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A normalization model of multisensory integration

Tomokazu Ohshiro!, Dora E Angelaki? & Gregory C DeAngelis!

Responses of neurons that integrate multiple sensory inputs are traditionally characterized in terms of a set of empirical principles.
However, a simple computational framework that accounts for these empirical features of multisensory integration has not been
established. We propose that divisive normalization, acting at the stage of multisensory integration, can account for many of the
empirical principles of multisensory integration shown by single neurons, such as the principle of inverse effectiveness and the spatial
principle. This model, which uses a simple functional operation (normalization) for which there is considerable experimental support,
also accounts for the recent observation that the mathematical rule by which multisensory neurons combine their inputs changes with
cue reliability. The normalization model, which makes a strong testable prediction regarding cross-modal suppression, may therefore
provide a simple unifying computational account of the important features of multisensory integration by neurons.

In an uncertain environment, organisms often need to react quickly
to subtle changes in their surroundings. Integrating inputs from mul-
tiple sensory systems (for example, vision, audition and somatosensa-
tion) can increase perceptual sensitivity, enabling better detection or
discrimination of events in the environment!~3. A basic question in
multisensory integration is: how do single neurons combine their uni-
sensory inputs? Although neurophysiological studies have revealed
a set of empirical principles by which two sensory inputs interact
to modify neural responses®, the computations performed by neural
circuits that integrate multisensory inputs are not well understood.
A prominent feature of multisensory integration is the principle of
inverse effectiveness, which states that multisensory enhancement is large
for weak multimodal stimuli and decreases with stimulus intensity*~”.
A second prominent feature is the spatial/temporal principle of multisen-
sory enhancement, which states that stimuli should be spatially congruent
and temporally synchronous for robust multisensory enhancement to
occur, with large spatial or temporal offsets leading instead to response
suppression®-10. Although these empirical principles are well established,
the nature of the mechanisms required to explain them remains unclear.
We recently measured the mathematical rules by which multisen-
sory neurons combine their inputs'!. These studies were performed
in the dorsal medial superior temporal area (MSTd), where visual
and vestibular cues to self-motion are integrated'?-4. We found that
bimodal responses to combinations of visual and vestibular inputs were
well described by a weighted linear sum of the unimodal responses,
consistent with recent theory!®. Notably, however, the linear weights
appeared to change with reliability of the visual cue!l, suggesting that
the neural ‘combination rule’ changes with cue reliability. It is unclear
whether this result implies dynamic changes in synaptic weights with
cue reliability or whether it can be explained by network properties.
We propose a divisive normalization model of multisensory integra-
tion that accounts for the apparent change in neural weights with cue
reliability, as well as several other important empirical principles of
multisensory integration. Divisive normalization!® has been success-
ful in describing how neurons in primary visual cortex (V1) respond

to combinations of stimuli having multiple contrasts and orienta-
tions!”18, Divisive normalization has also been implicated in motion
integration in area MT?, as well as in attentional modulation of neural
responses?’. Our model extends the normalization framework to
multiple sensory modalities, demonstrates that a simple set of neural
operations can account for the main empirical features of multisen-
sory integration and makes predictions for experiments that could
identify neural signatures of normalization in multisensory areas.

RESULTS

Brief description of the model

The model consists of two layers of primary neurons, each sensitive
to inputs from a different sensory modality (for example, visual or
auditory), and one layer of multisensory neurons that integrate the
primary sensory inputs (Fig. 1a). In our basic version of the model,
we assume that a pair of primary neurons with spatially overlapping
receptive fields provides input to the same multisensory neuron.
Therefore, each multisensory neuron has spatially congruent recep-
tive fields, similar to neurons in the superior colliculus®.

The unisensory inputs to each multisensory neuron increase
monotonically, but sublinearly, with stimulus intensity (Fig. 1b). This
input nonlinearity models response saturation in the sensory inputs?!,
which could be mediated by means of synaptic depression®? or nor-
malization within the unisensory pathways. This assumption has little
effect on the multisensory properties of model neurons, but it plays an
important role in the response to multiple unisensory inputs.

