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SUMMARY

Sensory systems are known to adapt their coding
strategies to the statistics of their environment, but
little is still known about the perceptual implications
of such adjustments. We investigated how auditory
spatial processing adapts to stimulus statistics by
presenting human listeners and anesthetized ferrets
with noise sequences in which interaural level dif-
ferences (ILD) rapidly fluctuated according to a
Gaussian distribution. The mean of the distribution
biased the perceived laterality of a subsequent stim-
ulus, whereas the distribution’s variance changed
the listeners’ spatial sensitivity. The responses of
neurons in the inferior colliculus changed in line
with these perceptual phenomena. Their ILD prefer-
ence adjusted to match the stimulus distribution
mean, resulting in large shifts in rate-ILD functions,
while their gain adapted to the stimulus variance,
producing pronounced changes in neural sensitivity.
Our findings suggest that processing of auditory
space is geared toward emphasizing relative spatial
differences rather than the accurate representation
of absolute position.

INTRODUCTION

‘‘A prime function of sensory centres is to code efficiently the

patterns of excitation that occur, thus developing a less redun-

dant representation of the environment’’ (Barlow, 1972). This

statement was made in the context of a set of groundbreaking

studies on the plasticity of the developing visual system (Blake-

more and Cooper, 1970; Pettigrew and Freeman, 1973), which,

together with subsequent studies in other sensory systems

(Van der Loos and Woolsey, 1973; Zhang et al., 2001), estab-

lished that the brain can, over the course of days to months,

adapt to a modified sensory environment by altering the sensi-

tivity of sensory neurons to more closely match the distribution

of stimuli in that environment. Although it is generally assumed

that this reallocation of resources confers a perceptual advan-

tage, the only behavioral study to test this showed that expanded

stimulus representations are associated with impaired sensory
performance (Han et al., 2007). This underlines the importance

of behavioral data in interpreting the impact of altered neural

representations.

The brain’s processing capacity is constrained not only by the

number of neurons, but also by the number of spikes that each of

them can generate over time. To use the neurons’ limited

dynamic ranges more efficiently, adjustments in coding strategy

can be made throughout life and within seconds or milliseconds

of encountering a change in the composition of the sensory

input. For example, the recent history of stimulation can alter

a neuron’s response strength (Ulanovsky et al., 2003) and even

the precision with which those stimuli are encoded so that the

most frequently occurring values are encoded most precisely

(Dean et al., 2005; Garcia-Lazaro et al., 2007; Watkins and

Barbour, 2008; Wen et al., 2009).

A popular approach in investigating sensory adaptation is to

manipulate the statistics of the entire distribution from which

the stimuli are chosen. Although adaptation to higher-order

stimulus statistics, such as skewness and kurtosis (Bonin

et al., 2006; Kvale and Schreiner, 2004), or to the complex statis-

tics of naturally occurring visual scenes (Sharpee et al., 2006) has

been investigated, most studies have addressed this issue by

changing the mean or variance of a stimulus ensemble. Adaptive

coding has been examined most extensively in the visual system

for changes in the statistics of light intensity fluctuations (Baccus

and Meister, 2002; Chander and Chichilnisky, 2001; Dunn and

Rieke, 2006; Mante et al., 2005; Smirnakis et al., 1997), but other

visual stimulus dimensions (Brenner et al., 2000; Fairhall et al.,

2001) as well as other sensory systems (Dean et al., 2005;

Garcia-Lazaro et al., 2007; Kvale and Schreiner, 2004; Maravall

et al., 2007; Nagel and Doupe, 2006) have also received

attention.

The reported adjustments in neuronal responses are usually

interpreted as providing a more efficient representation of the

current stimulus environment. However, any evaluation of

a change in coding strategy should also take into account its

perceptual consequences and ask whether the change is behav-

iorally beneficial. So far, studies of that kind are lacking.

We chose to study perceptual and neural adaptation to stim-

ulus statistics within the framework of auditory spatial process-

ing, which is known to show considerable experience-depen-

dent plasticity over various timescales (Furukawa et al., 2005;

Kacelnik et al., 2006; Knudsen, 1983; Malone et al., 2002; Park

et al., 2008; Phillips and Hall, 2005). Studying how spatial pro-

cessing adapts to changes in input statistics is of particular
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Figure 1. Stimulus Design

Stimuli consisted of broadband noise presented at an average binaural level of 60 dB SPL, except where the level was fixed in the contralateral ear and varied on

the ipsilateral side only. Zero ILD means that the sound level is equal in both ears; negative values, that it is higher in the contralateral ear (left ear for psycho-

physics). Trials/sweeps were presented in random order and consisted of an adaptation period with dynamically varying ILDs, immediately followed by

a 100 ms long test stimulus with static ILD. During the adaptation period, a new ILD was drawn randomly every 5 ms from one of six Gaussian distributions.

We used a ‘‘baseline’’ distribution with a mean of 0 dB and a standard deviation (SD) of 20 dB (shown in black), two distributions with shifted means

(�15 dB: green, +15 dB: red), and three distributions with lower variances (SD = 10 dB: blue; SD = 15 dB and 5 dB, not shown). In psychophysical experiments,

the adaptation period lasted 1 s and each subject was tested with a total of seven different static ILDs. In recording experiments, the adaptation period lasted 5 s,

and nine values, evenly spread from �40 dB to +40 dB, were chosen for the static ILDs.
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interest because the accurate representation of absolute stim-

ulus values—sound-source position in this case—may be more

important than for other dimensions, such as light intensity pro-

cessing, which relies more on the detection of relative differ-

ences in luminance across the visual scene.

A vivid percept of a stimulus changing position can readily be

created over headphones by altering the levels of the signals

delivered to the two ears in opposite directions. We presented

human listeners and anesthetized ferrets with broadband

noise sequences whose interaural level difference (ILD) rapidly

fluctuated according to a Gaussian distribution, which creates

the percept of a stimulus quickly taking new positions along the

interaural axis. Changing the mean of the distribution shifts

the range of possible positions to the left or right, while changing

its variance widens or narrows the space of possible positions.

