
Recovering sound sources from embedded repetition
Josh H. McDermotta,1, David Wrobleskib, and Andrew J. Oxenhamb

aCenter for Neural Science, New York University, New York, NY 10003 and bDepartment of Psychology, University of Minnesota, Minneapolis, MN 55455

Edited by Edward Adelson, Massachusetts Institute of Technology, Cambridge, MA, and approved December 1, 2010 (received for review April 8, 2010)

Cocktail parties and other natural auditory environments present
organisms with mixtures of sounds. Segregating individual sound
sources is thought to require prior knowledge of source properties,
yet these presumably cannot be learned unless the sources are
segregated first. Here we show that the auditory system can
bootstrap itsway around this problemby identifying sound sources
as repeating patterns embedded in the acoustic input. Due to the
presenceof competingsounds, source repetition is notexplicit in the
input to the ear, but it produces temporal regularities that listeners
detect and use for segregation.We used a simple generative model
to synthesize novel sounds with naturalistic properties. We found
that such sounds couldbe segregatedand identified if theyoccurred
more than once across different mixtures, even when the same
sounds were impossible to segregate in single mixtures. Sensitivity
to the repetition of sound sources can permit their recovery in the
absence of other segregation cues or prior knowledge of sounds,
and could help solve the cocktail party problem.

auditory scene analysis | cocktail party problem | generative models of
sound | natural sound statistics | sound segregation

Auditory scenes generally contain multiple sources, the sounds
from which add together to produce a mixed signal that

enters the ears. In most behavioral contexts, however, it is the
sources, not the mixture, that are of interest. This is often termed
the “cocktail party problem”—organisms must infer individual
sound sources from ambiguous mixtures of sounds (1–7).
Recovering individual sound sources from an auditory scene

requires assumptions, or priors, about what sources are like (8).
For instance, listeners implicitly assume that frequency compo-
nents that are regularly spaced (9, 10), begin and end simulta-
neously (11), or have similar distributions of binaural spatial cues
(12) belong to the same sound. Listeners also use knowledge of
specific familiar sound classes, filling in masked syllable segments
in ways that are consistent with known speech acoustics (13).
Priors on sounds are thus used by the auditory system and

must somehow be acquired; yet natural environments rarely
feature isolated sound sources from which they could be readily
learned. Organisms face a “chicken and egg” problem—sound
sources must be separated from mixtures for their properties to
be learned, but to separate sources from mixtures, listeners need
to know something about their characteristics to begin with.
It is possible that priors are at least partially built into the

auditory system by evolution, or that listeners can learn them
from occasionally hearing sound sources in isolation. In this
paper we consider an alternate, complementary, solution—that
listeners might detect sources as repeating spectro-temporal
patterns embedded in the acoustic input. Both individual sound
sources and their mixtures produce combinations of acoustic
features, but because mixtures result from multiple independent
sources, the feature configurations that they produce are unlikely
to occur repeatedly with consistency. Repetition is thus a signa-
ture of individual sources. The repetition of a sound source is
generally not explicit in the signal that enters the ear, due to the
corruption of a source’s acoustic signature by other sounds.
However, repeating sources induce temporal regularities in the
mixed auditory input, which we suggest are detected and used by
the auditory system to recover sound sources.
To explore this idea, we studied the conditions under which

listeners could identify novel sound sources that they only ever
heard in mixtures with other sounds. We developed a method to

synthesize novel sounds that shared some of the correlation
structure of natural sounds (14–16) but that lacked strong group-
ing cues, and presented listeners with mixtures of these sounds.
Listeners were generally unable to identify the sounds composing
a single such mixture, but when presented with multiple mixtures
of a particular target sound with various others, they heard the
target repeating acrossmixtures and could reliably identify it. Even
two presentations of the target yielded a significant benefit.
Our results indicate that listeners detect latent repeating

spectro-temporal structure within sound mixtures and from this
can identify individual sound sources. Sound source repetition
thus serves as a powerful cue that can “bootstrap” performance
in situations in which other bottom-up cues and top-down
knowledge are unavailable, and as such may play an important
role in auditory scene analysis.

Results
Generative Model for Sounds. To test whether source repetition
might by itself be sufficient for sound segregation, it was im-
portant both to use novel sounds, so that familiarity would not
enable segregation, and to minimize the presence of bottom-up
grouping cues in our test stimuli. However, we wanted our results
to have real-world relevance, and thus to use stimuli with some
similarity to natural sounds. We met these goals by modeling the
time-frequency decomposition (spectrogram) of a sound as
a Gaussian-distributed random variable with correlations that
resembled those in natural sounds.
We first generated spectrograms for sets of spoken words (Fig.

