[P2 evaluation] Articles

Choisir deux articles dans la liste, provenant de deux intervenants différents (indiqués par leurs initiales). Les articles de BPC ne peuvent être choisis qu'à l'écrit.


BPC1: Nat Neurosci. 2001 May;4(5):540-5.

Musical syntax is processed in Broca's area: an MEG study.

Maess B, Koelsch S, Gunter TC, Friederici AD.

The present experiment was designed to localize the neural substrates that process music-syntactic incongruities, using magnetoencephalography (MEG). Electrically, such processing has been proposed to be indicated by early right-anterior negativity (ERAN), which is elicited by harmonically inappropriate chords occurring within a major-minor tonal context. In the present experiment, such chords elicited an early effect, taken as the magnetic equivalent of the ERAN (termed mERAN). The source of mERAN activity was localized in Broca's area and its right-hemisphere homologue, areas involved in syntactic analysis during auditory language comprehension. We find that these areas are also responsible for an analysis of incoming harmonic sequences, indicating that these regions process syntactic information that is less language-specific than previously believed.


BPC2: Psychophysiology. 2002 Jan;39(1):38-48.

Music matters: preattentive musicality of the human brain.

Koelsch S, Schroger E, Gunter TC.

During listening to a musical piece, unexpected harmonies may evoke brain responses that are reflected electrically as an early right anterior negativity (ERAN) and a late frontal negativity (N5). In the present study we demonstrate that these components of the event-related potential can be evoked preattentively, that is, even when a musical stimulus is ignored. Both ERAN and N5 differed in amplitude as a function of music-theoretical principles. Participants had no special musical expertise; results thus provide evidence for an automatic processing of musical information in nonmusicians.


BPC3: J Neurosci. 2011 Mar 9;31(10):3843-52.

Functional anatomy of language and music perception: temporal and structural factors investigated using functional magnetic resonance imaging.

Rogalsky C, Rong F, Saberi K, Hickok G.

Language and music exhibit similar acoustic and structural properties, and both appear to be uniquely human. Several recent studies suggest that speech and music perception recruit shared computational systems, and a common substrate in Broca's area for hierarchical processing has recently been proposed. However, this claim has not been tested by directly comparing the spatial distribution of activations to speech and music processing within subjects. In the present study, participants listened to sentences, scrambled sentences, and novel melodies. As expected, large swaths of activation for both sentences and melodies were found bilaterally in the superior temporal lobe, overlapping in portions of auditory cortex. However, substantial nonoverlap was also found: sentences elicited more ventrolateral activation, whereas the melodies elicited a more dorsomedial pattern, extending into the parietal lobe. Multivariate pattern classification analyses indicate that even within the regions of blood oxygenation level-dependent response overlap, speech and music elicit distinguishable patterns of activation. Regions involved in processing hierarchical aspects of sentence perception were identified by contrasting sentences with scrambled sentences, revealing a bilateral temporal lobe network. Music perception showed no overlap whatsoever with this network. Broca's area was not robustly activated by any stimulus type. Overall, these findings suggest that basic hierarchical processing for music and speech recruits distinct cortical networks, neither of which involves Broca's area. We suggest that previous claims are based on data from tasks that tap higher-order cognitive processes, such as working memory and/or cognitive control, which can operate in both speech and music domains.


BPC4: J Exp Psychol Hum Percept Perform. 1982 Feb;8(1):24-36

Perceived harmonic structure of chords in three related musical keys.

Krumhansl CL, Bharucha JJ, Kessler EJ.

This study investigated the perceived harmonic relationships between the chords that belong to three closely related musical keys: a major key, the major key built on its dominant, and the relative minor key. Multidimensional scaling and hierarchical clustering techniques applied to judgments of two-chord progressions showed a central core consisting of those chords that play primary harmonic functions in the three keys. Th& separation of chords unique to the keys and the multiple functions of chords shared by the different keys were simultaneously represented. A regular pattern of asymmetries was also found that suggests a hierarchy among different types of chords. In addition, there was a preference for sequences ending on chords central to the prevailing tonality. Comparison with earlier results on single tones points to differences between melodic and harmonic organization.


BPC5: Science. 1995 Oct 13;270(5234):305-7.

Increased cortical representation of the fingers of the left hand in string players.

Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E.

Magnetic source imaging revealed that the cortical representation of the digits of the left hand of string players was larger than that in controls. The effect was smallest for the left thumb, and no such differences were observed for the representations of the right hand digits. The amount of cortical reorganization in the representation of the fingering digits was correlated with the age at which the person had begun to play. These results suggest that the representation of different parts of the body in the primary somatosensory cortex of humans depends on use and changes to conform to the current needs and experiences of the individual.


BPC6: Percept Psychophys. 1987 Jun;41(6):519-24.

Priming of chords: spreading activation or overlapping frequency spectra?

Bharucha JJ, Stoeckig K.

A chord generates expectancies for related chords to follow, Expectancies can be studied by measuring the time to discriminate between a target chord and a mistuned foil as a function of the target's relatedness to a preceding prime chord. This priming paradigm has been employed to demonstrate that related targets are processed more quickly and are perceived to be more consonant than are unrelated targets (Bharucha & Stoeckig, 1986). The priming experiments in the present paper were designed to determine whether expectancies are generated at a cognitive level, by activation spreading through a network that represents harmonic relationships, or solely at a sensory level, by the activation offrequency-specific units. In Experiment 1, prime-target pairs shared no component tones, but related pairs had overlapping frequency spectra. In Experiment 2, all overlapping frequency components were eliminated. Priming was equally strong in both experiments. We conclude that frequency-specific repetition priming cannot account for expectancies in harmony, suggesting that activation spreads at a cognitive level of representation.


