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The transformation of acoustic signals into abstract perceptual representations is the
essence of the efficient and goal-directed neural processing of sounds in complex
natural environments. While the human and animal auditory system is perfectly equipped
to process the spectrotemporal sound features, adequate sound identification and
categorization require neural sound representations that are invariant to irrelevant stimulus
parameters. Crucially, what is relevant and irrelevant is not necessarily intrinsic to
the physical stimulus structure but needs to be learned over time, often through
integration of information from other senses. This review discusses the main principles
underlying categorical sound perception with a special focus on the role of learning and
neural plasticity. We examine the role of different neural structures along the auditory
processing pathway in the formation of abstract sound representations with respect
to hierarchical as well as dynamic and distributed processing models. Whereas most
fMRI studies on categorical sound processing employed speech sounds, the emphasis
of the current review lies on the contribution of empirical studies using natural or
artificial sounds that enable separating acoustic and perceptual processing levels and avoid
interference with existing category representations. Finally, we discuss the opportunities
of modern analyses techniques such as multivariate pattern analysis (MVPA) in studying
categorical sound representations. With their increased sensitivity to distributed activation
changes—even in absence of changes in overall signal level—these analyses techniques
provide a promising tool to reveal the neural underpinnings of perceptually invariant sound
representations.
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SOUND PERCEPTION—MORE THAN TIME-FREQUENCY
ANALYSIS
Despite major advances in the past years to unravel the func-
tional organization principles of the auditory system, the neural
processes underlying sound perception are still far from being
understood. Complementary research in animals and humans
has revealed the properties of responses of neurons and neu-
ronal populations along the auditory pathway from the cochlear
nucleus to the cortex. Current knowledge on the neural represen-
tation of the spectrotemporal features of the incoming sound is
such that the sound spectrogram can be accurately reconstructed
from neuronal population responses (Pasley et al., 2012). Yet,
the precise neural representation of the acoustic sound features
alone cannot explain sound perception fully. In fact, how a sound
is perceived may be invariant to changes of its acoustic proper-
ties. Unless the context in which a sound is repeated is absolutely
identical to the first encounter—which is rather unlikely under
natural circumstances—recognizing a sound is not trivial, given
that the acoustic properties of the two repetitions may not entirely
match. Obviously, this poses an extreme challenge to the auditory
system. To maintain processing efficiency, acoustically different
sounds must be mapped onto the same perceptual representa-
tion. Thus, an essential part of sound processing is the reduction

or perceptual categorization of the vast diversity of spectrotem-
poral events into meaningful (i.e., behaviorally relevant) units.
However, despite the ease with which humans generally accom-
plish this task, the detection of relevant and invariant information
in the complexity of the sensory input is not straightforward. This
is also reflected in the performance of artificial voice and speech
recognition systems for human-computer interaction, that is far
below that of humans, which is mainly due to the difficulty of
dealing with the naturally occurring variability in speech signals
(Benzeguiba et al., 2007). In humans, the need for perceptual
abstraction in everyday functioning manifests itself in patho-
logical conditions such as the autism spectrum disorder (ASD).
Next to their susceptibility to more general cognitive deficits
in abstract reasoning and concept formation (Minshew et al.,
2002), individuals with ASD tend to show enhanced processing of
detailed acoustic information while processing of more complex
and socially relevant sounds such as speech may be diminished
(reviewed in Ouimet et al., 2012).