1A) and animal vocalizations (Fig. 1B). Such spectrograms ge-
nerally share a simple property: the energy at nearby points tends
to be similar (14–16). This is evident when the correlation between
pairs of spectrogram cells is plotted as a function of their time and
frequency offset (Fig. 1 C and D). For both classes of natural
sounds, correlations are high for small offsets and decline with
separation in time or frequency, whereas for noise signals they are
absent. Such results follow from the common finding that natural
modulation spectra (related to correlation functions via the
Fourier transform) peak at low modulation frequencies (14–16)
and thus exhibit correlations over moderate time/frequency scales.
We used correlation functions similar to those of natural

sound sets (Fig. 1 C and D) to generate a covariance matrix, each
element of which was the covariance between two spectrogram
cells. Spectrograms were drawn from the resulting Gaussian
distribution and applied to samples of white noise, yielding novel
sounds (Fig. 1 E and F). Related stimuli result from constraining
the modulation spectrum of noise (16); our spectrogram-domain
method had advantages in implementing our task (SI Materials
and Methods). Although our stimuli shared important statistical
properties of real sounds, they lacked the grouping cues provided
by abrupt temporal onsets and harmonic spectral structure, both
of which are important for sound segregation (1, 2) but which are
not captured by second-order correlations.
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Performance-Based Measure of Sound Segregation. We assessed
sound segregation by presenting mixtures of sounds (Fig. 1G)
followed by a probe sound. Listeners judged whether the probe
hadbeenpresent in themixture(s). Theprobewas either one of the
sounds in the mixture(s), termed the “target” sound, or another
sound with statistics similar to the target (Fig. 1H). In the latter
case, the probewas constrained to be physically consistent with the
mixture (such that—like the target—it never hadmore energy than
themixture). Each target was presented only once per experiment,
so that subjects could not learn the targets from the probes.
Following the probe presentation, subjects selected one of

four responses (“sure no,” “no,” “yes,” or “sure yes”) to indicate
whether they thought the probe was one of the sounds in the
mixture. These responses were used to generate a receiver op-
erating characteristic (ROC) curve. The area beneath the curve

was our performance measure (17); chance and perfect perfor-
mance corresponded to areas of 0.5 and 1, respectively. All of the
effects reported here are evident in the stimulus examples
available at http://www.cns.nyu.edu/∼jhm/source_repetition.

Experiment 1: Sound Segregation with Single Mixtures.We began by
presenting subjects with single mixtures of two sounds (Fig. 1I).
Sound segregation should permit a listener to judge whether
a subsequent probe sound was one of the sounds in the mixture.
However, performance was generally at chance levels, even after
considerable practice [condition 1: t(9) = 0.64, P = 0.54]. Per-
formance remained close to chance when we included a third
sound and made the sounds asynchronous [condition 2: t(9) =
−0.65, P=0.53]. Asynchrony should enhance the bottom-up group-
ing cue provided by onset differences between sources (1, 2, 11);
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Fig. 1. Stimulus generation and results of Experiment 1. (A and B) Time-frequency decomposition of a spoken word and a bullfrog vocalization. (C and D)
Correlation between nearby time-frequency cells as a function of their temporal (C) and spectral (D) separation. (E and F) Two spectrograms generated by our
model. (G) Spectrogram of the mixture of the sounds from E and F. (H) Spectrogram of an incorrect probe sound, generated to be physically consistentwith the
mixture inG. (I) Results and stimulus configurations fromExperiment 1. Line segments represent sounds; sounds presented simultaneously are drawnas vertically
displaced.Distinct sounds are indicatedbydifferent colors. Red segments represent target sounds, andblack segments represent probe sounds. Error bars denote
SEs. The dashed line represents the chance performance level.
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the lack of effect suggests that any onsets in our stimuli were too
weak to support segregation. We also tried presenting the probe
sound before the mixture, so that subjects knew what sound to
listen for, but performance was still not significantly different
from chance [condition 3, synchronous: t(9) = 2.23, P = 0.053;
condition 4, asynchronous: t(9) = 1.8, P = 0.1], although there
was a small effect of hearing the probe first [F(1,9) = 7.33,
P = 0.02].
Thepoor performancewasnot due to an inability to discriminate