We found that this led to corresponding adjustments in both
A B C

D E F

938 Neuron 66, 937–948, June 24, 2010 ª2010 Elsevier Inc.
the perception and neural representation of auditory space,

and that the observed plasticity in neuronal response properties

closely resembles the changes in perception.

RESULTS

Perceptual Adaptation
The human subjects indicated by a button press whether they

perceived the position of the static stimulus presented immedi-

ately after the end of the 1 s adaptation period to be on the left

or right of the midline, and their performance was characterized

in terms of psychometric functions plotting the percentage of

‘‘left’’ responses as a function of ILD (see Figure 1 and Experi-

mental Procedures for details of stimuli and analysis).

Figures 2A and 2B show psychometric functions from two

subjects following adaptation to ILD distributions with different
Figure 2. Human Psychophysics

(A and B) Psychometric functions showing ILD

sensitivity of two human listeners for distributions

with different means.

(C) Mean perceived midlines (dB) of four human

listeners for distributions with different means.

(D and E) Psychometric functions of two subjects

for ILD distributions with different variances.

(F) Mean thresholds (dB) for distributions with

different variances from four subjects, two of

whom were tested with four, and two with

three, different variance conditions. Error bars

are ± SEM.
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means. The position of the functions clearly depends on the

mean of the distribution. This was observed for all subjects

tested, as shown in Figure 2C, which plots the mean perceived

midline obtained using probit fits as a function of stimulus

mean for each participant (Kruskal-Wallis results per subject:

AN: n = 4, p = 0.0072; FS: n = 3, p = 0.027; JD: n = 8, p <

0.001; RC: n = 4, p = 0.0073). The subjects’ perceived midline,

where thresholds are expected to be lowest (Yost and Dye,

1988), therefore shifts in the direction of the ILD distribution

they are adapted to. This corresponds to a shift in perceived

stimulus position in the opposite direction. Consequently, stimuli

are more likely to be perceived as being located to the left of

the midline when presented in the context of a right-shifted stim-

ulus distribution and vice versa.

Figures 2D and 2E show psychometric functions from two

subjects following adaptation to ILD distributions with different

variances. In both cases, the function from the lower-variance

condition is steeper than that obtained with the higher variance.

Such a relationship between stimulus variance and psycho-

metric function slope was found for all subjects, as shown in

Figure 2F, which plots the mean thresholds as a function of vari-

ance for each subject (Kruskal-Wallis: AN: n = 5, p = 0.018; JD: n

= 7, p = 0.0016; RC: n = 7, p = 0.017; ST: n = 6, p = 0.0084). This

suggests that, as stimulus variance decreases, perceptual sensi-

tivity increases, allowing the correct lateralization of progres-

sively smaller ILDs.

Our results show that the human auditory system adapts to

a change in the mean of the ILD distribution, leading to a system-

atic bias and therefore a misjudgment of sound-source laterality,

whereas adaptation to stimulus variance alters perceptual sensi-

tivity. In order to understand what changes in coding strategy

might bring about these perceptual effects, and whether this

can be viewed as an effort to represent the sensory environment

in the brain in the most ‘‘efficient’’ way, we measured neuronal

responses in the ferret, a species that is widely used for studying

auditory plasticity (Atiani et al., 2009; Bajo et al., 2010). We

recorded from the inferior colliculus (IC) because previous

studies have reported that substantial adaptation to changing

stimulus statistics occurs in this nucleus (Dean et al., 2005; Kvale

and Schreiner, 2004; Malmierca et al., 2009), while the ILD sensi-

tivity of IC neurons can show pronounced shifts following cortical

cooling (Nakamoto et al., 2008). The recordings were carried

out under anesthesia in order to provide the stability needed

for collecting complete data sets from individual neurons and

to avoid changes in the arousal level or attentional modulation

during the adaptation periods.

Neuronal Adaptation
The simplest way to describe a neuron’s behavior across dif-

ferent stimulus distributions is to count the number of spikes

while presenting each distribution. The number of spikes fired

by the neuron should be high when the distribution contains

stimuli that mostly lie within its receptive field and lower when

it contains fewer of those stimuli. The receptive field can, in the

current context, be described by the neurons’ rate-ILD function.

Most IC neurons have monotonic rate-ILD functions, as illus-

trated by the baseline function obtained from an example neuron

in Figures 3A and 3E. As the mean of the ILD distribution is varied
(histograms in Figure 3A), the proportion of stimuli that overlap

the function changes, so the number of spikes generated should

change as well. However, the firing rate of this neuron during the

5 s adaptation periods showed a remarkable resistance to

changes in the distribution mean, as shown by the almost

identical rates during the adaptation periods for all three mean

ILD values (Figure 3B). The rates during the negative and the

positive distribution are initially slightly separated, but appear

to converge and stabilize after a few hundred ms, suggesting

that firing rates adjust quickly to the statistics of the distribution

(see also Figure S1 available online). Although some neurons (red

circles below and green circles above the unity line in Figure 3C)

did change their mean firing rates during the adaptation period

(‘‘adaptation rate’’ hereafter) in the directions predicted from

the position and shape of their baseline rate-ILD functions, these

changes were usually smaller than expected, as illustrated by the

greater distance between the unity line and the crosses, which

indicate the expected adaptation rates. Similarly, the average

adaptation rate for the entire population of neurons recorded

did not shift as the mean of the distribution was changed

(Figure 3D).

Because this neuron exhibited a rate-ILD function that was

offset to the contralateral side (Figure 3E), decreasing the vari-

ance of the distribution would be expected to reduce the amount

of overlap between its rate-ILD function and the stimulus distri-

bution, thereby reducing its firing rate. This was not the case,

however, because the neuron’s adaptation rate remained almost

identical across the two distributions (Figure 3F). The vast

majority of IC neurons from which we recorded also had rate-

ILD functions favoring the contralateral ear, but most, again,

showed either no change or smaller than expected reductions

when exposed to distributions with lower variances (Figures

3G and 3H).