Speech sounds have been widely investigated in the context
of sensory-perceptual transformation as they represent a promi-
nent example of perceptual sound categories that comprise a large
number of acoustically different sounds. Interestingly, there is
not a clear boundary between two phoneme categories such as
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/b/ and /d/: the underlying acoustic features vary smoothly from
one category to the next (Figure 1A). Remarkably though, if peo-
ple are asked to identify individual sounds randomly taken from
this spectrotemporal continuum as either /b/ or /d/ their per-
cept does not vary gradually as suggested by the sensory input.
Instead, the sounds from the first portion of the continuum
are robustly identified as /b/, while the sounds from the second
part are perceived as /d/ with an abrupt perceptual switch in
between (Figure 1B). Performance on discrimination tests fur-
ther suggests that people are fairly insensitive to the underlying
variation of the stimuli within one phoneme category, map-
ping various physically different stimuli onto the same perceptual
object (Liberman et al., 1957). At the category boundary, how-
ever, the same extent of physical difference is perceived as a change
in stimulus identity. This difference in perceptual discrimination
also affects speech production, which strongly relies on online
monitoring of auditory feedback. Typically, a self-produced error
in the articulation of a speech sound is instantaneously cor-
rected for if, e.g., the output vowel differs from the intended
vowel category. An acoustic deviation of the same magnitude
and direction may however be tolerated if the produced sound
and the intended sound fall within the same perceptual category
(Niziolek and Guenther, 2013). This suggests that the within-
category differences in the physical domain are perceptually com-
pressed to create a robust representation of the phoneme category
while between-category differences are perceptually enhanced to
rapidly detect the relevant change of phoneme identity. This
phenomenon is termed “Categorical Perception” (CP, Harnad,
1987) and has been demonstrated for stimuli from various nat-
ural domains apart from speech, such as music (Burns and Ward,
1978), color (Bornstein et al., 1976; Franklin and Davies, 2004)
and facial expressions of emotion (Etcoff and Magee, 1992), not
only for humans but also for monkeys (Freedman et al., 2001,
2003), chinchillas (Kuhl and Miller, 1975), songbirds (Prather
et al., 2009), and even crickets (Wyttenbach et al., 1996). Thus,
the formation of discrete perceptual categories from a continuous
physical signal seems to be a universal reduction mechanism to
deal with the complexity of natural environments.

Several recent reviews have discussed the neural representa-
tion of sound categories in auditory cortex (AC) and the role
of learning-induced plasticity (e.g., Nourski and Brugge, 2011;
Spierer et al., 2011). The emphasis of the current review lies
on recent empirical studies using natural or artificial sounds
and experimental paradigms that enable separating acoustic and
perceptual processing levels and avoid interference with exist-
ing category representations (such as for speech). Additionally,
we discuss the opportunities of modern analyses techniques such
as multivariate pattern analysis (MVPA) in studying categorical
sound representations.

THE ROLE OF EXPERIENCE IN THE FORMATION OF
PERCEPTUAL CATEGORIES
While CP has been demonstrated many times for a large vari-
ety of stimuli, the mechanisms underlying this phenomenon
remain debated. Even for speech, which has most widely been
investigated, the relative contribution of innate processes and
learning in the formation of phoneme categories is not completely

FIGURE 1 | Illustration of the sensory-perceptual transformation of

speech sounds. (A) Schematic representation of spectral patterns for the
continuum between the phonemes /b/ and /d/. F1 and F2 reflect the first
and second formant (i.e., amplitude peaks in the frequency spectrum).
(B) Phoneme identification curves corresponding to the continuum in A.
Curves are characterized by relatively stable percepts within a phoneme
category and sharp transitions in between. Figure adapted from Liberman
et al. (1957).

resolved. Despite the striking consistency of perceptual phoneme
boundaries across different listeners, behavioral evidence sug-
gests that those boundaries are malleable depending on the con-
text in which the sounds are perceived (Benders et al., 2010).
Additionally, cross-cultural studies have shown that language
learning influences the discriminability of speech sounds, such
that phonemes in one particular language are only perceived cate-
gorically by speakers of that language and continuously otherwise
(Kuhl et al., 1992). Similarly, lifelong (e.g., musical training) as
well as short-term experience both affect behavioral processing—
and neural encoding (see below)—of relevant speech cues, such
as pitch, timber and timing (Kraus et al., 2009). In support of
the claim that speech CP can be acquired through training stand
experimental learning studies that successfully induced discon-
tinuous perception of a non-native phoneme continuum through
elaborate category training (Myers and Swan, 2012). Nevertheless,
even after extensive training, non-native phoneme contrasts tend
to remain less robust than speech categories in the native lan-
guage. Apart from the age of acquisition, the complexity of the
learning environment and in particular the offered stimulus vari-
ability during category learning seems to affect the ability to
discriminate novel phonetic contrasts (Logan et al., 1991). A
prevalent theory for the formation of speech categories in par-
ticular is the motor theory of speech perception (Liberman and
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Mattingly, 1985). This theory claims that speech sounds are cat-
egorized based on the distinct motor commands for the vocal
tract used for pronunciation. Further fueled by the discovery of
mirror neurons, the theory still has its proponents (for review
see Galantucci et al., 2006), however, today, it is disputed in its
strict form in which speech processing is considered special, as
the recruitment of the motor system for sound identification
has been demonstrated for various forms of non-speech action-
related sounds (Kohler et al., 2002). Furthermore, accumulating
evidence indicates that CP can be induced by learning for a vari-
ety of non-speech stimulus material (e.g., simple noise sounds,
Guenther et al., 1999 and inharmonic tone complexes, Goudbeek
et al., 2009). The use of artificially constructed categories for
studying CP has the advantage that the physical distance between
neighboring stimuli can be controlled such that the similarity
ratings of within- or between-category stimuli can be attributed
to true perceptual effects, rather than the metrics of the stimu-
lus dimensions. Nevertheless, one should bear in mind that the
long-term exposure to statistical regularities of the acoustics of
natural sounds might exert a lasting influence on the formation
of new sound categories. In support of this claim, Scharinger
et al. (2013b) revealed a strong preference for negatively corre-
lated spectral dimensions typical for speech and other natural
categories when participants learned to categorize novel auditory
stimuli. In line with this behavioral documentation in humans, a
recent study in rodent pups demonstrated the proneness of audi-
tory receptive fields to the systematics of the acoustic environment
shaping the tuning curves of cortical neurons. Most importantly,
these neuronal changes were shown to parallel an increase in per-
ceptual discrimination of the employed sounds, which points to a
link between (early) neuronal plasticity and perceptual discrim-
ination ability (Köver et al., 2013). In sum, these experiments
demonstrated that the perceptual abilities could be modified
by learning and experience, while the role of pre-existing (i.e.,
innate) neural structures and their early adaptation in critical
phases of maturation might play a vital role.