different synthetic sounds; the correct and incorrect probe sounds
were easily distinguished when presented in isolation [condition 5:
t(9) = 56.1, P < 10−12]. Moreover, when the target and incorrect
probe sounds for a particular mixture were each mixed with the
same unrelated second sound, the resulting mixtures themselves
were discriminable [condition 6: t(9) = 12.5, P < 10−6]. Thus,
chance performance in the sound segregation task was not due to
limits on encoding of the mixtures (as it would be if the stimulus
differences needed to performour taskwere completelymasked by
theother sound in themixture).Rather, performancewasevidently
limited by the inability to segregate the mixture into two sounds.
The subjective experience of listening to the mixtures was consis-
tentwith this conclusion.Themixtures usually sounded like a single
sound that was qualitatively different from the target sound.
These results indicate that our stimuli met our principal objec-

tives. Despite having some naturalistic structure, they lacked the
grouping cues needed to segregate them from a mixture. This
made them well suited to our primary goal of testing whether
sound structure could be extracted from multiple occurrences of
a target sound.

Experiment 2: Sound Segregation with Multiple Mixtures. To test
whether listeners could benefit from sound source repetition across
mixtures, we presented target sounds repeatedly, each time mixed
with a different “distractor” sound. Despite the difficulty of segre-
gating single mixtures, a target presented more than once in suc-
cession was usually heard repeating through the mixtures, and
listeners rapidly developed an impression of it. In Experiment 2a we
quantified this benefit, varying the number of mixtures and measur-
ing howwell subjects could discriminate correct from incorrect target
probes. Performancewas again at chance levels with a singlemixture,
but improved as subjects heard more mixtures (Fig. 2A). Perfor-
mancewas significantly improvedevenwith twomixtures [t(9)=3.66,
P= 0.005] and appeared to asymptote with about five mixtures.
To rule out the possibility that the improvement with multiple

mixtures was due merely to repeated exposure to the target, in
Experiment 2b we held the number of mixtures constant at 10,

but varied how many different mixtures occurred in the se-
quence. In the single-mixture condition, subjects heard the same
mixture 10 times. The 10-mixture condition was the same as in
Experiment 2a. The other conditions repeatedly presented two,
three, or five mixtures in a fixed order over the course of the
sequence, with each mixture containing the target sound.
Performance again steadily increased with the number of

different mixtures (Fig. 2B), even though the target was always
presented the same number of times. The ability to hear the
target sound thus appears to depend on the number of different
mixtures that a listener hears, not on the total number of target
presentations. An ANOVA comparing the two experiments
showed a main effect of the number of different mixtures
[F(4,36) = 115.35, P < 0.0001], but no effect of experiment type
[F(1,9) = 0.73; P = 0.42] and no interaction [F(4,36) = 0.59,
P = 0.67]. See SI Results for additional controls.
As with the single mixtures of Experiment 1, the sounds

composing the single repeated mixtures tended to blend together
and rarely bore close resemblance to the target sound. This is
consistent with the idea that listeners detect repeating sound
structure and attribute it to individual sources; when the same
mixture repeats, it is heard as a source, and the target structure is
no more apparent than when it is heard only once.

Experiment 3a: Asynchronous Mixtures. Experiment 2 featured
synchronously presented sounds, but distinct sources in real-
world scenes are generally asynchronous. Experiment 3a con-
firmed that the benefit of multiple distinct mixtures persisted
when the target and distractors were temporally offset to better
resemble natural conditions (Fig. 3A, Left, condition 1 vs. condi-
tion 2). As before, a single repeated mixture yielded near-chance
performance, but presenting different mixtures in succession en-
abled discrimination of the target sound [F(1,7) = 116.87, P <
0.0001]. The effect of multiple mixtures in this case swamps that
of any grouping cue provided by the asynchrony (consistent with
the weak onsets in our sounds), and is not specific to synchro-
nously presented sounds.
The effect was also evident when the target sound was pre-