Following the input nonlinearity, each multisensory neuron
performs a weighted linear sum (E) of its unisensory inputs with
weights, d; and d,, that we term modality dominance weights

E =d;-I1(xq, y0) + dy - I (x0, yo) 1)

Here, I 1(xo, yo) and Iz(x(y yO) represent, in simplified form, the two
unisensory inputs to the multisensory neuron, indexed by the spatial
location of the receptive fields (see Online Methods for a detailed
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Figure 1 Schematic illustration of the normalization model of
multisensory integration. (a) Overview of network architecture. The model
consists of two layers of primary neurons that respond exclusively to
sensory modalities 1 and 2. These primary sensory units feed into a layer
of multisensory neurons that integrate responses from unisensory inputs
with matched receptive fields. (b) Signal processing at the multisensory
stage. Each unisensory input first passes through a nonlinearity that
could represent synaptic depression or normalization in the unisensory
pathways. The multisensory neuron then performs a weighted linear sum
of its inputs with modality dominance weights, d; and d,. Following an
expansive power-law nonlinearity that could represent the transformation
from membrane potential to firing rate, the response is normalized by the
net activity of all other multisensory neurons.

formulation). The modality dominance weights are fixed for each
multisensory neuron in the model (they do not vary with stimulus
parameters), but different neurons have different combinations of
d, and d, to simulate various degrees of dominance of one sensory
modality. Following an expansive power-law output nonlinear-
ity, which simulates the transformation from membrane potential
to firing rate!”-?3, the activity of each neuron is divided by the net
activity of all multisensory neurons to produce the final response
(divisive normalization!®)

E?l
R=— =
n (1\N o (2)
“ +(ﬁ)zj=1Ef

The parameters that govern the response of each multisensory neuron
are the modality dominance weights (d, and d,), the exponent (1) of the
output nonlinearity, the semi-saturation constant (¢) and the locations
of the receptive fields (xo, yO). The semi-saturation constant, ¢, deter-
mines the neuron’s overall sensitivity to stimulus intensity, with larger
ashifting the intensity-response curve rightward on a logarithmic axis.
We found that this simple model accounts for key empirical principles
of multisensory integration that have been described previously.

Inverse effectiveness

The principle of inverse effectiveness states that combinations of
weak inputs produce greater multisensory enhancement than com-
binations of strong inputs*~7. In addition, the combined response to
weak stimuli is often greater than the sum of the unisensory responses
(super-additivity), whereas the combined response to strong stimuli
tends toward additive or sub-additive interactions. Note, however,
that inverse effectiveness can hold independent of whether weak
inputs produce super-additivity or not”4. The normalization model
accounts naturally for these observations, including the dissociation
between inverse effectiveness and super-additivity.

We examined responses of a representative model neuron (d, = d,)
as a function of the intensities of the two unisensory inputs (Fig. 2a).
For inputs of equal strength (Fig. 2b), bimodal responses exceed the
corresponding unimodal responses at all intensities, consistent with
physiological results obtained with balanced unisensory stimuli that
are centered on the receptive fields?4. For low stimulus intensities,
the bimodal response exceeds the sum of the unimodal responses,
indicating super-additivity (Fig. 2b). However, as stimulus intensity
increases, the bimodal response becomes sub-additive, demonstrating
inverse effectiveness.

To quantify this effect, we computed an additivity index, which
is the ratio of the bimodal response to the sum of the two unimodal
responses. The normalization model predicts that super-additivity
(additivity index > 1) only occurs when both sensory inputs have low
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intensities (Fig. 2¢), which may explain why super-additivity was not
seen in previous studies in which one input was fixed at a high inten-
sity!!. Furthermore, the degree of super-additivity is determined by
the exponent parameter (1) of the output nonlinearity (Fig. 2d). For
an exponent of 2.0, which we used as a default?®, the model predicts
an additivity index = 2 for low intensities (Fig. 2d). Larger exponents
produce even greater super-additivity, whereas the model predicts
purely additive responses to low intensities when the exponent is 1.0
(Fig. 2d). Thus, the degree of super-additivity is determined by the
curvature of the power-law nonlinearity and greater super-additivity
can be achieved by adding a response threshold to the model (data
not shown).