BPC7: Brain. 2002 Feb;125(Pt 2):238-51.

Congenital amusia: a group study of adults afflicted with a music-specific disorder.

Ayotte J, Peretz I, Hyde K.

The condition of congenital amusia, commonly known as tone-deafness, has been described for more than a century, but has received little empirical attention. In the present study, a research effort has been made to document in detail the behavioural manifestations of congenital amusia. A group of 11 adults, fitting stringent criteria of musical disabilities, were examined in a series of tests originally designed to assess the presence and specificity of musical disorders in brain-damaged patients. The results show that congenital amusia is related to severe deficiencies in processing pitch variations. The deficit extends to impairments in music memory and recognition as well as in singing and the ability to tap in time to music. Interestingly, the disorder appears specific to the musical domain. Congenital amusical individuals process and recognize speech, including speech prosody, common environmental sounds and human voices, as well as control subjects. Thus, the present study convincingly demonstrates the existence of congenital amusia as a new class of learning disabilities that affect musical abilities.


CL1: J Acoust Soc Am. 2008 Dec;124(6):3841-9

Age-related differences in the temporal modulation transfer function with pure-tone carriers.

He NJ, Mills JH, Ahlstrom JB, Dubno JR.

Detection of amplitude modulation (AM) in 500 and 4000 Hz tonal carriers was measured as a function of modulation frequency from younger and older adults with normal hearing through 4000 Hz. The modulation frequency above which sensitivity to AM increased ("transition frequency") was similar for both groups. Temporal modulation transfer function shapes showed significant age-related differences. For younger subjects, AM detection thresholds were generally constant for low modulation frequencies. For a higher carrier frequency, AM detection thresholds then increased as modulation frequency further increased until the transition frequency. In contrast, AM detection for older subjects continuously increased with increasing modulation frequency, indicating an age-related decline in temporal resolution for faster envelope fluctuations. Significant age-related differences were observed whenever AM detection was dependent on temporal cues. For modulation frequencies above the transition frequency, age-related differences were larger for the lower frequency carrier (where both temporal and spectral cues were available) than for the higher frequency carrier (where AM detection was primarily dependent on spectral cues). These results are consistent with a general age-related decline in the synchronization of neural responses to both the carrier waveform and envelope fluctuation.


CL2: J Acoust Soc Am. 2014 Jan;135(1):342-51.

The effects of age and hearing loss on interaural phase difference discrimination.

King A, Hopkins K, Plack CJ

The discrimination of interaural phase differences (IPDs) requires accurate binaural temporal processing and has been used as a measure of sensitivity to temporal envelope and temporal fine structure (TFS). Previous studies found that TFS-IPD discrimination declined with age and with sensorineural hearing loss (SNHL), but age and SNHL have often been confounded. The aim of this study was to determine the independent contributions of age and SNHL to TFS and envelope IPD discrimination by using a sample of adults with a wide range of ages and SNHL. A two-interval, two-alternative forced-choice procedure was used to measure IPD discrimination thresholds for 20-Hz amplitude-modulated tones with carrier frequencies of 250 or 500 Hz when the IPD was in either the stimulus envelope or TFS. There were positive correlations between absolute thresholds and TFS-IPD thresholds, but not envelope-IPD thresholds, when age was accounted for. This supports the idea that SNHL affects TFS processing independently to age. Age was positively correlated with envelope-IPD thresholds at both carrier frequencies and TFS-IPD thresholds at 500 Hz, when absolute thresholds were accounted for. These results suggest that age negatively affects the binaural processing of envelope and TFS at some frequencies independently of SNHL.


CL3: J Assoc Res Otolaryngol. 2013 Oct;14(5):757-66.

Subcortical neural synchrony and absolute thresholds predict frequency discrimination independently.

Marmel F, Linley D, Carlyon RP, Gockel HE, Hopkins K, Plack CJ.

The neural mechanisms of pitch coding have been debated for more than a century. The two main mechanisms are coding based on the profiles of neural firing rates across auditory nerve fibers with different characteristic frequencies (place-rate coding), and coding based on the phase-locked temporal pattern of neural firing (temporal coding). Phase locking precision can be partly assessed by recording the frequency-following response (FFR), a scalp-recorded electrophysiological response that reflects synchronous activity in subcortical neurons. Although features of the FFR have been widely used as indices of pitch coding acuity, only a handful of studies have directly investigated the relation between the FFR and behavioral pitch judgments. Furthermore, the contribution of degraded neural synchrony (as indexed by the FFR) to the pitch perception impairments of older listeners and those with hearing loss is not well known. Here, the relation between the FFR and pure-tone frequency discrimination was investigated in listeners with a wide range of ages and absolute thresholds, to assess the respective contributions of subcortical neural synchrony and other age-related and hearing loss-related mechanisms to frequency discrimination performance. FFR measures of neural synchrony and absolute thresholds independently contributed to frequency discrimination performance. Age alone, i.e., once the effect of subcortical neural synchrony measures or absolute thresholds had been partialed out, did not contribute to frequency discrimination. Overall, the results suggest that frequency discrimination of pure tones may depend both on phase locking precision and on separate mechanisms affected in hearing loss.


CL4: Trends Hear. 2014 Sep 9;18. pii: 2331216514550621

Perceptual consequences of "hidden" hearing loss.