NEURAL REPRESENTATIONS OF PERCEPTUAL SOUND
CATEGORIES
Behavioral studies have been complemented with research on the
neural implementation of perceptual sound categories. Forming
new sound categories or assigning a new stimulus to an existing
category requires the integration of bottom-up stimulus driven
information with knowledge from prior experience and memory
as well as linking this information to the appropriate response
in case of an active categorization task. Different research lines
have highlighted the contribution of neural structures along the
auditory pathway and in the cortex to this complex and dynamic
process.

Functional neuroimaging studies employing natural sound
categories such as voices, speech, and music have located object-
specific processing units in higher level auditory areas in the supe-
rior temporal lobe (Belin et al., 2000; Leaver and Rauschecker,
2010). Particularly, native phoneme categories were shown to
recruit the left superior temporal sulcus (STS) (Liebenthal et al.,
2005) and the activation level of this region seems to correlate
with the degree of categorical processing (Desai et al., 2008).

While categorical processes in the STS were documented by fur-
ther studies, the generalization to other sound categories beyond
speech remains controversial, given that the employed stimuli
were either speech sounds or artificial sounds with speech-like
characteristics (Leech et al., 2009; Liebenthal et al., 2010). Even if
speech sounds are natural examples of the discrepancy between
sensory and perceptual space, the results derived from these
studies may not generalize to other categories, as humans are pro-
cessing experts for speech (similar to faces) even prior to linguistic
experience (Eimas et al., 1987). In addition, regions in the tempo-
ral lobe were shown to retain the sensitivity to acoustic variability
within sound categories, while highly abstract phoneme represen-
tations (i.e., invariant to changes within one phonetic category)
appear to depend on decision-related processes in the frontal
lobe (Myers et al., 2009). These results are highly compatible
with those from cell recordings in rhesus monkey (Tsunada et al.,
2011). Based on the analysis of single-cell responses to human
speech categories, the authors suggest that “a hierarchical rela-
tionship exists between the superior temporal gyrus (STG) and
the ventral PFC whereby STG provides the ‘sensory evidence’
to form the decision and ventral PFC activity encodes the out-
put of the decision process.” Analog to the two-stage hierarchical
processing model in the visual domain (Freedman et al., 2003;
Jiang et al., 2007; Li et al., 2009), the set of findings reviewed
above suggests that processing areas in the temporal lobe only
constitute a preparatory stage for categorization. Specifically, the
model proposes that the tuning of neuronal populations in lower-
level sensory areas is sharpened according to the category-relevant
stimulus features, forming a task-independent reduction of the
sensory input (but see below for a different view on the role
of early auditory areas). In case of an active categorization task,
this information is projected to higher-order cortical areas in the
frontal lobe. The predominant recruitment of the prefrontal cor-
tex (PFC) during early phases of category learning (Little and
Thulborn, 2005) and in the context of an active categorization
task (Boettiger and D’Esposito, 2005; Husain et al., 2006; Li et al.,
2009) support the concept that it plays a major role in rule
learning and attention-related processes modulating lower-level
sound processing rather than being the site of categorical sound
representations per se.