For large stimulus intensities, responses become sub-additive (addi-
tivity index < 1) regardless of the exponent (Fig. 2d) and this effect
is driven by divisive normalization. Thus, all model neurons exhibit
inverse effectiveness, but super-additivity is seen only when responses
are weak, such that the expansive output nonlinearity has a substantial
effect. These predictions are qualitatively consistent with physiological
data from the superior colliculus, where neurons show inverse effective-
ness regardless of whether or not they show super-additivity, and only
neurons with weak multisensory responses exhibit super-additivity?*.

To evaluate performance of the model quantitatively, we compared
model predictions to population data from the superior colliculus®.
Response additivity was quantified by computing a z score’ that quan-
tifies the difference between the bimodal response and the sum of
the two unimodal responses (a z score of zero corresponds to perfect
additivity, analogous to additivity index = 1). For combined visual-
auditory stimuli, significant super-additivity (z score > 1.96) was
observed for weak stimuli and additivity was seen for stronger stimuli
(Fig. 2e), thus demonstrating inverse effectiveness. After adding
Poisson noise and adjusting parameters to roughly match the range
of firing rates, the normalization model produces very similar results
(Fig. 2f). Thus, the model accounts quantitatively for the transition
from super-additivity at low intensities to additivity (or sub-additivity)
at high intensities, with a single set of parameters. Although these
simulations assumed specific model parameters, inverse effectiveness
is a robust property of the model even when stimuli are not centered
on the receptive fields, or modality dominance weights are unequal
(Supplementary Figs. 1 and 2).

Spatial principle of multisensory integration

The spatial principle of multisensory enhancement states that a less
effective stimulus from one sensory modality (for example, a stimulus
placed off the receptive field center) can suppress the response to
a highly effective stimulus from the other modality®!?. Divisive
normalization accounts naturally for this effect (Fig. 3).
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In this simulation, one of the unimodal inputs (input 1) is pre-
sented in the center of the receptive field, while the other input
(input 2) is spatially offset from the receptive field center by differ-
ent amounts (Fig. 3a). When both inputs are centered on the recep-
tive field (Fig. 3b), the combined response exceeds the unimodal
responses for all stimulus intensities (as in Fig. 2b). As input 2 is
offset from the receptive field center, the bimodal response decreases
relative to that of the more effective input 1. Notably, when the stimu-
lus offset substantially exceeds 1 s.d. of the Gaussian receptive field
profile (Fig. 3b), the combined response becomes suppressed below
the unimodal response to input 1. Hence, the model neuron exhi-
bits the spatial principle. The intuition for this result is simple: the

Figure 3 Normalization and the spatial principle a
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Figure 2 Normalization accounts for the principle of the inverse
effectiveness. (a) The bimodal response of a model unit is plotted as

a function of the intensities of input 1 and input 2. Both inputs were
located in the center of the receptive field. Diagonal line, inputs with
equal intensities. Exponent, n = 2.0. (b) The bimodal response (solid
black curve) and the unimodal responses (red and blue curves) are plotted
as a function of stimulus intensity (from the diagonal of a). The sum of
the two unimodal responses is shown as the dashed black curve. The red
and blue curves have slightly different amplitudes to improve clarity.