Plack CJ, Barker D, Prendergast G

Dramatic results from recent animal experiments show that noise exposure can cause a selective loss of high-threshold auditory nerve fibers without affecting absolute sensitivity permanently. This cochlear neuropathy has been described as hidden hearing loss, as it is not thought to be detectable using standard measures of audiometric threshold. It is possible that hidden hearing loss is a common condition in humans and may underlie some of the perceptual deficits experienced by people with clinically normal hearing. There is some evidence that a history of noise exposure is associated with difficulties in speech discrimination and temporal processing, even in the absence of any audiometric loss. There is also evidence that the tinnitus experienced by listeners with clinically normal hearing is associated with cochlear neuropathy, as measured using Wave I of the auditory brainstem response. To date, however, there has been no direct link made between noise exposure, cochlear neuropathy, and perceptual difficulties. Animal experiments also reveal that the aging process itself, in the absence of significant noise exposure, is associated with loss of auditory nerve fibers. Evidence from human temporal bone studies and auditory brainstem response measures suggests that this form of hidden loss is common in humans and may have perceptual consequences, in particular, regarding the coding of the temporal aspects of sounds. Hidden hearing loss is potentially a major health issue, and investigations are ongoing to identify the causes and consequences of this troubling condition.


CL5: Hear Res. 2014 Nov;317:50-62.

Amplitude-modulation detection by recreational-noise-exposed humans with near-normal hearing thresholds and its medium-term progression.

Stone MA, Moore BC.

Noise exposure can affect the functioning of cochlear inner and outer hair cells (IHC/OHC), leading to multiple perceptual changes. This work explored possible changes in detection of amplitude modulation (AM) at three Sensation Levels (SL) for carrier frequencies of 3, 4 and 6 kHz. There were two groups of participants, aged 19 to 24 (Young) and 26 to 35 (Older) years. All had near-normal audiometric thresholds. Participants self-assessed exposure to high-level noise in recreational settings. Each group was sub-grouped into low-noise (LN) or high-noise (HN) exposure. AM detection thresholds were worse for the HN than for the LN sub-group at the lowest SL, for the males only of the Young group and for both genders for the Older group, despite no significant difference in absolute threshold at 3 and 4 kHz between sub-groups. AM detection at the lowest SL, at both 3 and 4 kHz, generally improved with increasing age and increasing absolute threshold, consistent with a recruitment-like process. However, poorer AM detection was correlated with increasing exposure at 3 kHz in the Older group. It is suggested that high-level noise exposure produces both IHC- and OHC-related damage, the balance between the two varying across frequency. However, the use of AM detection offers poor sensitivity as a measure of the effects.


CL6: Int J Audiol. 2007 Jan;46(1):39-46.

Ten(HL)-test results and psychophysical tuning curves for subjects with auditory neuropathy.

Vinay, Moore BC

Auditory neuropathy is a hearing disorder characterized by abnormal or absent auditory brainstem responses, and the presence of otoacoustic emissions and/or cochlear microphonics, indicating normal functioning of the outer hair cells. Here, subjects with auditory neuropathy, with near-normal hearing to moderate hearing loss, were tested using the TEN(HL) test for diagnosis of dead regions and also using psychophysical tuning curves (PTCs). Results for the majority of subjects met the TEN(HL)-test criteria at one or more frequencies (often at several or all frequencies). However, the PTCs did not show shifted tips. Hence, the positive results of the TEN(HL) test should not be interpreted as indicating the presence of dead regions. Rather, it appears that high thresholds in noise are caused by poor processing efficiency, perhaps associated with loss of neural synchrony.


DP1: J Acoust Soc Am. 2010 May;127(5):3026-37.

Stimulus uncertainty and insensitivity to pitch-change direction.

Mathias SR, Micheyl C, Bailey PJ.

n a series of experiments, Semal and Demany [(2006). J. Acoust. Soc. Am. 120, 3907-3915] demonstrated that some normally hearing listeners are unable to determine the direction of small but detectable differences in frequency between pure tones. Unlike studies demonstrating similar effects in patients with brain damage, the authors used stimuli in which the standard frequency of the tones was highly uncertain (roved) over trials. In Experiment 1, listeners were identified as insensitive to the direction of pitch changes using stimuli with frequency roving. When listeners were retested using stimuli without roving in Experiment 2, impairments in pitch-direction identification were generally much less profound. In Experiment 3, frequency-roving range had a systematic effect on listeners' thresholds, and impairments in pitch-direction identification tended to occur only when the roving range was widest. In Experiment 4, the influence of frequency roving was similar for continuous frequency changes as for discrete changes. Possible explanations for the influence of roving on listeners' insensitivity to pitch-change direction are discussed.


DP2: J Acoust Soc Am. 2014 Dec;136(6):3350.

Computational speech segregation based on an auditory-inspired modulation analysis.

May T, Dau T.

A monaural speech segregation system is presented that estimates the ideal binary mask from noisy speech based on the supervised learning of amplitude modulation spectrogram (AMS) features. Instead of using linearly scaled modulation filters with constant absolute bandwidth, an auditory-inspired modulation filterbank with logarithmically scaled filters is employed. To reduce the dependency of the AMS features on the overall background noise level, a feature normalization stage is applied. In addition, a spectro-temporal integration stage is incorporated in order to exploit the context information about speech activity present in neighboring time-frequency units. In order to evaluate the generalization performance of the system to unseen acoustic conditions, the speech segregation system is trained with a limited set of low signal-to-noise ratio (SNR) conditions, but tested over a wide range of SNRs up to 20 dB. A systematic evaluation of the system demonstrates that auditory-inspired modulation processing can substantially improve the mask estimation accuracy in the presence of stationary and fluctuating interferers.