These results indicate that when the stimulus distributions

change, the neurons’ output remains largely unaltered. Thus,

the coding rules governing the translation of sensory input into

spikes must change.

Linear-Nonlinear Models
Linear-nonlinear models have had considerable success in

capturing the computational changes associated with adapta-

tion to stimulus statistics (Wark et al., 2007). These models

characterize the coding process as initial linear filtering of the

stimulus by the neuron, and output generation according to

a nonlinear input-output function that relates the similarity

between the stimulus and neuronal filter to spiking probability.

We derived the linear filter by reverse correlating the stimulus

sequences and the corresponding spike trains from the adapta-

tion periods and extracting the spike-triggered average (STA).

The stimulus was then passed through this filter (the time-

reversed STA), resulting in a signal representing the similarity

between stimulus and filter as a function of time. Using the cor-

responding spike trains, we then calculated the mean spike rate

as a function of similarity to produce the input-output function.

The STA provides an estimate of the stimulus feature that best

drives a neuron. The filtered signal can be understood as a

measure of how strongly that feature is represented in the stim-

ulus. The input-output function characterizes the instantaneous
Neuron 66, 937–948, June 24, 2010 ª2010 Elsevier Inc. 939
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Figure 3. Spike Rate across Different Stimulus Distributions

(A) Example baseline rate-ILD function of one neuron in the IC and histograms of three ILD distributions with different means. Each histogram shows the distri-

bution of the 90,000 ILDs presented during all unique adaptation period sequences for a particular mean.

(B) Average firing rate as a function of time (smoothed) from the same neuron for ILD distributions with different means, averaged over 90 unique adaptation

periods. Dashed lines indicate expected adaptation rates based on the overlap between the ILD distribution and the baseline rate-ILD function (see Experimental

Procedures for details on calculation of expected rates).

(C) Observed adaptation rates during the baseline (zero mean) ILD distribution plotted against the observed (circles) and expected (crosses) adaptation rates for

the distributions with mean ILDs of either �15 dB (green) or +15 dB (red). A circle lying on the black dotted unity line indicates that the adaptation rate remained

constant across a change in mean.

(D) Mean observed (black) and expected (gray) adaptation rate for distributions with different means.

(E) Example baseline rate-ILD function for the same neuron whose response is shown in (A) and (B), together with histograms of stimulus distributions with two

different variances.

(F) Average firing rate as a function of time (smoothed) from this neuron for distributions with different variances. Dashed line indicates expected adaptation rate

based on the overlap between the low-variance distribution and the baseline rate-ILD function.

(G) Observed adaptation rates for the high- (SD = 20 dB) variance distribution versus observed (circles) and expected (crosses) adaptation rates for a low-

(SD = 10 dB) variance distribution. A circle lying on the dotted black unity line indicates that the adaptation rate remained constant across a change in variance.

(H) Mean observed (black) and expected (gray) adaptation rates for distributions with different variances. Error bars are ± SEM.
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relationship between the filtered signal and the neural response,

and can be regarded as a measure of a neuron’s sensitivity to its

preferred stimulus feature. By describing the stimulus-response

relationship and the stimulus-statistics-dependent changes in

that relationship in terms of such a linear-nonlinear model, we

can distinguish between adjustments in feature selectivity and

neural sensitivity.

Figure 4 shows filters (Figures 4A and 4E) and input-output

functions (Figures 4B and 4F) derived from the baseline ILD

distribution for two IC neurons. Most filters were dominated by

a large negative phase. Input-output functions were usually flat

to start with, indicating that the similarity between stimulus and

filter needs to pass a threshold before the neurons fire. This

was followed by a monotonically rising component, signifying

that the firing rate increases with growing similarity and then

sometimes becomes saturated. To assess how well the linear-

nonlinear models captured neuronal behavior, we used them

to predict each unit’s response to a stimulus sequence (Fig-

ure 4D) that was presented repeatedly, and compared the

predicted response to the recorded one (Figures 4C and 4G).

To avoid overfitting, this stimulus sequence was not used to esti-

mate the models. The correlation coefficient was 0.83 for the unit
940 Neuron 66, 937–948, June 24, 2010 ª2010 Elsevier Inc.
in Figures 4A and 4C, at the upper end of the range for the whole

population (Figure 4H), and was 0.69, identical to the population

median, for the unit in Figures 4E and 4G. Thus, in most cases,

the linear-nonlinear model provided a good description of the

ILD sensitivity of the neurons. Units with correlation coefficients

below 0.5 were excluded from further analysis of their filters and

input-output functions.

Linear-Nonlinear Models: Filter Shapes
Changes in stimulus mean or variance can induce large changes

in filter shape and kinetics (Baccus and Meister, 2002; Bryant

and Segundo, 1976; Mainen and Sejnowski, 1995; Nagel and

Doupe, 2006). Here, we found that the filter shape of the neurons

was very consistent across ILD distributions with different

means, indicating that the neurons remained sensitive to the

same stimulus features (Figure 5A). However, their preferred

feature only remained the same relative to the current distribu-

tion’s mean. This is shown by the inset in Figure 5A, which shows

the same filters before mean subtraction. Thus, the ILD values

that drive a neuron in the context of one distribution may be

very different from those it is excited by following adaptation to

a distribution with a different mean. For example, after adapting
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Figure 4. Linear-Nonlinear Models and Response Predictions for IC Neurons Derived from the Baseline Stimulus Distribution

(A and E) The filter describes the stimulus feature that excites a given neuron, whereas the nonlinear input-output function (B and F) describes the sensitivity of the

neuron to that feature. Most neurons exhibited largely monophasic filter shapes, such as these two examples, meaning that they were excited by negative deflec-

tions from the stimulus mean. (C and G) Recorded (averaged over 90 repeats) and predicted responses for these two neurons to the stimulus sequence shown in

(D). A strong correspondence between recorded (thin dark line) and predicted (thick gray line) responses indicates that the linear-nonlinear model can success-

fully describe the relationship between stimulus and response. (H) Histogram of correlation coefficients between recorded and predicted responses for the whole

sample of neurons in our study.
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the neurons to an ILD distribution with a mean of +15 dB (red

trace), presentation of a stimulus with an ILD of 0 dB represents

a negative deflection from that mean, a feature that closely

resembles their filters, and thus ought to excite the neurons.