(c) Additivity index is plotted as a function of both input intensities.
Additivity index > 1 indicates super-additivity and additivity index < 1
indicates sub-additivity. (d) Additivity index values (from the diagonal of ¢)
are plotted as a function of intensity for three exponent values: n=1.0,
2.0 and 3.0. (e) Data from cat superior colliculus, demonstrating inverse
effectiveness (replotted from ref. 26). The zscored bimodal response
(+s.d.) is plotted against the predicted sum of the two unimodal responses,
both for cross-modal (visual-auditory) inputs (black curve) or pairs of visual
inputs (red). zscore values > 1.96 represent significant super-additivity
and values < —1.96 denote significant sub-additivity. (f) Model predictions
match the data from cat superior colliculus. For this simulation, model
neurons had all nine combinations of dominance weights from the set

(d;, d, =0.50, 0.75 or 1.00), and the exponent, n, was 1.5.

less effective (that is, offset) input contributes little to the underlying
linear response of the neuron, but contributes strongly to the
normalization signal because the normalization pool includes neu-
rons with receptive fields that span a larger region of space. Note
that the model neuron exhibits inverse effectiveness for all of these
stimulus conditions (Fig. 3¢), although super-additivity declines as
the spatial offset increases.

We examined data from two cat superior colliculus neurons that
illustrate the spatial principle®?” (Fig. 3d). Both neurons show cross-
modal enhancement when the spatial offset between visual and audi-
tory stimuli is small and a transition toward cross-modal suppression
for large offsets. The normalization model captures the basic form of
these data nicely (Fig. 3d). We are not aware of any published data that
quantify the spatial principle for a population of neurons.

For the example neurons (Fig. 3d), responses to the offset stimulus
were not presented™?’, so it is not clear whether cross-modal suppres-
sion occurs while the non-optimal stimulus is excitatory on its own.
However, the normalization model makes a critical testable predic-
tion: in a specific stimulus domain, the less effective input 2 evokes
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a clearly excitatory response on its own (Fig. 3b), but suppresses
the response to the more effective input 1 when the two inputs are
presented together. Analogous interactions between visual stimuli
were demonstrated in V1 neurons and attributed to normalization!”.
Notably, the cross-modal suppression (Fig. 3b) appears to be a signa-
ture of a multisensory normalization mechanism, as alternative model
architectures that do not incorporate normalization?®2° fail to exhibit
this behavior (Supplementary Figs. 3 and 4).

An analogous empirical phenomenon is the temporal principle of
multisensory integration, which states that multisensory enhancement
is strongest when inputs from different modalities are synchronous and
declines when the inputs are separated in time®. The normalization
model also accounts for the temporal principle as long as there is vari-
ation in response dynamics (for example, latency and duration) among
neurons in the population, such that the temporal response of the nor-
malization pool is broader than the temporal response of individual
neurons (Supplementary Fig. 5). More generally, in any stimulus
domain, adding a non-optimal (but excitatory) stimulus can produce
cross-modal suppression if it increases the normalization signal enough
to overcome the additional excitatory input to the neuron.

Multisensory suppression in unisensory neurons

Multisensory neurons are often much more responsive to one sen-
sory modality than the other. Responses of such neurons to the more
effective input can be suppressed by simultaneous presentation of
the seemingly non-effective input>3°. In the normalization model,
each neuron receives inputs from primary sensory neurons with
modality dominance weights that are fixed (Fig. 1), but the specific
combination of weights (d1,d2) varies from cell to cell. We found
that normalization accounts for response suppression by the non-
effective input.

We simulated responses for four model neurons (Fig. 4) with dif-
ferent combinations of modality dominance weights, ranging from
balanced inputs (d;, = 1.0, d, = 1.0) to strictly unisensory input
(d, = 1.0, d, = 0). When modality dominance weights are equal
(d, = 1.0, d, = 1.0), the model shows multisensory enhancement
(Fig. 4b). As the weight on input 2 is reduced, the bimodal response
declines along with the unimodal response to input 2. Notably,
when d, is approximately 0.5 or less, the bimodal response becomes
suppressed below the best unimodal response (Fig. 4b). For the
unisensory neuron with d2 = 0, input 2 evokes no excitation, but
suppresses the combined response. This effect is reminiscent of cross-
orientation suppression in primary visual cortex!831:32,

Normalization accounts for cross-modal suppression in unisensory
neurons by similar logic used to explain the spatial principle: although
input 2 makes no contribution to the linear response of the neuron
when d2 =0, it still contributes to the normalization signal via other
responsive neurons with nonzero d,. This effect is robust as long as
the normalization pool contains neurons with a range of modality
dominance weights. Response additivity (Fig. 4c) again shows inverse
effectiveness in all conditions, with super-additivity for weak, bal-
anced inputs.