Categorical processing does however not exclusively proceed
along the auditory “what” stream. To study the neural basis of
CP, Raizada and Poldrack (2007) measured fMRI while subjects
listened to pairs of stimuli taken from a phonetic /ba/-/da/ con-
tinuum. Responses in the supramarginal gyrus were significantly
larger for pairs that included stimuli belonging to different pho-
netic categories (i.e., crossing the category boundary) than for
pairs with stimuli from a single category. The authors interpreted
these results as evidence for “neural amplification” of relevant
stimulus difference and thus for categorical processing in the
supramarginal gyrus. Similar analyses showed comparatively lit-
tle amplification of changes that crossed category boundaries in
low-level auditory cortical areas (Raizada and Poldrack, 2007).
Novel findings revived the motor theory of categorical processing:
Chevillet et al. (2013) provide evidence that the role of the premo-
tor cortex (PMC) is not limited to motor-related processes during
active categorization, but that the phoneme-category tuning of
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premotor regions may essentially facilitate also more automatic
speech processes via dorsal projections originating from pSTS.
While this automatic motor route is probably limited to process-
ing of speech and other action-related sound categories, the diver-
sity of the categorical processing networks documented in the
above cited studies demonstrates that there is not a single answer
to where and how sound categories are represented. The role
that early auditory cortical fields play in the perceptual abstrac-
tion from the acoustic input remains a relevant topic of current
research. A recent study from Nelken’s group indicated that neu-
rons in the cat primary auditory area convey more information
about abstract auditory entities than about the spectro-temporal
sound structure (Chechik and Nelken, 2012). These results are
in line with the proposal that neuronal populations in primary
AC encode perceptual abstractions of sounds (or auditory objects,
Griffiths and Warren, 2004) rather than their physical make up
(Nelken, 2004). Furthermore, research from Scheich’s group has
suggested that sound representations in primary AC are largely
context- and task- dependent and reflect memory-related and
semantic aspects of actively listening to sounds (Scheich et al.,
2007). This suggestion is also supported by the observation of
semantic/categorical effects within early (∼70 ms) post-stimulus
time windows in human auditory evoked potentials (Murray
et al., 2006).

Finding empirical evidence for abstract categorical representa-
tions in low-level auditory cortex in humans, however, remains
challenging as it requires experimental paradigms and analy-
sis methods that allow disentangling the perceptual processes
from the strong dependence of these auditory neurons on the
physical sound attributes. Here, carefully controlled stimula-
tion paradigms in combination with fMRI pattern decoding (see
below) could shed light on the matter. For example, Staeren et al.
(2009) were able to dissociate perceptual from stimulus-driven
processes by controlling the physical overlap of stimuli within
and between natural sound categories. They revealed categorical
sound representations in spatially distributed and even overlap-
ping activation patterns in early areas of human AC. Similarly,
studies employing fMRI-decoding to investigate the auditory cor-
tical processing of speech/voice categories have put forward a
“constructive” role of early auditory cortical networks in the for-
mation of perceptual sound representations (Formisano et al.,
2008; Kilian-Hütten et al., 2011a; Bonte et al., 2014).

Crucially, studying context-dependence and plasticity of
sound representations in early auditory areas may help unravel-
ing their nature. For example, Dehaene-Lambertz et al. (2005)
demonstrated that even early low-level sound processing is sus-
ceptible to top-down directed cognitive influences. In a combina-
tion of fMRI and electrophysiological measures, they showed that
identical acoustic stimuli were processed in a different fashion,
depending on the “perceptual mode” (i.e., whether participants
perceived the sounds as speech or artificial whistles).

This literature review illustrates that in order to understand
the neural mechanisms underlying the formation of perceptual
categories, it is necessary to (1) carefully separate perceptual from
acoustical sound representations, (2) distinguish between lower-
level perceptual representations and higher-order or feedback-
guided decision- and task-related processes and also (3) avoid

interference with existing processing networks for familiar and
overlearned sound categories.

LEARNING AND PLASTICITY
Most knowledge about categorical processing in the brain is
derived from experiments employing speech or other natu-
ral (e.g., music) sound categories. While providing important
insights about the neural representations of familiar sound cat-
egories, these studies lack the potential to investigate the mech-
anisms underlying the transformation from acoustic to more
abstract perceptual representations. Sound processing must how-
ever remain highly plastic beyond sensitive periods early in
ontogenesis to allow efficient processing adapted to the changing
requirements of the acoustic environment.

