve
neural responses to pitch shifts from neural modulation by spatial
location cues. We have recently examined how ferret auditory
cortical neurons encode multiple perceptual dimensions by
recording the neural responses to a stimulus set that varied
simultaneously in F0, timbre and spatial location (Bizley et al.,
2009b). We again used artificial vowels as stimuli, which allowed
f pitch: Recent results and open questions, Hearing Research (2010),
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2

Fig. 4. Proportions of cortical neurons modulated by the pitch, timbre or azimuth of
complex sounds. In each panel, the proportion of ferret auditory cortical neurons with
spike rates that are significantly modulated by the pitch (solid line), timbre (dashed
line), or azimuth location (dotted line) of artificial vowels is indicated. Mutual Infor-
mation was calculated for spike counts within 20 ms time bins, across the duration of
the response. The significance of mutual information was determined using the 95%
confidence interval of bootstrapped, “scrambled” responses (as described in Panzeri
et al., 2007). This is compared in 20 ms time bins, across the duration of the
response. The five panels, from top to bottom, show sensitivity across five cortical
fields: A1 (primary auditory cortex), AAF (the Anterior Auditory Field), PPF (the
Posterior Pseudosylvian Field), PSF (the Posterior Suprasylvian Field), and ADF (the
Anterior Dorsal Field).
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us to parametrically vary stimuli across four timbres (formants
corresponding to the vowels/a/,/i/,/3/, and/u/), F0 (click rates of 200,
336, 565, and 951 Hz), and spatial location along the azimuth
(�45�, �15�, þ15�, and þ45�, where negative values are contra-
lateral to the recording site). The parameters chosen for each
perceptual attributes are easily discriminated by ferrets (Bizley
et al., 2009a; Parsons et al., 1999; Walker et al., 2009c). We quan-
tified neurons’ sensitivity to each of these three features using
a variance decomposition analysis, based on multivariate ANOVA.
Neurons that were sensitive to F0, timbre and azimuth were found
in all 5 cortical fields examined. In fact, neurons were commonly
modulated by two or more of these stimulus features (65%). Those
that were tuned to only one stimulus dimensionwere less common
(23%) and often tuned to the timbre dimension. Therefore, if
invariant responses to periodicity exist within these cortical fields,
they are rare. Sensitivity to the pitch and spatial location of stimuli
has also been shown to have overlapping distributions in auditory
cortex in fMRI, MEG and electroencephalographic investigations of
human listeners (Degerman et al., 2008; Staeren et al., 2009).

Another important result of our study was that a single spike
count measure did not capture much of the informative variance in
the responses of these neurons. Previous studies have usually looked
for invariant pitch codes in the form of spike rates that are modu-
lated selectivity by the periodicity of sounds. However, spike trains
are often temporally complex, and different aspects of a neural
spiking pattern can be independently modulated by a single
perceptual dimension. Further analysis of the data from Bizley et al.
(2009b) has revealed that indeed, even neurons that are sensitive to
multiple perceptual attributes can provide a reliable F0 representa-
tion by exhibiting invariant F0 tuning in a particular aspect of its
spike response, such as the spike rate within a specific time bin
(Walker et al., 2009b). For instance, in the posterior suprasylvian
field, information about the location and timbre of sounds was
almost exclusively encoded in the early onset phase of the response,
whereas sensitivity to stimulus F0 continued later into the sustained
response (Fig. 4). This result is consistent with the findings of
Ahveninen et al. (2006), who used a combination of fMRI andMEG to
investigate the processing of localization and phonetic cues in
human auditory cortex. These two cues not only activated different
higher order cortical areas, but did so over subtly different time
courses. Localization-sensitive cortical voxels were activated 30 ms
earlier than those involved in processing phonetic information.

A number of investigations have searched for missing funda-
mental responses in primary auditory cortex. Since this perceptual
feature is dissociable from the spectral content of the sound, such
responses would provide strong evidence of a neural representa-
tion of the pitch percept. An early investigation aimed to identify
neurons that respond to the missing fundamental of harmonic tone
complexes in the auditory cortex of awake rhesusmonkeys, but this
study failed to find such response properties (Fishman et al., 1998),
even in monkeys that had been trained to discriminate the pitch of
these sounds (Schwarz and Tomlinson, 1990). Bendor and Wang
(2005) have performed an extensive search for pitch-selective
cortical neurons, in which they presented several types of periodic
sounds (including pure tones, tone complexes, and click trains) to
awake marmosets. They described a small proportion of neurons in
the lateral, low-frequency border of area A1 and R, which exhibit
several features of pitch selectivity. These neurons could be
assigned a characteristic frequency for pure tones, and also
responded to missing fundamental tone complexes with F0 at this
same frequency. Note that this population of cells differs from the
pitch sensitive neurons described above, in which pitch tuning to
complex sounds did not correlate with characteristic frequency
(Bizley et al., in press). The response of these neurons was related to
the temporal regularity (i.e. pitch salience) of sounds, since their
Please cite this article in press as: Walker, K.M., et al., Cortical encoding o
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spike rates were modulated by the repetition rate of regular click
trains, but not by “jittered” click trains. The region in which these
neurons were located is homologous to lateral HG in humans, and
even though the responses of these apparently pitch-selective
neurons were also to some extent sensitive to the intensity and
spectral content of sounds (discussed by Tramo, 2005 Q), these
neurons nevertheless exhibit many of the properties that one
would expect to find in a cortical pitch centre. Because pitch is
ultimately a perceptual and not a physical property of the sound,
conclusive evidence that a particular population of neurons is
specialized for pitch processing cannot be based on observations of
stimulus response properties alone, but one also needs to demon-
strate that the activity of the neurons in question plays a key role in
shaping the animal’s subjective perception of the sound. Equally, in
human studies cortical activation should be correlated with the
perception of pitch rather than the physical properties of the sound.