To assess model performance quantitatively, we compared predic-
tions to an extensive dataset of multisensory responses of macaque
ventral intraparietal (VIP) neurons to visual and tactile stimuli®’.
In this dataset, a measure of response additivity is plotted against
a measure of multisensory enhancement (Fig. 4d). The pattern of
data across the population of VIP neurons is largely reproduced by
a subset of model neurons that vary along just two dimensions: the
semi-saturation constant (&) and the ratio of dominance weights
(d,/d)). Increasing the value of « shifts the intensity-response curve
to the right and yields greater super-additivity for a fixed stimulus
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Figure 4 Multisensory suppression in unisensory neurons. (a) Responses were simulated for four model neurons. The dominance weight for modality 1,
dy, was fixed at unity while the dominance weight for modality 2, d,, decreased from left to right (denoted by the number of receptive field contours).
Input 1 (+) and input 2 (x) were presented in the center of the receptive fields. (b) Responses as a function of intensity are shown for input 1 (red),
input 2 (blue) and both inputs together (black). Data are presented as in Figure 3b. (c) Additivity index is plotted as a function of intensity for the four
model neurons. Data are presented as in Figure 3c. (d) Summary of multisensory integration properties for a population of neurons from area VIP (black
symbols), re-plotted from ref. 30. The ordinate shows a measure of response additivity: (Bi — (U; + U,)) / (Bi + (U; + U,)) x 100, for which positive
and negative values indicate super-additive and sub-additive interactions, respectively. Bi: bimodal response; U, U,: unimodal responses. The abscissa
represents a measure of response enhancement: (Bi — max (U, U,)) / (Bi + max (U;, U,)) x 100, for which positive and negative values denote cross-
modal enhancement and cross-modal suppression, respectively. Colored symbols represent predictions of the normalization model for units that vary

in the ratio of dominance weights (d,/d;, ranging from O to 1) and the semi-saturation constant, ¢, ranging from 1 to 16. The exponent, n, was 2.5.
Numbered symbols correspond to model neurons for which responses are shown as bar graphs (right).

778

VOLUME 14 | NUMBER 6 | JUNE 2011 NATURE NEUROSCIENCE



@ © 2011 Nature America, Inc. All rights reserved.

a Input 1b offset = 0 1c 2c 30
@)|© (@ (@4 (©
& & N

b 120 ; —— Combined
—e— Input 1a

o 1% 4. Input 1b . .

s 80 7 ) Ve p Ve

g

: /

C

x

S

£

=

=

%

<

25
012345678910 012345678910 012345678910 012345678910
Log stimulus intensity: input 1a, input 1b

Figure 5 Interactions among within-modality inputs. (a) The stimulus
configuration was similar to that of Figure 3a except that two stimuli of
the same sensory modality, input 1a (+) and input 1b (x) were presented,
and one was systematically offset relative to the receptive field of modality 1
(red contours). No stimulus was presented to the receptive field of
modality 2 (blue contours). (b) Responses of a model neuron are shown
for input 1a alone (solid red curve), Input 1b alone (dashed red curve) and
both inputs together (black curve). (¢) Additivity index as a function of
stimulus intensity shows that model responses to pairs of within-modality
inputs are additive or sub-additive with no super-additivity.

intensity. For a fixed value of ¢, varying the ratio of dominance
weights shifts the data from upper right toward lower left. Model
neuron 4 (Fig. 4d) is an example of multisensory suppression in a
unisensory neuron. Overall, a substantial proportion of variance
in the VIP data can be accounted for by a normalization model
in which neurons vary in two biologically plausible ways: overall
sensitivity to stimulus intensity () and relative strength of the two
sensory inputs (d,/d,).