DP3: J Acoust Soc Am. 2003 Sep;114(3):1543-9.

Informational masking and musical training.

Oxenham AJ, Fligor BJ, Mason CR, Kidd G Jr.

The relationship between musical training and informational masking was studied for 24 young adult listeners with normal hearing. The listeners were divided into two groups based on musical training. In one group, the listeners had little or no musical training; the other group was comprised of highly trained, currently active musicians. The hypothesis was that musicians may be less susceptible to informational masking, which is thought to reflect central, rather than peripheral, limitations on the processing of sound. Masked thresholds were measured in two conditions, similar to those used by Kidd et al. [J. Acoust. Soc. Am. 95, 3475-3480 (1994)]. In both conditions the signal was comprised of a series of repeated tone bursts at 1 kHz. The masker was comprised of a series of multitone bursts, gated with the signal. In one condition the frequencies of the masker were selected randomly for each burst; in the other condition the masker frequencies were selected randomly for the first burst of each interval and then remained constant throughout the interval. The difference in thresholds between the two conditions was taken as a measure of informational masking. Frequency selectivity, using the notched-noise method, was also estimated in the two groups. The results showed no difference in frequency selectivity between the two groups, but showed a large and significant difference in the amount of informational masking between musically trained and untrained listeners. This informational masking task, which requires no knowledge specific to musical training (such as note or interval names) and is generally not susceptible to systematic short- or medium-term training effects, may provide a basis for further studies of analytic listening abilities in different populations.


DP4: J Cogn Neurosci. 2009 Aug;21(8):1488-98.

Concurrent sound segregation is enhanced in musicians.

Zendel BR, Alain C.

The ability to segregate simultaneously occurring sounds is fundamental to auditory perception. Many studies have shown that musicians have enhanced auditory perceptual abilities; however, the impact of musical expertise on segregating concurrently occurring sounds is unknown. Therefore, we examined whether long-term musical training can improve listeners' ability to segregate sounds that occur simultaneously. Participants were presented with complex sounds that had either all harmonics in tune or the second harmonic mistuned by 1%, 2%, 4%, 8%, or 16% of its original value. The likelihood of hearing two sounds simultaneously increased with mistuning, and this effect was greater in musicians than nonmusicians. The segregation of the mistuned harmonic from the harmonic series was paralleled by an object-related negativity that was larger and peaked earlier in musicians. It also coincided with a late positive wave referred to as the P400 whose amplitude was larger in musicians than in nonmusicians. The behavioral and electrophysiological effects of musical expertise were specific to processing the mistuned harmonic as the N1, the N1c, and the P2 waves elicited by the tuned stimuli were comparable in both musicians and nonmusicians. These results demonstrate that listeners' ability to segregate concurrent sounds based on harmonicity is modulated by experience and provides a basis for further studies assessing the potential rehabilitative effects of musical training on solving complex scene analysis problems illustrated by the cocktail party example.


DP5: J Acoust Soc Am. 2014 Sep;136(3):1237.

Spectral motion contrast as a speech context effect.

Wang N, Oxenham AJ.

Spectral contrast effects may help "normalize" the incoming sound and produce perceptual constancy in the face of the variable acoustics produced by different rooms, talkers, and backgrounds. Recent studies have concentrated on the after-effects produced by the long-term average power spectrum. The present study examined contrast effects based on spectral motion, analogous to visual-motion after-effects. In experiment 1, the existence of spectral-motion after-effects with word-length inducers was established by demonstrating that the identification of the direction of a target spectral glide was influenced by the spectral motion of a preceding inducer glide. In experiment 2, the target glide was replaced with a synthetic sine-wave speech sound, including a formant transition. The speech category boundary was shifted by the presence and direction of the inducer glide. Finally, in experiment 3, stimuli based on synthetic sine-wave speech sounds were used as both context and target stimuli to show that the spectral-motion after-effects could occur even with inducers with relatively short speech-like durations and small frequency excursions. The results suggest that spectral motion may play a complementary role to the long-term average power spectrum in inducing speech context effects.


DP6: PLoS Comput Biol. 2012 Oct;8(10):e1002731.

How recent history affects perception: the normative approach and its heuristic approximation.

Raviv O, Ahissar M, Loewenstein Y.

There is accumulating evidence that prior knowledge about expectations plays an important role in perception. The Bayesian framework is the standard computational approach to explain how prior knowledge about the distribution of expected stimuli is incorporated with noisy observations in order to improve performance. However, it is unclear what information about the prior distribution is acquired by the perceptual system over short periods of time and how this information is utilized in the process of perceptual decision making. Here we address this question using a simple two-tone discrimination task. We find that the "contraction bias", in which small magnitudes are overestimated and large magnitudes are underestimated, dominates the pattern of responses of human participants. This contraction bias is consistent with the Bayesian hypothesis in which the true prior information is available to the decision-maker. However, a trial-by-trial analysis of the pattern of responses reveals that the contribution of most recent trials to performance is overweighted compared with the predictions of a standard Bayesian model. Moreover, we study participants' performance in a-typical distributions of stimuli and demonstrate substantial deviations from the ideal Bayesian detector, suggesting that the brain utilizes a heuristic approximation of the Bayesian inference. We propose a biologically plausible model, in which decision in the two-tone discrimination task is based on a comparison between the second tone and an exponentially-decaying average of the first tone and past tones. We show that this model accounts for both the contraction bias and the deviations from the ideal Bayesian detector hypothesis. These findings demonstrate the power of Bayesian-like heuristics in the brain, as well as their limitations in their failure to fully adapt to novel environments.