sented with every other distractor in a sequence (Fig. 3A, Right,
conditions 3–5). When the distractors that co-occurred with the
target varied (condition 3), performance was well above chance,
even though the distractors that alternated with the target re-
peated (P = 0.004, sign test). But when the distractor sequence
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Fig. 2. Effect of multiple mixtures on sound source recovery. (A) Different
numbers of mixtures were presented. (B) Ten mixtures were presented in all
conditions, and thenumberofdifferentmixtureswas varied. Conventionshere
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was phase-shifted by a target length, so that the repeating dis-
tractors co-occurred with the target (condition 4), the target was
generally unidentifiable. When every distractor repeated (con-
dition 5), performance tended to be intermediate between the
other two conditions (significantly worse than the variable con-
dition and better than the repeated condition, P = 0.008 and
0.06, respectively, sign test; also better than condition 1, Exper-
iment 2b, P = 0.06). This configuration is reminiscent of some
used in studies of pure tone streaming (18). In this condition, the
repetition of the distractor may compete with that of the mixture.

Experiment 3b: Spectrotemporal Structure and Irregular Presen-
tation. To test whether listeners extracted the temporal structure
of sounds in addition to their spectral content, inExperiment 3bwe
presented variable mixtures but used a time-reversed version of
the target sound for the incorrect probe (that thus had the same
power spectrum as the target but differed in temporal structure).
As shown in Fig. 3B, performance remained high when dis-
tinguishing between the correct and the time-reversed probes,
although there was a slight advantage with our standard incorrect
probes [F(2,18) = 4.03, P = 0.04]. Listeners thus derived a spec-
trotemporal profile for the target sound and did notmerely encode
the average spectrum of the mixture sequence. Performance also
remained high when the targets were presented at irregular tem-
poral intervals (Fig. 3B), indicating that periodically occurring
acoustic structure was not necessary for the effect (P < 0.0001 for
both conditions, two-tailed t test).

Experiment 4: Temporal Integration. If the benefit of multiple mix-
tures on sound segregation reflects the extraction of repeating
structure from the auditory input, it should be constrained by the
short-term storage capacity of the auditory system; to recognize
that a structure repeats, the input must be stored over the repeti-
tion time. We examined the effect of target spacing on subjects’
ability to extract the target from a mixture sequence, holding the
number of target presentations fixed at six but varying how fre-
quently the targets occurred (Fig. 4). Performance was unaffected
by short delays but declined steadily thereafter [F(4,24) = 22.98,
P < 0.0001]. The results are consistent with an integration process

that tracks acoustic structure using an auditory memory buffer,
although they leave open the question of whether time delays or
the intervening acoustic input are driving the effect. Either way, it
appears that when the storage capacity of the integration process is
exceeded, repetition becomes difficult to track.

Computational Schemes for Extracting Embedded Repetition. It is
easy to envision simple computational schemes in which the
structure of a repeating source could be extracted from mixtures.
As a proof of concept, Fig. 5 illustrates one such approach.A target
estimate is initialized to the first segment of the mixture sequence
and over time is refined through an averaging process that is time-
locked to peaks in the cross-correlation of the target estimate and
the spectrogram (SI Methods). The correlation peaks reveal the
delay at which the signal contains the target, and the averaging
(taking the pointwiseminimumof the previous target estimate and
the current spectrogram segment) combines information across
mixtures. Although the estimation process is constrained by the
averaging window (SI Methods), it does not require knowledge of
the target duration, repetition pattern, or other characteristics.
Fig. 5 shows a spectrogram of a sequence of mixtures of

a target sound with various others (A), followed by spectrograms
of a sequence of target estimates derived for this mixture se-
quence (B), graphs showing the cross-correlation between each
successive target estimate and the next 700-ms block of the
spectrogram (C), and a spectrogram of the true target (D). The
correlation peaks occur at the onset of the target in the mixture,
and the estimation process converges on the true target after
several iterations (see also SI Results, Experiment 6).

Discussion
The recovery of individual sound sources from mixtures of multi-
ple sounds is a central challengeof hearing.Our results suggest one
solution: a sound source can be recovered if it occurs more than
once and is not always mixed with the same other sounds. This is
true even in cases where other grouping cues are impoverished to
the point that a single instance of the source is unsegmentable. The
auditory system evidently detects repeating spectro-temporal
structure embedded in mixtures, and interprets this structure as
a sound source. Repetition of sound sources is not explicit in the
input to the ear, because the source waveform is generally cor-
rupted at each presentation by other sounds. Source repetition can
nonetheless be detected by integrating information over time.
Listeners in our experiments were able to form detailed impres-
sions of sound sources that they only ever heard in mixtures, and
thus were able to recover this latent structure.
Source repetition can be viewed as another acoustic grouping