Response to within-modal stimulus combinations

Previous studies have reported that two stimuli of the same sensory
modality (for example, two visual inputs) interact sub-additively,
whereas two stimuli of different modalities can produce super-
additive interactions?®. This distinction arises naturally from the
normalization model if each unisensory pathway incorporates a sub-
linear nonlinearity (Fig. 1b) that could reflect synaptic depression or
normalization operating at a previous stage.

We examined responses to two inputs from the same modality
(input la and input 1b) for a model neuron (Fig. 5). Input la is pre-
sented at the center of the receptive field, while input 1b is systemati-
cally offset from the receptive field center (Fig. 5a). When both inputs
are centered in the receptive field (Fig. 5b), the combined response
is modestly enhanced. The corresponding additivity index curve
(Fig. 5¢) indicates that the interaction is additive for weak inputs and
sub-additive for stronger inputs. This result contrasts sharply with
the super-additive interaction seen for spatially aligned cross-modal
stimuli (Figs. 2b and 3b). As input 1b is offset from the center of the
receptive field (Fig. 5b), the combined response becomes suppressed
relative to the stronger unisensory response. The additivity index
curves demonstrate that the interaction is either additive or sub-
additive for all spatial offsets (Fig. 5¢).

Presenting two overlapping inputs from the same modality is
operationally equivalent to presenting one input with twice the
stimulus intensity. As a result of the sublinear nonlinearity in each
unisensory pathway, doubling the stimulus intensity does not double

ARTICLES

the postsynaptic excitation. As a result, the combined response does
not exhibit super-additivity for low intensities, even with an expansive
output nonlinearity in the multisensory neuron (n = 2.0). For high-
stimulus intensities, the combined response becomes sub-additive
as a result of normalization. If normalization were removed from
the model, combined responses would remain approximately addi-
tive across all stimulus intensities (data not shown). For large spatial
offsets and strong intensities, the combined response is roughly the
average of the two single-input responses (Fig. 5b). Similar averaging
behavior has been observed for superior colliculus neurons?®, as well
as neurons in primary'® and extrastriate333# visual cortex.

In the superior colliculus?®, super-additivity was substantially
reduced for pairs of inputs from the same modality (Fig. 2e) relative to
cross-modal inputs. This difference is reproduced by the normaliza-
tion model (Fig. 2f) with a single set of model parameters. Hence, the
inclusion of an input nonlinearity appears to account quantitatively
for the difference in additivity of responses between cross-modal and
within-modal stimulation.

Multisensory integration and cue reliability

We found that normalization accounts for key empirical principles
of multisensory integration. We then examined whether the model
can account for quantitative features of the combination rule by
which neurons integrate their inputs. We recently demonstrated that
bimodal responses of multisensory neurons in area MSTd are well
approximated by a weighted linear sum of visual and vestibular inputs,
but that the weights appear to change with visual cue strength!!. To
explain this puzzling feature of the multisensory combination rule,
we performed a virtual replication of the MSTd experiment!! using
model neurons. To capture known physiology of heading-selective
neurons!33°, we modified the model architecture such that each
cell had spherical heading tuning, lateral heading preferences were
more common than fore-aft preferences, and many neurons had mis-
matched heading tuning for the two cues (see Online Methods and
Supplementary Figs. 6 and 7).

Responses of model neurons were computed for eight heading
directions in the horizontal plane using visual inputs alone, vestibular
inputs alone, and all 64 combinations of visual and vestibular head-
ings, both congruent and conflicting. The bimodal response profile
of an example neuron, Rbimodal((pvest’ (pvis), is plotted as a color con-
tour map, along with the two unimodal response curves, R, (¢,.,)
and R, (¢,,,), along the margins (Fig. 6a). The intensity of the vesti-
bular cue was kept constant while the intensity of the visual cue was
varied to simulate the manipulation of motion coherence used in
MSTd!!. At 100% coherence, the bimodal response is dominated by
the visual input, as is typical of MSTd neurons!!. As visual inten-
sity (motion coherence) is reduced, the bimodal response profile
changes shape and becomes dominated by the vestibular heading
tuning (Fig. 6a-c).