MC1: Nat Neurosci. 2004 Jul;7(7):773-8.

Recalibration of audiovisual simultaneity.

Fujisaki W, Shimojo S, Kashino M, Nishida S.

To perceive the auditory and visual aspects of a physical event as occurring simultaneously, the brain must adjust for differences between the two modalities in both physical transmission time and sensory processing time. One possible strategy to overcome this difficulty is to adaptively recalibrate the simultaneity point from daily experience of audiovisual events. Here we report that after exposure to a fixed audiovisual time lag for several minutes, human participants showed shifts in their subjective simultaneity responses toward that particular lag. This 'lag adaptation' also altered the temporal tuning of an auditory-induced visual illusion, suggesting that adaptation occurred via changes in sensory processing, rather than as a result of a cognitive shift while making task responses. Our findings suggest that the brain attempts to adjust subjective simultaneity across different modalities by detecting and reducing time lags between inputs that likely arise from the same physical events.


MC2: Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1188-93.

Recovering sound sources from embedded repetition.

McDermott JH, Wrobleski D, Oxenham AJ.

Cocktail parties and other natural auditory environments present organisms with mixtures of sounds. Segregating individual sound sources is thought to require prior knowledge of source properties, yet these presumably cannot be learned unless the sources are segregated first. Here we show that the auditory system can bootstrap its way around this problem by identifying sound sources as repeating patterns embedded in the acoustic input. Due to the presence of competing sounds, source repetition is not explicit in the input to the ear, but it produces temporal regularities that listeners detect and use for segregation. We used a simple generative model to synthesize novel sounds with naturalistic properties. We found that such sounds could be segregated and identified if they occurred more than once across different mixtures, even when the same sounds were impossible to segregate in single mixtures. Sensitivity to the repetition of sound sources can permit their recovery in the absence of other segregation cues or prior knowledge of sounds, and could help solve the cocktail party problem.


MC3: J Neurosci. 2011 Dec 14;31(50):18590-7.

Interactions between what and when in the auditory system: temporal predictability enhances repetition suppression.

Costa-Faidella J, Baldeweg T, Grimm S, Escera C.

Neural activity in the auditory system decreases with repeated stimulation, matching stimulus probability in multiple timescales. This phenomenon, known as stimulus-specific adaptation, is interpreted as a neural mechanism of regularity encoding aiding auditory object formation. However, despite the overwhelming literature covering recordings from single-cell to scalp auditory-evoked potential (AEP), stimulation timing has received little interest. Here we investigated whether timing predictability enhances the experience-dependent modulation of neural activity associated with stimulus probability encoding. We used human electrophysiological recordings in healthy participants who were exposed to passive listening of sound sequences. Pure tones of different frequencies were delivered in successive trains of a variable number of repetitions, enabling the study of sequential repetition effects in the AEP. In the predictable timing condition, tones were delivered with isochronous interstimulus intervals; in the unpredictable timing condition, interstimulus intervals varied randomly. Our results show that unpredictable stimulus timing abolishes the early part of the repetition positivity, an AEP indexing auditory sensory memory trace formation, while leaving the later part (≈ >200 ms) unaffected. This suggests that timing predictability aids the propagation of repetition effects upstream the auditory pathway, most likely from association auditory cortex (including the planum temporale) toward primary auditory cortex (Heschl's gyrus) and beyond, as judged by the timing of AEP latencies. This outcome calls for attention to stimulation timing in future experiments regarding sensory memory trace formation in AEP measures and stimulus probability encoding in animal models.


MC4: J Cogn Neurosci. 2005 Apr;17(4):641-51.

The intraparietal sulcus and perceptual organization.

Cusack R.

The structuring of the sensory scene (perceptual organization) profoundly affects what we perceive, and is of increasing clinical interest. In both vision and audition, many cues have been identified that influence perceptual organization, but only a little is known about its neural basis. Previous studies have suggested that auditory cortex may play a role in auditory perceptual organization (also called auditory stream segregation). However, these studies were limited in that they just examined auditory cortex and that the stimuli they used to generate different organizations had different physical characteristics, which per se may have led to the differences in neural response. In the current study, functional magnetic resonance imaging was used to test for an effect of perceptual organization across the whole brain. To avoid confounding physical changes to the stimuli with differences in perceptual organization, we exploited an ambiguous auditory figure that is sometimes perceived as a single auditory stream and sometimes as two streams. We found that regions in the intraparietal sulcus (IPS ) showed greater activity when 2 streams were perceived rather than 1. The specific involvement of this region in perceptual organization is exciting, as there is a growing literature that suggests a role for the IPS in binding in vision, touch, and cross-modally. This evidence is discussed, and a general role proposed for regions of the IPS in structuring sensory input.


MC5: J Neurosci. 2012 May 2;32(18):6177-82.

A corticostriatal neural system enhances auditory perception through temporal context processing.

Geiser E, Notter M, Gabrieli JD.