Studying these rapid experience-related neural reorganizations
requires controlled learning paradigms of new sound categories.
With novel, artificial sounds, the acoustic properties can be con-
trolled, such that physical and perceptual representations can be
decoupled and interference with existing representations of famil-
iar sound categories can be avoided (but see Scharinger et al.,
2013b). A comparison of pre- and post-learning neural responses
provides information about the amenability of sound representa-
tions along different levels of the auditory processing hierarchy to
learning-induced plasticity. Extensive research by Fritz and col-
leagues has provided convincing evidence for learning-induced
plasticity of cortical receptive fields. In ferrets that were trained
on a target (tone) detection task, a large proportion of cells
in primary AC showed significant changes in spectro-temporal
receptive field (STRF) shape during the detection task, as com-
pared with the passive pre-behavioral STRF. Relevant to the focus
of this review, in two-thirds of these cells the changes persisted in
the post-behavior passive state (Fritz et al., 2003, see also Shamma
and Fritz, 2014). Additionally, recent results from animal models
and human studies have revealed evidence for similar cellular and
behavioral mechanisms for learning and memory in the auditory
brainstem (e.g., Tzounopoulos and Kraus, 2009).

Learning studies further provide the opportunity to look into
the interaction of lower-level sensory and higher-level associa-
tion cortex during task- and decision-related processes (De Souza
et al., 2013). In contrast to juvenile plasticity, which is mainly
driven by bottom-up input, adult learning is supposedly largely
dependent on top-down control (Kral, 2013). Thus, categori-
cal processing after short-term plasticity induced by temporary
changes of environmental demands might differ from the pro-
cesses formed by early-onset and long-term adaptation to speech
stimuli. Even though there is evidence that with increasing pro-
ficiency in category discrimination, neural processing of newly
learned speech sounds starts to parallel that of native speech
(Golestani and Zatorre, 2004), a discrepancy between ventral
and dorsal processing networks for highly familiar native sound
categories and non-native or artificial sound categories respec-
tively has been suggested by recent work (Callan et al., 2004;
Liebenthal et al., 2010, 2013). This difference potentially limits the
generalization to native speech of findings derived from studies
employing artificial sound categories.

Several studies have examined the changes in the neural
sound representations underlying the perceptual transformations
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induced by category learning. A seminal study with gerbils
demonstrated that learning to categorize artificial sounds in the
form of frequency sweeps resulted in a transition from a physical
(i.e., onset frequency) to a categorical (i.e., up vs. down) sound
representation already in the primary AC (Ohl et al., 2001). In
contrast to the traditional understanding of primary AC as a fea-
ture detector, this finding implicates that sound representations
at the first cortical analysis stage are more abstract and prone
to plastic reorganization imposed by changes in environmen-
tal demands. In fact, sound stimuli have passed through several
levels of basic feature analyses before they ascend to the supe-
rior temporal cortex (Nelken, 2004). Thus, as discussed above,
sound representations in primary AC are unlikely to be faithful
copies of the physical characteristics. Even though the involve-
ment of AC in categorization of artificial sounds has also been
demonstrated in humans (Guenther et al., 2004), conventional
subtraction paradigms typically employed in fMRI studies lack
sufficient sensitivity to demarcate distinct categorical represen-
tations. Due to the large physical variability within categories
and the similarity of sounds straddling the category boundary,
between-category contrasts often do not reveal significant results
(Klein and Zatorre, 2011). Furthermore, the effects of category
learning on sound processing as demonstrated in animals were
based on changes in the spatiotemporal activation pattern with-
out apparent changes in response strength (Ohl et al., 2001;
Engineer et al., 2014). Using in vivo two-photon calcium imag-
ing in mice, Bathellier et al. (2012) have convincingly shown
that categorical sound representations—which can be selected
for behavioral or perceptual decisions—may emerge as a conse-
quence of non-linear dynamics in local networks in the auditory
cortex (Bathellier et al., 2012, see also Tsunada et al., 2012 and a
recent review by Mizrahi et al., 2014).

In human neuroimaging, these neuronal effects that do not
manifest as changes in overall response levels may remain
inscrutable to univariate contrast analyses. Also, fMRI designs
based on adaptation, or more generally, on measuring responses
to stimulus pairs/sequences (e.g., as in Raizada and Poldrack,
2007) do not allow excluding generic effects related to the process-
ing of sound sequences or potential hemodynamic confounds,
as the reflection of neuronal adaptation/suppression effects in
the fMRI signals is complex (Boynton and Finney, 2003; Verhoef
et al., 2008).