By contrast, the same stimulus value will be much less effective

after adaptation to ILDs with a mean of 0 dB and particularly

�15 dB.

Despite a high degree of similarity between filter shapes

across different stimulus distributions, we did observe some

small but systematic changes. Most filters had a large negative

and a much smaller or no positive phase (Figures 5A and 5B)

and therefore mostly behaved like integrators. The monophasic

versus biphasic nature of the filters was quantified by the ratio

of the positive to negative area (P/N ratio, Figures 5C and 5D).

Shifting the mean of the ILD distribution toward a more negative

value slightly changed that ratio in favor of the positive phase

(Figures 5A and 5C, ANOVA: n = 118, p < 0.001). Reducing the

variance of the distribution also produced a small increase in

the P/N ratio and made the filters more biphasic (Figures 5B

and 5D, ANOVA: n = 102, p < 0.001) and, thus, slightly more

like differentiators, which may allow the neurons to pick out

more stimulus contrast in a low-variance context. Although sta-

tistically significant at the population level, the average magni-

tude of the change in filter shape was small, closely resembling

that illustrated by the example filters in Figures 5A and 5B.

Besides subtly influencing filter shape, we found that changing

the mean or variance of the adaptation stimuli also affected the

temporal relationship between stimulus and response. Filter

latency, defined as the position of the negative peak, varied

systematically with both mean and variance, as shown in the

examples in Figures 5E and 5F. Changing the mean of the ILD
distribution from �15 dB to +15 dB increased the latency by

�0.4 ms (Figure 5G, ANOVA, n = 118, p = 0.019), whereas

reducing the variance by a factor of four slowed down the

time course of the filter by �1 ms (Figure 5H, ANOVA, n = 102,

p < 0.001). Although these changes in time course are small

and their functional consequences unclear, they fall within

a range of timescales that is relevant to auditory processing.

Thus, the timing of activity on the millisecond scale can guide

plasticity in the auditory system (Dahmen et al., 2008; Tzouno-

poulos et al., 2004), while sensitivity to microsecond-scale inter-

aural timing differences can be exploited to localize sound and

may provide a basis for the processing of ILDs (Yin et al., 1985).

Interestingly, a reduction in stimulus variance produced an

increase in both the P/N ratio and the filter latency. However,

a negative shift in stimulus mean produced an increase in the

P/N ratio, but a decrease in latency. This suggests that the

mechanisms underlying changes in filter shape and time course

may act independently from each other.

Linear-Nonlinear Models: Input-Output Functions
Figure 6A shows one unit’s input-output functions for stimulus

distributions with different means. Although there is some varia-

tion, we found no net change in gain across the population of

neurons (Figure 6B, Kruskal-Wallis, n = 118, p = 0.386). Together

with their largely stable feature preference, this should lead to

neurons producing almost unchanged responses to very

different stimuli as long as these have the same relationship to

the mean of the distribution within which they occur. A different

result was obtained when the variance was changed. Input-

output functions became progressively steeper as the variance

of the ILD distribution was reduced (Figures 6C and 6D). Such
Neuron 66, 937–948, June 24, 2010 ª2010 Elsevier Inc. 941
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Figure 5. Effect of Varying the Mean and Variance of the Stimulus

Distribution on Filter Shape and Time Course

(A) Normalized filters derived for one IC neuron from stimulus distributions with

different means. Insets show the same filters before mean subtraction.

(B) Filters derived from stimulus distributions with different variances for

a different neuron.

(C) Ratio of positive to negative area (P/N ratio) for zero mean versus nonzero

mean distributions. Inset shows mean P/N ratio for distributions with different

means.

(D) P/N ratio for high- (SD = 20 dB) versus low- (SD = 10 dB) variance distribu-

tions. Inset shows mean P/N ratio as a function of stimulus variance.

(E) Filters derived for another neuron to show the effect of stimulus distribu-

tions with different means on latency (defined as the position of the negative

peak).
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Figure 6. Gain of IC Neuron Input-Output Functions Depends on the
Variance of the ILD Stimulus Distribution

(A) Input-output functions for one neuron derived from stimulus distributions

with different means.

(B) Input-output function gains for zero mean versus nonzero mean

distributions.

(C and D) Input-output functions for two neurons derived from stimulus distri-

butions with different variances.

(E) Input-output function gain for high- (SD = 20 dB) versus low- (SD = 10 dB)

variance distributions.

(F) Mean input-output function gain for distributions with different variances.

Error bars are ± SEM.
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a relationship between neural gain and stimulus variance was

observed in the vast majority of units (Figure 6E). On average,

a 5 dB decrease in the standard deviation (SD) of the distribution

increased the gain by �0.3 spikes/s per unit of filtered signal

(Figure 6F, Kruskal-Wallis, n = 102, p < 0.001). This suggests

that changing the variance, but not the mean, of the adaptation

stimuli systematically alters the ILD sensitivity of the neurons.
(F) Filters derived for a fourth neuron to show the effect of stimulus distributions

with different variances on latency.

(G) Filter latencies for zero mean versus nonzero mean distributions. Inset

shows average filter latencies for distributions with different means.

(H) Filter latencies for high- (SD = 20 dB) versus low- (SD = 10 dB) variance

distributions. Inset shows mean filter latency as a function of variance.

Although we used spike trains sampled at 5 kHz to analyze the time course

of the filters, we often measured identical latencies for two or more neurons,

resulting in many of the data points shown in the scatter plots of (G) and (H)

occluding each other. Error bars are ± SEM.
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Figure 7. Rate-ILD Functions of IC Neurons

(A and B) Rate-ILD functions for two neurons recorded in the left midbrain, for distributions with different means, and, as dotted lines, their hypothetical coun-

terparts on the right side of the brain.