The temporal context of an acoustic signal can greatly influence its perception. The present study investigated the neural correlates underlying perceptual facilitation by regular temporal contexts in humans. Participants listened to temporally regular (periodic) or temporally irregular (nonperiodic) sequences of tones while performing an intensity discrimination task. Participants performed significantly better on intensity discrimination during periodic than nonperiodic tone sequences. There was greater activation in the putamen for periodic than nonperiodic sequences. Conversely, there was greater activation in bilateral primary and secondary auditory cortices (planum polare and planum temporale) for nonperiodic than periodic sequences. Across individuals, greater putamen activation correlated with lesser auditory cortical activation in both right and left hemispheres. These findings suggest that temporal regularity is detected in the putamen, and that such detection facilitates temporal-lobe cortical processing associated with superior auditory perception. Thus, this study reveals a corticostriatal system associated with contextual facilitation for auditory perception through temporal regularity processing.


MC6: Neuron. 2013 Feb 20;77(4):750-61

The spectrotemporal filter mechanism of auditory selective attention.

Lakatos P, Musacchia G, O'Connel MN, Falchier AY, Javitt DC, Schroeder CE.

Although we have convincing evidence that attention to auditory stimuli modulates neuronal responses at or before the level of primary auditory cortex (A1), the underlying physiological mechanisms are unknown. We found that attending to rhythmic auditory streams resulted in the entrainment of ongoing oscillatory activity reflecting rhythmic excitability fluctuations in A1. Strikingly, although the rhythm of the entrained oscillations in A1 neuronal ensembles reflected the temporal structure of the attended stream, the phase depended on the attended frequency content. Counter-phase entrainment across differently tuned A1 regions resulted in both the amplification and sharpening of responses at attended time points, in essence acting as a spectrotemporal filter mechanism. Our data suggest that selective attention generates a dynamically evolving model of attended auditory stimulus streams in the form of modulatory subthreshold oscillations across tonotopically organized neuronal ensembles in A1 that enhances the representation of attended stimuli.


MC7: J Neurosci. 2014 Aug 13;34(33):11152-8.

Microsaccadic responses indicate fast categorization of sounds: a novel approach to study auditory cognition.

Widmann A, Engbert R, Schröger E.

The mental chronometry of the human brain's processing of sounds to be categorized as targets has intensively been studied in cognitive neuroscience. According to current theories, a series of successive stages consisting of the registration, identification, and categorization of the sound has to be completed before participants are able to report the sound as a target by button press after ∼300-500 ms. Here we use miniature eye movements as a tool to study the categorization of a sound as a target or nontarget, indicating that an initial categorization is present already after 80-100 ms. During visual fixation, the rate of microsaccades, the fastest components of miniature eye movements, is transiently modulated after auditory stimulation. In two experiments, we measured microsaccade rates in human participants in an auditory three-tone oddball paradigm (including rare nontarget sounds) and observed a difference in the microsaccade rates between targets and nontargets as early as 142 ms after sound onset. This finding was replicated in a third experiment with directed saccades measured in a paradigm in which tones had to be matched to score-like visual symbols. Considering the delays introduced by (motor) signal transmission and data analysis constraints, the brain must have differentiated target from nontarget sounds as fast as 80-100 ms after sound onset in both paradigms. We suggest that predictive information processing for expected input makes higher cognitive attributes, such as a sound's identity and category, available already during early sensory processing. The measurement of eye movements is thus a promising approach to investigate hearing.


MC8: J Neurosci. 2012 Sep 26;32(39):13389-95.

Repetition suppression and expectation suppression are dissociable in time in early auditory evoked fields.

Todorovic A, de Lange FP.

Repetition of a stimulus, as well as valid expectation that a stimulus will occur, both attenuate the neural response to it. These effects, repetition suppression and expectation suppression, are typically confounded in paradigms in which the nonrepeated stimulus is also relatively rare (e.g., in oddball blocks of mismatch negativity paradigms, or in repetition suppression paradigms with multiple repetitions before an alternation). However, recent hierarchical models of sensory processing inspire the hypothesis that the two might be separable in time, with repetition suppression occurring earlier, as a consequence of local transition probabilities, and suppression by expectation occurring later, as a consequence of learnt statistical regularities. Here we test this hypothesis in an auditory experiment by orthogonally manipulating stimulus repetition and stimulus expectation and, using magnetoencephalography, measuring the neural response over time in human subjects. We found that stimulus repetition (but not stimulus expectation) attenuates the early auditory response (40-60 ms), while stimulus expectation (but not stimulus repetition) attenuates the subsequent, intermediate stage of auditory processing (100-200 ms). These findings are well in line with hierarchical predictive coding models, which posit sequential stages of prediction error resolution, contingent on the level at which the hypothesis is generated.


MC9: Neuron. 2013 Mar 6;77(5):980-91.

Mechanisms underlying selective neuronal tracking of attended speech at a "cocktail party".

Zion Golumbic EM, Ding N, Bickel S, Lakatos P, Schevon CA, McKhann GM, Goodman RR, Emerson R, Mehta AD, Simon JZ, Poeppel D, Schroeder CE.

The ability to focus on and understand one talker in a noisy social environment is a critical social-cognitive capacity, whose underlying neuronal mechanisms are unclear. We investigated the manner in which speech streams are represented in brain activity and the way that selective attention governs the brain's representation of speech using a Cocktail Party paradigm, coupled with direct recordings from the cortical surface in surgical epilepsy patients. We find that brain activity dynamically tracks speech streams using both low-frequency phase and high-frequency amplitude fluctuations and that optimal encoding likely combines the two. In and near low-level auditory cortices, attention modulates the representation by enhancing cortical tracking of attended speech streams, but ignored speech remains represented. In higher-order regions, the representation appears to become more selective, in that there is no detectable tracking of ignored speech. This selectivity itself seems to sharpen as a sentence unfolds.