The bimodal response of each model neuron was fit with a weighted
linear sum of the two unimodal response curves

Rbimodal((Pvest’(ovis) = Wyest * Ryest ((Pvest) + Wyis  Ryis ((Dvis) +C 3)

The mixing weights, w,,,and w,, were obtained for each of the three
visual intensities, corresponding to motion coherences of 25, 50 and
100%. This analysis was performed for model neurons with different
combinations of modality dominance weights ( dv d & all combina-

est” v
tions of values 0.25, 0.5, 0.75 and 1.0). Note that d, ., d,; characterize

vis
how each model neuron weights its vestibular and visual inputs and
that these modality dominance weights are fixed for each neuron in
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Figure 6 Normalization accounts for apparent
changes in the multisensory combination rule
with cue reliability. (a) Responses of a model
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MSTd, replotted from ref. 11 as large open symbols.

the model. In contrast, Weest and W, are weights that characterize
the best linear approximation to the model response for each
stimulus intensity.

For all visual intensities, the weighted linear fit was a good
approximation to responses of model neurons, with average R?
values of 0.98, 0.96 and 0.96 for simulated coherences of 25, 50 and
100%, respectively. Notably, different values of Wt and w,,;, were
required to fit the data for different coherences. Specifically, w,
decreased with coherence (Fig. 6d) and w,, increased with coher-
ence (Fig. 6e). The slope of these dependencies was similar for all
model neurons, whereas the absolute values of w, . and w, varied
somewhat with the modality dominance weights assigned to each
neuron. To summarize this effect, we examined the average weight
ratio, w; /w, - as a function of coherence, normalized to a value
of 1 at 100% coherence (Fig. 6f). The results are similar to the data
from area MSTd'!, including the fact that weight changes are
similar for cells with congruent and opposite heading preferences
(Fig. 6d,e). Because this result depends mainly on response satura-
tion, it could also be predicted by other models that incorporate a
saturating nonlinearity.

The effect of coherence on the visual and vestibular mixing weights
can be derived from the equations of the normalization model, with a

few simplifying assumptions (including # = 1.0). The mixing weights,

W, and W, can be expressed as (see Online Methods)
Otk cyegt o+k-cyig
Wyest = »Wyis = (4)
0+ k- (Cyest +Cyis) o +k-(Cyest +Cvis)
Clearly, w,, declines as a function of visual intensity (c ; ), whereas
w,;s Tises as a function of c ;.. In our simulations (Fig. 6), the exponent

(n) was 2.0. In this case, the mixing weights become functions of the
modality dominance weights (dvest, dvis) as well as stimulus intensities,
resulting in vertical shifts among the curves (Fig. 6d,e).

In summary, normalization simply and elegantly accounts for the
apparent changes in mixing weights exhibited by MSTd neurons
as coherence was varied!!. For any particular combination of stim-

ulus intensities, the behavior of the normalization model can be

approximated as linear summation, but the effective mixing weights
appear to change with stimulus intensity as a result of changes in the
net activity of the normalization pool.

DISCUSSION

We propose that divisive normalization can explain many fundamen-
tal response properties of multisensory neurons, including the empiri-
cal principles described in seminal work on the superior colliculus*>
and the effect of cue reliability on the neural combination rule in area
MSTd!!. The normalization model is attractive because it relies on
relatively simple and biologically plausible operations®. Thus, the
same basic operations that account for stimulus interactions in visual
cortex!”71% and attentional modulation?® may also underlie various
nonlinear interactions exhibited by multisensory neurons. The nor-
malization model may therefore provide a good computational foun-
dation for understanding multisensory cue integration.