(C) Thresholds for zero mean versus nonzero mean ILD distributions.

(D) Black line shows the mean threshold for distributions with different means. Gray line indicates shifts in threshold equivalent in size to the 15 dB difference in the

ILD distribution means. Rate-ILD functions with their baseline threshold <15 dB away from one end of the tested range were excluded from (C) and (D).

(E and F) Rate-ILD functions for two neurons for distributions with different variances, and, as dotted lines, their hypothetical counterparts in the right IC.

The functions in (A) and (E) belong to the same unit.

(G) Mean slopes measured between ILDs of �20 dB and +20 dB for distributions with a high variance (SD = 20 dB) and those with a low variance (SD = 10 dB).

(H) Mean slopes as a function of variance. Error bars are ± SEM.
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In contrast to other studies (Brenner et al., 2000; Fairhall et al.,

2001), which used a more limited set of parameter values, the

observed gain change was not linear over the entire range of

values.

We varied ILDs by changing the sound level in each ear in

opposing directions, thereby keeping the average binaural level

constant, which is what happens naturally when sound-source

location changes. However, we observed the same effects on

ILD coding when we fixed the level in the contralateral ear and

varied either the mean (Figure S2) or variance (Figure S3) on

the ipsilateral side only.

Rate-ILD Functions of IC Neurons
From the response to the static ILDs presented at the end of

each adaptation period, we constructed rate-ILD functions and

examined whether these adapted to mean and variance manip-

ulations of the preceding distribution in the way suggested by

the linear-nonlinear models (see Figure S4 for an analysis of

rate-ILD functions predicted from the linear-nonlinear models).

Although adjustments in feature selectivity and neural sensitivity

can only be distinguished using linear-nonlinear model analysis,

the rate-ILD functions provide a ready means for measuring

response variability as a function of ILD, and therefore allow us

to investigate changes in coding precision in a straightforward

fashion. The position of those functions clearly varied with the

mean of the stimulus distribution (Figures 7A and 7B). To mea-

sure how far they are shifted in relation to each other, we mea-

sured their threshold ILDs. The unity line almost perfectly sepa-
rates the stimulus conditions when each unit’s zero-mean

threshold ILD was plotted against the threshold ILDs derived

with negative and positive means (Figure 7C). The difference

between the mean threshold ILDs obtained with different adap-

tation stimuli was close to the 15 dB difference in the distribution

means (Figure 7D, ANOVA, n = 144, p < 0.001), indicating that the

neurons adapted almost perfectly to these changes.

Figures 7E and 7F show the rate-ILD functions of two neurons

after adaptation to ILD distributions with four different variances.

As expected, the slope of the rate-ILD functions changed with

the variance of the stimulus distribution. These examples were

typical of the population of IC neurons (Figure 7G), with the

average slope of the functions increasing as the variance was

reduced (Figure 7H, Kruskal-Wallis, n = 183, p < 0.001). Such

changes in slope imply an increase in coding precision.

However, the slope alone may provide an inadequate measure

of coding precision, because response variability ultimately

limits the amount of information a neuron can convey. We there-

fore also calculated the standard separation D (Sakitt, 1973;

Tollin et al., 2008), which takes both slope and response vari-

ability into account. D equals the difference in firing rate between

adjacent ILDs divided by the geometric mean of their SDs.

To obtain a continuous, smooth measure of D, we interpolated

and smoothed the rate-ILD and SD-ILD functions.

The D-ILD functions (Figures 8A and 8D) shifted with the mean

in the same way as the rate-ILD functions shown in Figures 7A

and 7D. We recorded in the left IC only, but to get a full picture

of how the neural changes might affect perception, we assumed
Neuron 66, 937–948, June 24, 2010 ª2010 Elsevier Inc. 943
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Figure 8. Changes in Coding Precision in the IC

(A and B) Standard separation ‘‘D’’ (computed between adjacent values) for the rate-ILD functions shown in Figures 7A and 7B.

(C) Mean standard separation D of the population of neurons from the left IC (solid lines) and the hypothetical population of neurons from the right IC (dotted lines)

for distributions with different means.

(D) Mean standard separation D of the combined left- and (hypothetical) right-IC population for distributions with different means.

(E and F) Standard separation D for the rate-ILD functions shown in Figures 7E and 7F.

(G) Mean standard separation D of the population of neurons from the left IC and the hypothetical population of neurons from the right IC (dotted lines) for distri-

butions with different variances. The data in (C) and (G) were smoothed with a 20 dB boxcar function.

(H) Mean standard separation D of the combined left- and (hypothetical) right-IC population for distributions with different variances.

Shaded areas in (D) and (H) represent ± SEM.
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that for each neuron in the left IC, there is one neuron on the right

side that is a mirror-symmetric copy of the former. The black

dotted lines in Figures 7A and 7B are such mirror-symmetric

copies and the green and red dotted lines show how these

neurons would behave when adapted to a distribution with

a mean of �15 dB or +15 dB, respectively. The dotted lines in

Figures 8A and 8B represent the D-ILD functions for these hypo-

thetical neurons. Figure 8C shows the average D-ILD functions

measured in the left IC and, as dotted lines, those corresponding

to the hypothetical right IC, with the combined averages of both

sides of the brain depicted in Figure 8D. The highest coding

precision is found around the midline in the baseline condition,

and shifts to an area centered on ��15 dB or �+15 dB when

adapted to ILD distributions with means of �15 dB or +15 dB,

respectively.

Figures 8E and 8F show D-ILD functions for the two example

rate-ILD functions in Figures 7E and 7F (and as dotted lines for

their hypothetical right-IC counterparts). In one case (Figures

7F and 8F), D increased in a way that matched the slope

changes. However, the other example (Figures 7E and 8E)

exhibited only relatively small increases in D, except in the

lowest-variance condition, because response variability rose

by a similar amount as the slope did. Nevertheless, on average,

D went up as the stimulus variance decreased (Figure 8G),

implying that response variability did not increase by as much

as the rate-ILD function slopes. This therefore confirms that
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the population of IC neurons recorded in this study became

more sensitive to ILDs as the variance of the stimulus distribution

decreased. The combined averages of the two sides illustrate

that the system as a whole exhibits enhanced coding precision

over almost the full range of ILDs tested, but that the largest

increases occur at the midline (Figure 8H).