cue, but it is distinct from other cues in one important respect—
its use does not require prior knowledge of sound characteristics.
Other grouping cues are rooted in particular properties of natural
sounds, be they statistical regularities that hold for broad sets of
sounds (e.g., the “bottom-up” cues of common onset or harmon-
icity) or attributes specific to individual sounds or sound classes
(e.g., the “top-down” cues of speech acoustics). Such properties
serve as cues because they characterize the particular sorts of
sounds found in the world. Knowledge of these sound properties
thus must first be internalized by the auditory system from the
environment, either over the course of evolution or by learning
during an organism’s development. Repetition, in contrast, re-
quires only the assumption that sound sources maintain some
consistency over time. Our finding that repetition alone can support
segregation suggests that it can bootstrap the auditory system in
situations where characteristics of sound sources are not yet known,
be it early in development or in unfamiliar auditory environments.
The practical utility of this phenomenon for sound segregation

obviously depends on the presence of repeating sounds. Not all
sounds occur repetitively, but repetition is nonetheless common
to natural auditory environments. Examples include the sounds
of rhythmic motor behaviors (e.g., walking, running, scratching,
clapping) and repetitive physical processes (e.g., branches
swaying, water trickling). It is also striking that many animal
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vocalizations consist of repetitions of a single call (19), and as
such would benefit from repetition-based segregation. Although
the targets in our experiments repeated exactly, we found in-
formally that moderate variation in the exemplars had little
effect on the ability to hear the target repeating. This is not
surprising from a computational standpoint; if the repeating
sounds produce a peak in the correlation function, as they will
when their variation is not excessive, then an algorithm like that
of Fig. 5 will recover their central tendency. “Fingerprinting”
techniques for detecting repeating patterns (20) are an alterna-
tive model for repetition detection, and these are particularly
tolerant of variability. It thus seems likely that source repetition
could play an important role in everyday hearing.
The effect of repetition can be viewed as an extension of

Bregman’s “old-plus-new” idea (1), whereby frequencies added to
a spectrum are segregated from those that are continuously
present. Our effects involve continuity only at an abstract level,
because our stimuli had dynamic spectra and were often separated
by short gaps (Figs. 3 and 4). Our results thus implicate a mecha-
nism that can extract dynamic spectrotemporal structure (e.g., as
in Fig. 5) distinct from the spectral subtraction mechanisms often
posited (1). The upshot of this is that repetition can drive the
segregation of complex, quasi-realistic sounds from mixtures.
The effects described in this paper are examples of “streaming”

(1, 18, 21, 22), in that the repeating targets segregate from the dis-
tractors over time. Perhaps because we presented temporally
overlapping sounds, our effects differ in some respects from the
well-known case of alternating tones that segregate when repeated.
We found that sounds segregated only when one of the sounds
varied, not when both were repeated. Our findings bear a closer
resemblance to the classic finding that repeating tones are easier to
detect when accompanying masker tones vary from one presen-
tation to the next (23–25). Those effects are conceptually similar to
ours, but the acoustics are considerably different, as are the con-
ditions under which the effects hold. For instance, the tone effects
depend on spectral separation between the target tone and the
masker, perhaps relying on spectral separation as a bottom-up

segregation cue, and are adversely affected by even brief gaps be-
tween tones (25). These differences from our phenomena raise the
possibility of distinct mechanisms; the tone effects seem closely re-
lated to Bregman’s old-plus-new phenomena, and could have
a similar explanation. There is also some conceptual similarity be-
tween our results and demonstrations that infants and adults can
learn repeating patterns in streams of phonemes (26). This latter
case seems likely to represent a distinct phenomenon, given that the
patterns are acquired over longer time scales and usually are not
consciously accessible.
Our studyhighlights theexperimental use of generativemodelsof