Modern analyses techniques with increased sensitivity to spa-
tially distributed activation changes in absence of changes in
overall signal level provide a promising tool to decode percep-
tually invariant sound representations in humans (Formisano
et al., 2008; Kilian-Hütten et al., 2011a) and detect the neu-
ral effects of learning (Figure 2). Multivariate pattern analy-
sis (MVPA) employs established classification techniques from
machine learning to discriminate between different cognitive
states that are represented in the combined activity of multi-
ple locally distributed voxels, even when their average activity
does not differ between conditions (see Haynes and Rees, 2006;
Norman et al., 2006; Haxby, 2012 for tutorial reviews). Recently,
Ley et al. (2012) demonstrated the potential of this method
to trace rapid transformations of neural sound representations,
which are entirely based on changes in the way the sounds are

perceived induced by a few days of category learning (Figure 3).
In their study, participants were trained to categorize complex
artificial ripple sounds, differing along several acoustic dimen-
sions into two distinct groups. BOLD activity was measured
before and after training during passive exposure to an acoustic
continuum spanned between the trained categories. This design
ensured that the acoustic stimulus dimensions were uninforma-
tive of the trained sound categorization such that any change in
the activation pattern could be attributed to a warping of the
perceptual space rather than physical distance. After successful
learning, locally distributed response patterns in Heschl’s gyrus
(HG) and its adjacency became selective for the trained category
discrimination (pitch) while the same sounds elicited indistin-
guishable responses before. In line with recent findings in rat
primary AC (Engineer et al., 2013), the similarity of the cortical
activation patterns reflected the sigmoid categorical structure and
correlated with perceptual rather than physical sound similarity.
Thus, complementary research in animals and humans indicate
that perceptual sound categories are represented in the activation
patterns of distributed neuronal populations in early auditory
regions, further supporting the role of the early AC in abstract
and experience-driven sound processing rather than acoustic fea-
ture mapping (Nelken, 2004). It is noteworthy that these abstract
categorical representations were detectable despite passive listen-
ing conditions. This is an important detail, as it demonstrates that
categorical representations are (at least partially) independent of
higher-order decision or motor-related processes. Furthermore, it
suggests that some preparatory (i.e., multipurpose) abstraction of
the physical input happens at the level of the early auditory cortex.

The mechanisms of neuroplasticity underlying category learn-
ing and the origin of the categorical organization of sound
representations in the auditory cortex are still quite poorly under-
stood and deserve further investigation. Hypotheses are primarily
derived from perceptual learning studies in animals. These studies
show that extensive discrimination training may elicit reorganiza-
tion of the auditory cortical maps, selectively increasing the repre-
sentation of the behaviorally relevant sound features (Recanzone
et al., 1993; Polley et al., 2006). This suggests that environmental
and behavioral demands lead to changes of the auditory tun-
ing properties of neurons such that more neurons are tuned to
the relevant features to achieve higher sensitivity in the relevant
dimension. This reorganization is mediated by synaptic plastic-
ity, i.e., the strengthening of neuronal connections following rules
of Hebbian learning (Hebb, 1949; for recent review, see Caporale
and Dan, 2008). Passive learning studies suggest that attention
is not necessary for sensory plasticity to occur (Watanabe et al.,
2001; Seitz and Watanabe, 2003). However, in contrast to the
mostly unequivocal sound structure used for perceptual learn-
ing experiments, learning to categorize a large number of sounds
differing along multiple dimensions requires either sound dis-
tributions indicative of the category structure (Goudbeek et al.,
2009) or a task including response feedback in order to extract the
relevant and category discriminative sound feature. This selec-
tive enhancement of features requires some top-down gating
mechanism. Attention can act as such a filter, increasing fea-
ture saliency (Lakatos et al., 2013) by selectively modulating the
tuning properties of neurons in the auditory cortex, eventually
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FIGURE 2 | Functional MRI pattern decoding and rationale for its

application in the neuroimaging of learning. (A) General logic of fMRI
pattern decoding (Figure adapted from Formisano et al., 2008). Trials (and
corresponding multivariate responses) are split into a training set and a testing
set. On the training set of data, response patterns that maximally discriminate
the stimulus categories are estimated; the testing set of data is then used to
measure the correctness of discrimination of new, unlabeled trials. For
statistical assessment, the same analysis is repeated for different splits of
learning and test sets. (B) Schematic representation of the perceptual (and
possibly neural) transformation from a continuum to a discrete categorical