DISCUSSION

To comprehend how and why sensory systems adapt to the

composition of their environment, we require an understanding

of how changes in input statistics affect both the perception

and neural representation of that environment. With that in

mind we designed a paradigm that allowed us to investigate

how the perception of auditory spatial cues adapts to stimulus

statistics and to characterize the underlying changes in neural

coding.

We found that changing the mean of the ILD distribution

shifted the perceived laterality of a stimulus presented within

the context of that distribution away from the mean. This finding

seems related to what is sometimes described as the ‘‘auditory

localization after-effect,’’ which has been described in the free

field as well as when binaural cues are presented over head-

phones (Carlile et al., 2001; Kashino and Nishida, 1998; Phillips

and Hall, 2005). Although these studies differ in using a single

static stimulus for the adaptor rather than dynamic stimuli whose
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values were chosen from a distribution, and tend to present

adapters for a longer period of time, the perceptual shifts asso-

ciated with changing the position of the adaptor are similar to the

effects we observed when changing the mean of the entire

distribution.

Altering the variance of the stimulus context also affected

perception, with spatial sensitivity increasing as the variance of

the stimulus distribution was decreased. To our knowledge,

this is the first demonstration of how the variance of a dynamic

acoustic signal affects perception.

We found that the responses of IC neurons change in the same

way as the human psychometric functions. Thus, these neurons

show corresponding adjustments in their rate-ILD functions

when the distribution of the binaural spatial cues changes.

In adapting to a change in the mean of the distribution, the

neurons maintain their filter shape and adjust it to the current

distribution’s mean. As a result, and in keeping with the psycho-

physical data, they can respond almost identically to very dif-

ferent ILD values, as long as those stimuli have the same relation-

ship to the mean of the distribution within which they occur.

A change in stimulus variance alters coding strategy in a different

way, with neuronal gain increasing as the variance of the stim-

ulus distribution goes down. This enables the same change in

input to be represented by a larger change in firing rate in

a low-variance environment, which corresponds to the higher

perceptual sensitivity exhibited by human listeners when lateral-

izing stimuli under these conditions.

An important consequence of mean-dependent changes in

stimulus coding is that the neurons are ill equipped to provide

information about the absolute ILD of a stimulus, and therefore

its position in space. This will result in systematic mispercep-

tions, as observed in our psychophysical data. However, the

fact that the area of highest coding precision shifts almost

perfectly with the mean of the distribution may provide an expla-

nation for these effects. Thus, the brain attempts—at the cost

of an ability to judge absolute stimulus position—to maintain

the highest perceptual sensitivity in that area of space where

most of the stimuli occur. For a Gaussian distribution, this area

changes with the mean. Assuming that the mechanisms under-

lying adaptation to static stimuli are related to the mean-depen-

dent changes we see with a dynamic signal, several studies

showing that perceptual sensitivity can improve when adaptor

and target sounds occupy similar azimuthal locations (Getz-

mann, 2004) or have similar binaural cue values (Kashino,

1998; Maier et al., 2009; Sach et al., 2000) seem to support the

notion that spatial sensitivity does indeed shift as a function of

stimulus mean.

The smaller range of stimuli that needs to be encoded in a low-

variance context allows neural gain to be increased, which

improves coding precision and provides a possible basis for

enhancing human ILD sensitivity. The capacity of the auditory

system to adapt to stimulus variance by changes in gain may

also have a cost though, because this should increase the

perceived distance between two stimuli in a low-variance

context and decrease it in a high-variance context and, effec-

tively, stretch and compress auditory space. In a free-field

localization task, such a distortion of auditory space would be

expected to result in a systematic overshooting of absolute loca-
tion judgments (i.e., distance from midline) in a low- relative to

a high-variance context, and systematic undershooting in a

high- compared with a low-variance context.

With the caveat that our study investigated the processing of

just one sound localization cue, the nature of the adjustments

to input statistics that we described suggests that the process-

ing of auditory space is geared toward the representation of rela-

tive positional differences between stimuli, rather than their

absolute positions in space. This resembles the specialization

for relative disparity in the binocular processing of visual depth

(Thomas et al., 2002). Such a coding strategy may also account

for why it has not been possible to find a map of auditory space

within the brain other than at the level of the superior colliculus

(King and Hutchings, 1987; Middlebrooks and Knudsen, 1984)

and its midbrain sources of auditory input (Binns et al., 1992;

Schnupp and King, 1997), where auditory and other sensory

inputs are used to direct orienting responses.

We observed a very close similarity between the effects of

changing the input statistics on human ILD lateralization and

on the responses of neurons recorded in the IC of anesthetized

ferrets. This implies that adaptation to stimulus statistics, which

has previously been described in isolated retinae (Baccus and

Meister, 2002; Chander and Chichilnisky, 2001; Kim and Rieke,

2001; Smirnakis et al., 1997), insects (Brenner et al., 2000;

Fairhall et al., 2001), and both anesthetized (Bonin et al., 2006;

Dean et al., 2005, 2008; Garcia-Lazaro et al., 2007; Kvale and

Schreiner, 2004; Mante et al., 2005; Maravall et al., 2007; Shar-

pee et al., 2006; Wen et al., 2009) and awake (Nagel and Doupe,

2006; Watkins and Barbour, 2008) vertebrates, can occur at

a relatively early stage of processing, and that the associated

changes in perceptual sensitivity can largely be accounted for

without having to invoke higher-level, task-dependent effects.

Given that ILDs represent differences in sound level at the two

ears, any adjustment in level coding in monaural brainstem path-

ways could also influence ILD sensitivity. Consequently, adapta-

tion to sound level occurring as early as the auditory nerve

(Wen et al., 2009) might affect the neural processing and percep-

tion of ILDs. Nevertheless, given recent evidence for corticofugal

modulation of auditory spatial processing (Bajo et al., 2010;

Nakamoto et al., 2008), it could be the case that descending

projections to the IC contribute to the adjustments observed in

the current study.