We have seen that sensitivity to the periodicity of sounds can be
found in neurons distributed throughout auditory cortex, and these
neurons often also represent other perceptual features. Multiple
stimulus dimensions are encoded through spike rates that are
tuned to the linear combinations of acoustic features, as well as the
f pitch: Recent results and open questions, Hearing Research (2010),
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independent tuning of spike rates within distinct time bins to
a particular stimulus feature. Bendor andWang (2005) have shown
that in themidst of this distributed neural sensitivity to F0, neurons
that are more selective for pitch cues and that respond to missing
fundamental stimuli can be found clustered in the marmoset
homolog of the human lateral HG, in the anterolateral belt. These
populations of neurons may constitute a pitch centre in the primate
brain, but their precise role in generating pitch percepts should be
explored further with experiments that combine behavioural pitch
judgments with electrophysiological recording or deactivation.

5.5. Pitch in context: higher-order processing of pitch cues

Although an in-depth coverage of melody perception is beyond
the scope of the present review, it is worth briefly noting that pitch
extraction continues beyond the primary and belt of auditory cortex.
The activity of higher cortical fields in the parietal and frontal lobes
changes selectively in tasks that require more complex pitch judg-
ments, such as those based on the melody (Griffiths et al., 1999;
Patterson et al., 2002; Warren and Griffiths, 2003a) or statistics
(Gutschalk et al., 2007) of pitches within sound sequences. The
analysis of pitch in the context of melody also appears to be later-
alized to the right hemisphere in humans (Warrier and Zatorre,
2004; Zatorre et al., 1994). In fact, cortical regions that underlie
pitch perception seem to become more widely distributed and lat-
eralized further along the cortical hierarchy (Patterson et al., 2002;
Schiavetto et al., 1999; Zatorre et al., 1994).

6. Our current understanding and open questions

The body of literature described above suggests that represen-
tations of the periodicity of complex sounds are distributed across
numerous auditory cortical regions. While some auditory cortical
areas seem to play key specialized roles in pitch extraction, these
are a part of a wider network that is necessary to explain the range
of pitch judgments made by humans and animals. The network of
pitch-sensitive regions in auditory cortex may exist to support
a variety of periodicity judgments, which are distinguishable based
on either function (i.e. pitch directions versus pitch change detec-
tion) or stimulus type (i.e. binaural or monaural pitch).

In subcortical structures, cues to periodicity and pitch are often
represented by regular temporal patterns of action potentials that
are phase-locked to the sound waveform, resulting in periodic
trains of spikes. However, the temporal integration windows of
neurons widen throughout the ascending auditory pathway, and at
the level of A1 the responses of a single neuron are too sluggish to
provide phase-locked representations of periodicity within the
pitch range. Although temporal representations of pitch may still
exist in cortex in the form of temporally precise onset latencies
(Fig. 3b), the most commonly observed code for periodicity within
cortical neurons is a modulation of spike rates as a function of F0. It
is not yet clear how auditory cortical neurons transform the
temporal representation of pitch found in the autocorrelation of
spikes across subcortical neurons into a monotonic spike rate code.
There is evidence, however, that some A1 neurons have multi-
peaked frequency tuning that allows them to be sensitive to the
harmonic relations of tone complexes. This may indicate a form of
spectral template-matching used for pitch extraction at the cortical
level. Representations of pitch derived from temporal and spectral
processes may later converge onto “pitch neurons” in auditory
cortex, or these cues may be processed by separate neural pop-
ulations, as human lateralization studies suggest.

Functional MRI, electroencephalography and magneto-
encephalography studies of the human brain indicate that a cortical
region beyond A1, namely lateral Heschl’s gyrus, appears to
Please cite this article in press as: Walker, K.M., et al., Cortical encoding o
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respond preferentially to periodic sounds, and may be specialized
for pitch processing. In the marmoset homologue of this region,
a small subgroup of neurons have monotonic spike rate represen-
tations of the missing fundamental of tone complexes, supporting
a unique role for this region in pitch extraction. But note that these
cells also respond vigorously to aperiodic sounds. Therefore, while
lateral HG in humans almost certainly plays a key role in pitch
perception, questions still remain about how the regional pitch
sensitivity observed in fMRI and scalp recording studies may
manifest at the single neuron level.