representation. The first plot depicts an artificial two-dimensional stimulus
space without physical indications of a category boundary (exemplars are
equally spaced along both dimensions). During learning, stimuli are separated
according to the relevant dimension, irrespective of the variability in the second
dimension. Lasting differential responses for the left and right half of the
continuum eventually lead to a warping of the perceptual space in which
within-category differences are reduced and between-category differences
enlarged. Graphics inspired by Kuhl (2000). Thus, in cortical regions where
(sound) categories are represented, higher fMRI-based decoding accuracy of
responses to stimuli from the two categories is expected after learning.

leading to a competitive advantage of behaviorally relevant infor-
mation (Bonte et al., 2009, 2014; Ahveninen et al., 2011). As a
consequence, more neural resources would be allocated to the
behaviorally relevant information at the expense of information

that is irrelevant for the decision. The adaptive allocation of neu-
ral resources to diagnostic information after category learning
is supported by evidence from monkey electrophysiology (Sigala
and Logothetis, 2002; De Baene et al., 2008) and human imaging,
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FIGURE 3 | Representation of the study by Ley et al. (2012). (A)

Multidimensional stimulus space spanning the two categories A and B.
(B) Group discrimination maps based on the post-learning fMRI data for the
trained stimulus division (i.e., “low pitch” vs. “high pitch”), displayed on an
average reconstructed cortical surface after cortex-based realignment.
(C) Average classification accuracies based on fMRI data prior to category
training and after successful category learning for the two types of stimulus

space divisions (trained vs. untrained) and the respective trial labeling.
(D) Changes in pattern similarity and behavioral identification curves. After
category learning, neural response patterns for sounds with higher pitch
(pitch levels 4, 5, 6) correlated with the prototypical response pattern for
class B more strongly than class A, independent of other acoustic features.
The profile of these correlations on the pitch continuum closely reflected the
sigmoid shape of the behavioral category identification function.

www.frontiersin.org June 2014 | Volume 8 | Article 132 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Auditory_Cognitive_Neuroscience/archive


Ley et al. Experience shapes neural sound representations

showing decreased activation for prototypical exemplars of a cate-
gory relative to exemplars near the category boundary (Guenther
et al., 2004). This idea of categorical sound representations being
sparse or parsimonious is also compatible with fMRI observations
by Brechmann and Scheich (2005), showing an inverse correla-
tion of auditory cortex activation and performance in an auditory
categorization task. The recent discovery of a positive correla-
tion between gray matter probability in parietal cortex and the
optimal utilization of acoustic features in a categorization task
(Scharinger et al., 2013a) provides further evidence for the cru-
cial role of attentional processes in feature selection necessary for
category learning. Reducing the representation of a large number
of sounds too few relevant features presents an enormous process-
ing advantage. It facilitates the read-out of the categorical pattern
due to the pruned data structure and limits the neural resources
by avoiding redundancies in the representation according to the
concept of sparse coding (Olshausen and Field, 2004).

To date, there are several models for describing the neu-
ral circuitry between sensory and higher-order attentional pro-
cesses mediating learning-induced plasticity. Predictive coding
models propose that the dynamic interaction between bottom-
up sensory information and top-down modulation by prior
experience shapes the perceptual sound representation (Friston,
2005). This implies that categorical perception would arise from
the continuous updating of the internal representation during
learning to incorporate all variability present within a cate-
gory, with the objective of reducing the prediction error (i.e.,
the difference between sensory input and internal representa-
tion). Consequently, lasting interaction between forward driven
processing and backward modulation could induce synaptic plas-
ticity and result in an internal representation that correctly
matches the categorical structure and therefore optimally guides
correct behavior also beyond the scope of the training period.
The implementation of these Bayesian processing models rests
on fairly hierarchical structures consisting of forward, back-
ward and lateral connections entering different cortical layers
(Felleman and Van Essen, 1991; Hackett, 2011). According to the
Reverse Hierarchy Theory (Ahissar and Hochstein, 2004), cate-
gory learning would be initiated by high-level processes involved
in rule-learning, controlling via top-down modulation selective
plasticity at lower-level sensory areas sharpening the responses
according to the learning rule (Sussman et al., 2002; Myers and
Swan, 2012). In accordance with this view, attentional modula-
tion involving a fronto-parietal network of brain areas appears
most prominent during early phases of learning, progressively
decreasing with expertise (Little and Thulborn, 2005; De Souza
et al., 2013). Despite recent evidence for early sensory-perceptual
abstraction mechanisms in human auditory cortex (Murray et al.,
2006; Bidelman et al., 2013), it is crucial to note that the recip-
rocal information exchange between higher-level and lower-level
cortical fields happens very fast (Kral, 2013) and even within
the auditory cortex, processing is characterized by complex for-
ward, lateral and backward microcircuits (Atencio and Schreiner,
2010; Schreiner and Polley, 2014). Therefore, the origin of the
categorical responses in AC is difficult to determine unless the
response latencies and laminar structure are carefully investi-
gated.