Candidate mechanisms for adaptation to stimulus statistics

include GABA release from lateral superior olive neurons onto

presynaptic GABAB receptors, which has been shown to induce

shifts in the rate-ILD functions of these neurons and affect their

slopes (Magnusson et al., 2008). In the somatosensory system,

calcium-dependent, slow afterhyperpolarization is associated

with variance-dependent changes in gain (Dı́az-Quesada and

Maravall, 2008), whereas gain adjustment in retinal ganglion cells

is mediated through sodium current modulations (Kim and

Rieke, 2003). Given the speed with which changes in coding

such as those we observed can occur (Baccus and Meister,

2002; Brenner et al., 2000; Fairhall et al., 2001; Nagel and Doupe,

2006), it has been suggested that they may be better accounted

for by fixed nonlinearities rather than by time-dependent alter-

ations in stimulus-response relationships (Borst et al., 2005).

A detailed investigation into the time course of adaptation at
Neuron 66, 937–948, June 24, 2010 ª2010 Elsevier Inc. 945
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both perceptual and neuronal levels should allow us to constrain

these potential mechanisms.

EXPERIMENTAL PROCEDURES

All electrophysiological and psychophysical experiments were carried out in

sound-attenuated chambers (Industrial Acoustics Company, Winchester,

UK), and were approved by the relevant local ethical review committees,

and, in the case of the ferret recording experiments, licensed by the UK

Home Office.

Psychophysics

We tested a total of five human adults (two males, three females), four of whom

were naive to the purpose of the study. Four of these subjects took part in the

mean-adaptation task, and four in the variance-adaptation task. Matlab

(The MathWorks, Natick, MA) was used to control stimulus presentation and

response collection and for data analysis. Stimuli were generated using TDT

System 3 processors (Tucker Davis Technologies, Alachua, FL) and were pre-

sented over headphones (Sennheiser HD25, Wedemark-Wennebostel,

Germany). Subjects responded by button presses on a keyboard.

Electrophysiological Recording

Five adult ferrets were used in this study. Animals were sedated with an i.m.

injection of medetomidine hydrochloride (Domitor; Pfizer Ltd., Walton Oaks,

UK) and, after insertion of an i.v. cannula, maintained under anesthesia with

continuous infusions of Domitor (22 mg/kg/hr) and ketamine hydrochloride

(5 mg/kg/hr, Ketaset; Fort Dodge Animal Health Ltd., Southampton, UK) in

a 0.9% saline solution supplemented with 5% glucose. A single s.c. dose of

0.06 mg/kg/hr atropine sulfate (C-Vet Veterinary Products, Leyland, UK) was

provided, along with 0.5 mg/kg dexamethasone (Dexadreson; Intervet UK

Ltd., Milton Keynes, UK) about every 12 hr, in order to reduce the risk of bron-

chial secretions and cerebral edema, respectively. The animals were intubated

and artificially ventilated with oxygen. End-tidal CO2 and heart rate were moni-

tored and body temperature was maintained at 38�C using a rectal probe

coupled to a heating blanket.

The skull was exposed and a stainless steel bar was attached with screws

and dental cement above the right hemisphere. A craniotomy was made

over the left lateral gyrus, the dura was removed, and silicone oil was applied

to protect the cortical surface. A single-shank silicon probe electrode (Neuro-

nexus Technologies, Ann Arbor, MI) with 16 recording sites spread over

a length of 1.5 mm was lowered through the cortex into the central nucleus

of the IC. The position of the probe was confirmed by inspection of the units’

frequency response areas and by the existence of the characteristic dorsoven-

tral tonotopic gradient. Stimuli were presented through a pair of earphones

(Panasonic, RP-HV298, Bracknell, UK) attached to otoscope speculae that

were inserted into each ear canal.

Neural signals were band-pass filtered (500 Hz – 3 kHz), amplified, and digi-

tized (25 kHz) using TDT System 3 processors. Matlab and BrainWare (Tucker

Davis Technologies) were used to control stimulus presentation and data

acquisition, action potential clusters were extracted in BrainWare, and all

further data analysis was carried out in Matlab.

Stimuli

Stimuli consisted of broadband noise presented at an average binaural level

of 60 dB sound pressure level (SPL). Zero ILD means that the level is equal in

both ears; negative values, that it is higher in the contralateral ear (left ear for

psychophysics). Trials/sweeps were presented in random order and con-

sisted of an adaptation period with dynamically varying ILDs, immediately

followed by a 100 ms long test stimulus with static ILD. During the adaptation

period a new ILD was drawn randomly every 5 ms from one of six Gaussian

distributions. These comprised a baseline distribution with a mean of 0 dB

and an SD of 20 dB, two distributions with shifted means (�15 dB and

+15 dB), and three distributions with reduced variances (SD = 5, 10, and

15 dB).

For psychophysical measurements, we used relatively short, 1 s long adap-

tation periods, in order to minimize the total amount of time required for testing.
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Each participant was tested with a total of seven different static ILDs, chosen

according to individual acuity. Each session consisted of at least 210 trials and

yielded psychometric functions for at least three different distributions (70 trials

per distribution). For each subject, we collected three to eight psychometric

functions per distribution.

For electrophysiological experiments, it was desirable to have longer adap-

tation periods because the initial part of the data from each adaptation period

sequence, equivalent in length to the duration over which the STA was calcu-

lated, had to be discarded. We therefore used 5 s durations. Pilot experiments

indicate that neural and perceptual adaptation to a new distribution is

complete after a few 100 ms, suggesting that this difference in the length of

the adaptation period has no consequences for the results reported here.