sound. Studies of the cocktail party problem have traditionally used
unnatural synthetic stimuli (9, 27, 28) or familiar real-world sounds
such as speech (3, 10, 12, 29). Generative models have the advan-
tage of producing novel stimuli that lack the confounding effects of
familiarity but that share properties of natural sounds. The statistics
captured by ourmodel are but a small subset of those characterizing
the full distributionofnatural sounds, but theynonethelesshave two
important consequences. First, stimuli with naturalistic modulation
are sparse in the time-frequency domain, and thus they do not
uniformly mask one another (8). Detection of repetition likely
requires some degree of sparsity in the sensory input, because
otherwise there would be little to gain from hearing sounds in
multiple mixtures; most sounds would mask one another over most
of their extent. Second, natural statistics allowed the generation of
many stimuli that did not all sound the same. Presumably because
the auditory system is tuned to the properties of natural sounds (30–
33), in this case spectro-temporal modulation (34), naturalistic
stimuli are better discriminated than unnatural stimuli (35). Dif-
ferent samples of white noise, for instance, soundmuch less distinct
than do different samples from ourmodel, which likely wouldmake
the task of discriminating targets prohibitively difficult.
Consistent with these notions, pilot experiments with alterna-

tive correlation functions indicated that the phenomena do not
depend sensitively on their exact shape, but that large deviations
from natural correlations do render the stimuli less discriminable
and less sparse, to the point that the task becomes impossible. For
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instance, we found that the task could not be performed when the
stimuli were different samples of white noise. Although repetition
of individual samples of white noise is sometimes noticeable (36,
37), their perceptual similarity and spectrotemporal uniformity
apparently precludes thiswhen samples are embedded inmixtures.
It thus was important to use a naturalistic soundmodel. Sparsity is
likely crucial to the phenomenon, and the discriminability of nat-
ural stimuli facilitated the experimental task.
The utility of source repetition could extend to vision and ol-

faction, which also confront scene analysis problems. Organisms
receivemultiple overlapping objects or odors as sensory input, and
repetitionmight enable the recovery of individual objects or odors
without prior knowledge of their characteristics. The problems are
not analogous in all of their details (e.g., odors are not defined by
their temporal structure, and visual objects do not combine line-
arly when forming an image, due to occlusion; ref. 7), but the same
general principle may apply: a particular mixture of sources
(objects or odors) is unlikely to occur repeatedly, such that re-
peating patterns in the input are diagnostic of single sources.
Repeating patterns should induce input correlations that could
guide temporal integration and reveal single objects or odors, just
as we found with sound.
The cocktail party problem has been believed to be solved via

the combination of grouping cues derived from statistical regu-
larities of natural sounds, and knowledge of specific sounds or
sound classes. Using a simple generative model to produce novel
sounds, we found that sound source repetition provides a third
source of information with which to parse sound mixtures, one
that the auditory system can use even when other segregation cues
are unavailable, and which could perhaps be used to learn other
grouping cues. The auditory system seems attuned to repetition,
and can use it to succeed in conditions that would otherwise be
insurmountable.

Materials and Methods
Sound analysis and synthesis used spectrograms specifying the logarithm of
the rms amplitude in a set of time-frequency windows. Spectrograms were
generated by first passing a signal through an auditory filter bank, then
passing each filter output through a set of time windows. The rms level of the
windowed signal yielded the value of a spectrogram cell. Adjacent filters and
time windows overlapped by 50%.

Correlations between pairs of spectrogram cells were measured for the initial
500-ms segment of each natural sound. These correlations were averaged across
pairs of cellswith the sametimeor frequencyoffset to yield temporal and spectral
correlation functions for each stimulus set, as displayed in Fig. 1 C and D.

Synthetic stimuli with similar correlations were created by modeling the
spectrogram as a multivariate Gaussian variable, specified by a mean spec-
trogram, and a covariance matrix containing the covariance between every
pair of spectrogram cells. The mean of each spectrogram cell was set pro-
portional to the corresponding filter bandwidth. The covariance matrix was
generated from exponentially decaying correlation functions that approxi-
mated the shape of correlation functions for natural sounds. For each pair of
cells, the covariance was the product of the corresponding temporal and
spectral correlations and a constant variance.

To generate sounds, a time-frequency decomposition was generated for
a sample of white noise. The signal in each window was scaled to set its log-
amplitude to that of the corresponding cell in a spectrogram sampled from our
generatingdistribution.Theresultswerepassedthroughthefilterbankagain(as
in otheranalysis and synthesis decompositions; ref. 38) and summedtogenerate
a sound signal. Because adjacent filters and timewindows overlapped and thus
interfered with each other when amplitudes were altered, the spectrogram of
the resulting sound generally differed from the sampled spectrogram from
which the sound was generated. However, these differences were subtle, and
the intended correlation structure remained present in the sounds, as can be
seen in the correlations measured in the synthetic sounds (Fig. 1 C and D).

Methods are described in more detail in SI Methods.
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