SAS1: Nature. 2007 Nov 15;450(7168):425-9.

A synaptic memory trace for cortical receptive field plasticity.

Froemke RC, Merzenich MM, Schreiner CE.

Receptive fields of sensory cortical neurons are plastic, changing in response to alterations of neural activity or sensory experience. In this way, cortical representations of the sensory environment can incorporate new information about the world, depending on the relevance or value of particular stimuli. Neuromodulation is required for cortical plasticity, but it is uncertain how subcortical neuromodulatory systems, such as the cholinergic nucleus basalis, interact with and refine cortical circuits. Here we determine the dynamics of synaptic receptive field plasticity in the adult primary auditory cortex (also known as AI) using in vivo whole-cell recording. Pairing sensory stimulation with nucleus basalis activation shifted the preferred stimuli of cortical neurons by inducing a rapid reduction of synaptic inhibition within seconds, which was followed by a large increase in excitation, both specific to the paired stimulus. Although nucleus basalis was stimulated only for a few minutes, reorganization of synaptic tuning curves progressed for hours thereafter: inhibition slowly increased in an activity-dependent manner to rebalance the persistent enhancement of excitation, leading to a retuned receptive field with new preference for the paired stimulus. This restricted period of disinhibition may be a fundamental mechanism for receptive field plasticity, and could serve as a memory trace for stimuli or episodes that have acquired new behavioural significance.


SAS2: Nat Neurosci. 2004 Sep;7(9):974-81.

Temporal plasticity in the primary auditory cortex induced by operant perceptual learning.

Bao S, Chang EF, Woods J, Merzenich MM.

Processing of rapidly successive acoustic stimuli can be markedly improved by sensory training. To investigate the cortical mechanisms underlying such temporal plasticity, we trained rats in a 'sound maze' in which navigation using only auditory cues led to a target location paired with food reward. In this task, the repetition rate of noise pulses increased as the distance between the rat and target location decreased. After training in the sound maze, neurons in the primary auditory cortex (A1) showed greater responses to high-rate noise pulses and stronger phase-locking of responses to the stimuli; they also showed shorter post-stimulation suppression and stronger rebound activation. These improved temporal dynamics transferred to trains of pure-tone pips. Control animals that received identical sound stimulation but were given free access to food showed the same results as naive rats. We conclude that this auditory perceptual learning results in improvements in temporal processing, which may be mediated by enhanced cortical response dynamics.


SAS3: Nat Neurosci. 2010 Mar;13(3):353-60.

Functional organization and population dynamics in the mouse primary auditory cortex.

Rothschild G, Nelken I, Mizrahi A.

Cortical processing of auditory stimuli involves large populations of neurons with distinct individual response profiles. However, the functional organization and dynamics of local populations in the auditory cortex have remained largely unknown. Using in vivo two-photon calcium imaging, we examined the response profiles and network dynamics of layer 2/3 neurons in the primary auditory cortex (A1) of mice in response to pure tones. We found that local populations in A1 were highly heterogeneous in the large-scale tonotopic organization. Despite the spatial heterogeneity, the tendency of neurons to respond together (measured as noise correlation) was high on average. This functional organization and high levels of noise correlations are consistent with the existence of partially overlapping cortical subnetworks. Our findings may account for apparent discrepancies between ordered large-scale organization and local heterogeneity.


SAS4: Nat Neurosci. 2011 Jan;14(1):108-14

Auditory cortex spatial sensitivity sharpens during task performance.

Lee CC, Middlebrooks JC.

Activity in the primary auditory cortex (A1) is essential for normal sound localization behavior, but previous studies of the spatial sensitivity of neurons in A1 have found broad spatial tuning. We tested the hypothesis that spatial tuning sharpens when an animal engages in an auditory task. Cats performed a task that required evaluation of the locations of sounds and one that required active listening, but in which sound location was irrelevant. Some 26-44% of the units recorded in A1 showed substantially sharpened spatial tuning during the behavioral tasks as compared with idle conditions, with the greatest sharpening occurring during the location-relevant task. Spatial sharpening occurred on a scale of tens of seconds and could be replicated multiple times in ∼1.5-h test sessions. Sharpening resulted primarily from increased suppression of responses to sounds at least-preferred locations. That and an observed increase in latencies suggest an important role of inhibitory mechanisms.


SAS5: Nature. 2012 May 10;485(7397):233-6

Selective cortical representation of attended speaker in multi-talker speech perception.

Mesgarani N, Chang EF.

Humans possess a remarkable ability to attend to a single speaker's voice in a multi-talker background. How the auditory system manages to extract intelligible speech under such acoustically complex and adverse listening conditions is not known, and, indeed, it is not clear how attended speech is internally represented. Here, using multi-electrode surface recordings from the cortex of subjects engaged in a listening task with two simultaneous speakers, we demonstrate that population responses in non-primary human auditory cortex encode critical features of attended speech: speech spectrograms reconstructed based on cortical responses to the mixture of speakers reveal the salient spectral and temporal features of the attended speaker, as if subjects were listening to that speaker alone. A simple classifier trained solely on examples of single speakers can decode both attended words and speaker identity. We find that task performance is well predicted by a rapid increase in attention-modulated neural selectivity across both single-electrode and population-level cortical responses. These findings demonstrate that the cortical representation of speech does not merely reflect the external acoustic environment, but instead gives rise to the perceptual aspects relevant for the listener's intended goal.