CROSSMODAL PLASTICITY—CONSIDERATIONS FOR
FUTURE STUDIES
Considering that sound perception strongly relies on the inte-
gration of information represented across multiple cortical areas,
simultaneous input from the other sensory modalities presents
itself as a major source of influence on learning-induced plasticity
of sound representations. In fact, there is compelling behavioral
evidence that the human perceptual system integrates specific,
event-relevant information across auditory and visual (McGurk
and MacDonald, 1976) or auditory and tactile (Gick and Derrick,
2009) modalities and that mechanisms of multisensory integra-
tion can be shaped through experience (Wallace and Stein, 2007).
Together, these two facts predict that visual or tactile contexts dur-
ing learning have a major impact on perceptual reorganization of
sound representations.

Promising insights are provided by behavioral studies showing
that multimodal training designs are generally superior to uni-
modal training designs (Shams and Seitz, 2008). The beneficial
effect of multisensory exposure during training may last beyond
the training period itself reflected in increased performance after
removal of the stimulus from one modality (for review, see Shams
et al., 2011). This effect has been demonstrated even for brief
training periods and arbitrary stimulus pairs (Ernst, 2007), pro-
moting the view that short-term multisensory learning can lead to
lasting reorganization of the processing networks (Kilian-Hütten
et al., 2011a,b). Given the considerable evidence for response
modulation of auditory neurons by simultaneous non-acoustic
events and even crossmodal activation of the auditory cortex in
absence of sound stimuli (Calvert et al., 1997; Foxe et al., 2002;
Fu et al., 2003; Brosch et al., 2005; Kayser et al., 2005; Pekkola
et al., 2005; Schürmann et al., 2006; Nordmark et al., 2012), it is
likely that sound representations at the level of AC are also prone
to influences from the visual or tactile modality. Animal elec-
trophysiology has suggested different laminar profiles for tactile
and visual pathways in the auditory cortex indicative for for-
ward and backward directed input respectively (Schroeder and
Foxe, 2002). Crucially, the quasi-laminar resolution achievable
with state-of-art ultra-high field fMRI (Polimeni et al., 2010) pro-
vides new possibility to systematically investigate—in humans—
the detailed neurophysiological basis underlying the influence of
non-auditory input on sound perception and on learning induced
plasticity in sound representations in the auditory cortex.

CONCLUSION
In recent years, the phenomenon of perceptual categorization
has stimulated a tremendous amount of research on the neu-
ral representation of perceptual sound categories in animals and
humans. Despite this large data pool, no clear answer could yet
be found on where abstract sound categories are represented
in the brain. Whereas animal research provides increasing evi-
dence for complex processing abilities of early auditory areas,
results from human studies tend to promote more hierarchi-
cal processing models in which categorical perception relies on
higher order temporal and frontal regions. In this review, we
discussed this apparent discrepancy and illustrated the poten-
tial pitfalls attached to research on categorical sound processing.
Separating perceptual and acoustical processes possibly represents
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the biggest challenge. In this respect, it is crucial to note that
many “perceptual” effects, demonstrated in animal studies, did
not manifest as changes in overall signal level. Recent research has
shown that while these effects may remain inscrutable to univari-
ate contrast analyses typically employed in human neuroimaging,
modern analysis techniques—such as fMRI-decoding—is capable
of unraveling perceptual processes in locally distributed activa-
tion patterns. It is also becoming increasingly evident that in
order to grasp the full capacity of auditory processing in low-
level auditory areas, it is necessary to consider its susceptibility
to context and task, flexibly adapting its processing resources
according to the environmental demands. In order to bring the
advances from animal and human research closer together, future
approaches on categorical sound representations in humans are
likely to require an integrative combination of controlled stimu-
lation designs, sensitive measurement techniques (e.g., high field
fMRI) and advanced analysis techniques.
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