The difficulty in comparing cellular recordings to fMRI or MEG
results lies, in part, in the fact that these are almost always carried
out in different species. But there is also a more fundamental
difference in the type of activity that these techniques measure.
Magnetic resonance imaging measures the blood oxygenation
level, rather than neural responses directly. A correlation has been
demonstrated between this hemodynamic response and local field
potentials, suggesting that fMRI results are strongly dependent on
dendritic activity (Goense and Logothetis, 2008; Logothetis et al.,
2001). Thus, an experimental effect could reflect local processing
in the region of interest via synaptic connections. Alternatively,
fMRI activity in a region could reflect the activity of synaptic inputs
from a projecting neural structure where the process of interest is
taking place. Measurements of ionic currents and their resulting
magnetic fields are also thought to reflect net dendritic activity.
Local field potential measurements can usually be collected during
extracellular recording experiments, and the interpretation of these
signals in addition to local neural responses may assist the
comparison of fMRI results to neural response properties.

There are also major differences in the time scales of the
underlying processes measured by these experimental techniques.
Blood oxygenation level dependent signals are measured over tens
of seconds and thus they reflect the mean rates of membrane
potential fluctuations within populations of cells, but are insensi-
tive to fine temporal modulations in spike firing patterns. Extra-
cellular recordings have shown that temporal aspects of neural
spike responses, and the local spiking response of single neurons,
can carry significant information about the periodicity of sounds
that would be unobservable with the very wide temporal or spatial
integration of these signals. Thus, fMRI measures only a subset of
the neural representations of complex sounds, and it is possible
that areas which fail to show pitchmodulation in fMRI studies do in
fact contain neurons with spatially-delimited or temporally-based
spike responses that are highly modulated by the periodicity of
sounds. MEG can measure fluctuations in neural activity with
millisecond precision, but again these are spatially summed over
many millions of active neurons.

Studies of single neuron responses have different limitations.
While fMRI and MEG can sample activity across the entire brain,
microelectrodes can cover only a limited region of tissue in any one
experiment. This is a problem if pitch function is widely distributed,
as we propose. Single-unit recordings in animal models also fall
short in addressing the role of pitch perception in some higher-
level cognitive functions that are arguably unique to humans, such
as language and music.

Clearly, each experimental technique has its unique perspective
on neural function, and the range of techniques used to investigate
pitch processing in humans and animals will be most powerful
when they are used in cooperation. This approach should include
presenting similar stimuli and asking complementary research
questions in studies across species and recording techniques.

In this review, we have also briefly touched upon studies that
demonstrate the remarkable plasticity of auditory cortex. The
frequency and temporal tuning properties of cortical neurons
change dramatically when an animals is engaged in a perceptual
f pitch: Recent results and open questions, Hearing Research (2010),
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task. Presumably, the tuning of cells in higher auditory cortical
regions to more complex periodicity cues could also change
according to task demands, but this remains to be demonstrated.
Additionally, the relative contribution of different regions within
a cortical “pitch” network might also adapt to meet task demands.
To understand these processes, studies that record cortical
responses while animals actively listen to sounds are essential. The
degree of functional divisions across cortical areas may only
become apparent in the activity that arises in these pathways when
the animal “uses” its cortex to listen carefully to sounds. On the
other hand, the cortical responses observed in a highly trained
animal may not be generalizable to a population of naive listeners,
so a longitudinal aspect to such studies may also prove to be highly
informative. Such designs may also offer further insights into the
mechanisms of cortical plasticity, which are likely to include
a combination of selective excitation (Kilgard and Merzenich, 1998)
and inhibition (Otazu et al., 2009).

Beyond Heschl’s gyrus, auditory cortical fields seem to become
ever more functionally divergent in their roles in pitch perception.
For instance, one fMRI study found that the cortical activation
associated with pitch height extends into posterior planum tempo-
rale, while a region specifically modulated by pitch chroma changes
was found anterior to A1, extending into planum polare (Warren
et al., 2003b). The authors interpret these results as evidence for
a hierarchical stream of pitch processing that extends beyond
primary auditory cortex and is regionally specialized for perceptual
functions, including object identification in posterior planum tem-
porale and object-independent, auditory information analysis in
more anterior regions. Human studies have also emphasized a divi-
sion of pitch extraction between the right and left hemispheres.
Single unit studies of these types of pitch processes have not yet
been carried out in the higher auditory cortex, and the lateralization
of pitch extraction in animals is largely unexplored. Addressing these
types of questions about the distribution of pitch processing, rather
than trying to identify a single “pitch centre” in auditory cortex to
account for all pitch judgments, may prove to be a useful redirection
of efforts in studies of how pitch is encoded by cortical neurons.
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