YB1: Neuron. 2012 Oct 18;76(2):435-49.

Discrete neocortical dynamics predict behavioral categorization of sounds.

Bathellier B, Ushakova L, Rumpel S.

The ability to group stimuli into perceptual categories is essential for efficient interaction with the environment. Discrete dynamics that emerge in brain networks are believed to be the neuronal correlate of category formation. Observations of such dynamics have recently been made; however, it is still unresolved if they actually match perceptual categories. Using in vivo two-photon calcium imaging in the auditory cortex of mice, we show that local network activity evoked by sounds is constrained to few response modes. Transitions between response modes are characterized by an abrupt switch, indicating attractor-like, discrete dynamics. Moreover, we show that local cortical responses quantitatively predict discrimination performance and spontaneous categorization of sounds in behaving mice. Our results therefore demonstrate that local nonlinear dynamics in the auditory cortex generate spontaneous sound categories which can be selected for behavioral or perceptual decisions.


YB2: J Neurosci. 2004 Nov 17;24(46):10440-53.

Multiple time scales of adaptation in auditory cortex neurons.

Ulanovsky N, Las L, Farkas D, Nelken I.

Neurons in primary auditory cortex (A1) of cats show strong stimulus-specific adaptation (SSA). In probabilistic settings, in which one stimulus is common and another is rare, responses to common sounds adapt more strongly than responses to rare sounds. This SSA could be a correlate of auditory sensory memory at the level of single A1 neurons. Here we studied adaptation in A1 neurons, using three different probabilistic designs. We showed that SSA has several time scales concurrently, spanning many orders of magnitude, from hundreds of milliseconds to tens of seconds. Similar time scales are known for the auditory memory span of humans, as measured both psychophysically and using evoked potentials. A simple model, with linear dependence on both short-term and long-term stimulus history, provided a good fit to A1 responses. Auditory thalamus neurons did not show SSA, and their responses were poorly fitted by the same model. In addition, SSA increased the proportion of failures in the responses of A1 neurons to the adapting stimulus. Finally, SSA caused a bias in the neuronal responses to unbiased stimuli, enhancing the responses to eccentric stimuli. Therefore, we propose that a major function of SSA in A1 neurons is to encode auditory sensory memory on multiple time scales. This SSA might play a role in stream segregation and in binding of auditory objects over many time scales, a property that is crucial for processing of natural auditory scenes in cats and of speech and music in humans.


YB3: Nat Neurosci. 2003 Apr;6(4):391-8.

Processing of low-probability sounds by cortical neurons.

Ulanovsky N, Las L, Nelken I.

The ability to detect rare auditory events can be critical for survival. We report here that neurons in cat primary auditory cortex (A1) responded more strongly to a rarely presented sound than to the same sound when it was common. For the rare stimuli, we used both frequency and amplitude deviants. Moreover, some A1 neurons showed hyperacuity for frequency deviants--a frequency resolution one order of magnitude better than receptive field widths in A1. In contrast, auditory thalamic neurons were insensitive to the probability of frequency deviants. These phenomena resulted from stimulus-specific adaptation in A1, which may be a single-neuron correlate of an extensively studied cortical potential--mismatch negativity--that is evoked by rare sounds. Our results thus indicate that A1 neurons, in addition to processing the acoustic features of sounds, may also be involved in sensory memory and novelty detection.


YB4: Neuron. 2013 Nov 20;80(4):1066-76.

Optogenetic activation of an inhibitory network enhances feedforward functional connectivity in auditory cortex.

Hamilton LS1, Sohl-Dickstein J, Huth AG, Carels VM, Deisseroth K, Bao S.

The mammalian neocortex is a highly interconnected network of different types of neurons organized into both layers and columns. Overlaid on this structural organization is a pattern of functional connectivity that can be rapidly and flexibly altered during behavior. Parvalbumin-positive (PV+) inhibitory neurons, which are implicated in cortical oscillations and can change neuronal selectivity, may play a pivotal role in these dynamic changes. We found that optogenetic activation of PV+ neurons in the auditory cortex enhanced feedforward functional connectivity in the putative thalamorecipient circuit and in cortical columnar circuits. In contrast, stimulation of PV+ neurons induced no change in connectivity between sites in the same layers. The activity of PV+ neurons may thus serve as a gating mechanism to enhance feedforward, but not lateral or feedback, information flow in cortical circuits. Functionally, it may preferentially enhance the contribution of bottom-up sensory inputs to perception.


YB5: Neuron. 2014 Jun 4;82(5):1157-70.

Neural correlates of task switching in prefrontal cortex and primary auditory cortex in a novel stimulus selection task for rodents.

Rodgers CC, DeWeese MR

Animals can selectively respond to a target sound despite simultaneous distractors, just as humans can respond to one voice at a crowded cocktail party. To investigate the underlying neural mechanisms, we recorded single-unit activity in primary auditory cortex (A1) and medial prefrontal cortex (mPFC) of rats selectively responding to a target sound from a mixture. We found that prestimulus activity in mPFC encoded the selection rule-which sound from the mixture the rat should select. Moreover, electrically disrupting mPFC significantly impaired performance. Surprisingly, prestimulus activity in A1 also encoded selection rule, a cognitive variable typically considered the domain of prefrontal regions. Prestimulus changes correlated with stimulus-evoked changes, but stimulus tuning was not strongly affected. We suggest a model in which anticipatory activation of a specific network of neurons underlies the selection of a sound from a mixture, giving rise to robust and widespread rule encoding in both brain regions.