Nine values, evenly spread from �40 dB to +40 dB, were chosen for the static

ILDs. For each distribution, 180 sweeps were presented in random order. In 90

of these sweeps, the same sequence was used for the adaptation period

(hereafter referred to as ‘‘repeated sequences’’). In the other 90 sweeps,

each adaptation period consisted of a different sequence (hereafter referred

to as ‘‘unique sequences’’). This was done so that the linear-nonlinear models

could be fitted and tested using different data sets.

Data Analysis

The probit method was used to fit psychometric functions to the data from the

human subjects, from which the perceived midline (ILD value associated with

50% correct responses) and the threshold (difference between 50% and 75%

ILD) were extracted.

Spike sorting was performed offline using an automated k-means clustering

algorithm in BrainWare. Spike clusters that exhibited a clear refractory period

in the autocorrelation histogram were classed as single units, and all others

were classed as multiunit clusters. Separate analyses did not reveal differ-

ences between single units (n = 126) and multiunit clusters (n = 129) in our

data set, and these were therefore combined.

All 255 units analyzed exhibited a monotonic relationship between firing rate

and ILD. The few additional units encountered with nonmonotonic (peaked or

u-shaped) response functions (n = 21) were not included in the data set. The

characteristic frequencies of the neurons ranged over almost six octaves,

but no association could be detected between frequency selectivity and any

of the aspects of mean or variance adaptation that we investigated.

Rate-ILD function refers to the mean spike rate per second as a function of

ILD, measured 5–50 ms after the onset of the static ILDs. Adaptation rate is the

recorded mean spike rate over the adaptation period, averaged across all

adaptation periods of the 90 sweeps with unique sequences. Expected adap-

tation rate (eRate) refers to the firing rate that a neuron is expected to produce

during nonbaseline stimulus distributions under the assumption that it is

entirely dependent on the shape and position of the baseline rate-ILD function.

This was calculated by taking the dot product of the baseline rate-ILD function

(bRIF) and a given stimulus distribution (Dist). The result was normalized by the

dot product of the baseline rate-ILD function and the baseline distribution

(bDist) and scaled by the baseline adaptation rate (bRate) so that it could be

expressed in spikes/s.

eRate =
bRIF � Dist

bRIF � bDist
3 bRate

For this purpose, each distribution, consisting of the stimulus values pre-

sented during the 90 unique adaptation sequences, was expressed as a vector

representing the distribution as a histogram with 1 dB resolution (the histo-

grams in Figures 3A and 3E have a resolution of 2.5 dB). The baseline rate-

ILD functions were, therefore, interpolated at a resolution of 1 dB. Because

the flanks of the distributions went beyond the range of the rate-ILD functions,

these were extended to cover the same range as the distributions by padding

their negative and positive ends with the values obtained for �40 dB and

+40 dB, respectively.

For estimation of the linear-nonlinear models [see Figure S5 and Chichilnisky

(2001), Baccus and Meister (2002), and Simoncelli et al. (2004) for more

detailed descriptions], only data from the unique stimulus sequences were

used. The linear filter represents the time-reversed STA of the mean-sub-

tracted signal. This was computed by summing all stimulus waveforms

preceding a spike and dividing by the total number of spikes. STAs were



Neuron

Adaptive Coding of Auditory Space
calculated over a length of 100 ms after ignoring the first 100 ms of each trial.

Before passing the mean-subtracted stimulus sequences through the filter, the

filter was normalized (Baccus and Meister, 2002; Fairhall et al., 2001) so that

the variance of the stimulus was equal to the variance of the filtered stimulus.

This normalization ensured that an observed change in gain was not due to

a change in filter amplitude. The range of filtered stimulus values was then

divided into 40 bins of even size. By relating the filtered stimulus sequences

to the corresponding spike trains, we computed the average firing rate asso-

ciated with each bin and plotted these firing rates against the bin centers to

produce the input-output function. Bins with fewer than 500 counts were not

included.

To evaluate the model’s accuracy, we predicted responses to the repeated

stimulus sequence. Different data sets were used to fit (data from unique

sequence) and test (data from repeated sequences) the models, in order to

avoid overfitting. The stimulus sequence was passed through the filter, and

the filtered signal was then transformed into firing rates according to the

input-output function. Before calculation of the correlation coefficient between

predicted and recorded responses, the average response to the 90 repeated

stimulus sequences was smoothed with a 5 ms boxcar window. Because

some neurons showed a gradual adjustment in firing rate over the first

500 ms of the sequence, the reported correlation coefficients are based on

calculations that omitted this initial segment, although its inclusion mostly

had relatively little impact on the obtained coefficients. Note also that uncor-

rected response-prediction correlation coefficients can be subject to an

underestimation bias (Petersen et al., 2008); even if the LN model of a unit

was perfect, the noise introduced through finite sampling of the PSTH would

cause the correlation coefficient to be <1.

The P/N ratio was calculated by dividing a filter’s positive area by its negative

area. Filter latency was calculated as the distance between the negative peak

and 0. For this part of the analysis, we used spike trains sampled at 5 kHz

instead of 1 kHz. The gain of the input-output function was calculated as the

average slope of the function, excluding subthreshold and saturation regions

[defined as regions whose slope was less than 5% of the maximum slope

(Nagel and Doupe, 2006)], and was expressed as spikes/s per unit of filtered

signal.

The threshold of each rate-ILD function was defined as the point at which

the firing rate exceeded the unit’s minimum rate by 5% of the unit’s maximum

rate. For this purpose, the functions were interpolated at a resolution of 1 dB

and smoothed with a 20 dB wide boxcar function. The slope of the rate-ILD

functions was measured as the average slope between �20 dB and +20 dB

and was expressed in spikes/s per dB. The standard separation D between

two stimulus values is equal to their difference in firing rate divided by the

geometric mean of their SDs. For Gaussian random variables, D is equal to

the Fisher information, another popular measure of coding precision. In prac-

tice, standard separation and Fisher information also tend to converge on

similar results (Wen et al., 2009). One-way ANOVA was used to test for statis-

tically significant differences between experimental conditions unless vari-

ables were not normally distributed or sample sizes were very small, in which

case the Kruskal-Wallis test was used instead.
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