Critical comparison with other models
Despite decades of research, quantitative models of multisensory
integration have only recently been proposed?®2%37-40, One of the
first mechanistic models of multisensory integration3740
partmental model of single neurons that accounts for inverse effec-
tiveness and sub-additive interactions between inputs from the same
modality. It was also constructed to account for the modulatory effect
of top-down cortical input on multisensory integration in the superior
colliculus*42. This model shares some elements with ours: it includes
a squaring nonlinearity that produces super-additivity for weak inputs
and a shunting inhibition mechanism that divides the response by
the net input to each compartment. Notably, this model does not
incorporate interactions among neurons in the population. Thus, it
cannot account for the spatial principle of multisensory integration
or cross-modal suppression in unisensory neurons. In addition, this
model cannot account for the effects of cue reliability on the neural
combination rule, as seen in area MSTd!!.

In contrast with this compartmental mode , a recent neural
network architecture?®?® incorporates lateral interactions among
neurons with different receptive field locations. Similar to the

is a com-

137,40

780

VOLUME 14 | NUMBER 6 | JUNE 2011 NATURE NEUROSCIENCE



@ © 2011 Nature America, Inc. All rights reserved.

normalization model, this neural network model can account for
inverse effectiveness and the spatial principle, but there are important
conceptual differences between the two schemes. First, to produce
inverse effectiveness, the neural network model?8:2% incorporates
a sigmoidal output nonlinearity into each model neuron (see also
ref. 39). In contrast, in the normalization model, response saturation
at strong intensities arises from the balance of activity in the network,
not from a fixed internal property of individual neurons. Second,
although the neural network model can produce cross-modal sup-
pression, it appears to do so only when the less effective input is no
longer excitatory on its own?, but rather becomes suppressive as a
result of lateral connections that mediate subtractive inhibition. We
verified this observation by simulating an alternative model contain-
ing the key structural features of the neural network model?®2°. This
alternative model only produces cross-modal suppression when the
non-optimal input is no longer excitatory (Supplementary Figs. 3
and 4). Thus, the key testable prediction of the normalization model,
that an excitatory non-optimal input can yield cross-modal suppres-
sion (Fig. 3), does not appear to be shared by other models of multi-
sensory integration. The divisive nature of lateral interactions in the
normalization model appears to be critical for this prediction. Indeed,
the alternative model does not account for the VIP data®® (Fig. 4d) as
successfully as the normalization model (Supplementary Fig. 8).

A recent elaboration of the neural network model®® incorporates
a number of specific design features to account for the experimental
observation*!=43 that inactivation of cortical areas in the cat gates
multisensory enhancement by superior colliculus neurons. We have
not attempted to account for these results in our normalization model,
as it is intended to be a general model of multisensory integration,
rather than a specific model of any one system.

A recent computational theory!> has demonstrated that popu-
lations of neurons with Poisson-like spiking statistics can achieve
Bayes-optimal cue integration if each multisensory neuron simply
sums its inputs. Thus, nonlinear interactions such as divisive nor-
malization are not necessary to achieve optimal cue integration.
Because this theory!® involves simple summation by neurons, inde-
pendent of stimulus intensity, it cannot account for various empiri-
cal principles of multisensory integration discussed here, including
the effects of cue reliability on the neural combination rule!l. It is
currently unclear what roles divisive normalization may have in a
theory of optimal cue integration and this is an important topic for
additional investigation.

Parallels with visual cortical phenomena
Divisive normalization was initially proposed!® to account for
response properties in primary visual cortex. Normalization has often
been invoked to account for stimulus interactions in the responses
of cortical neurons!”193344 and has been implicated recently in the
modulatory effects of attention on cortical responses?. The appar-
ent ubiquity of divisive normalization in neural circuits’®*> makes
normalization operating at the level of multisensory integration an
attractive general model to account for cross-modal interactions.
Perhaps the clearest experimental demonstration of normalization
comes from a recent study'® that measured responses of V1 neurons
to orthogonal sine-wave gratings of various contrasts. This study
found that population responses to any pair of contrasts can be well
fit by a weighted linear sum of responses to the individual gratings.
However, as the relative contrasts of the gratings varied, a linear model
with different weights was required to fit the data'$, as predicted by
divisive normalization. This result closely parallels the finding!! that
the multisensory combination rule of MSTd neurons depends on the
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relative strengths of visual and vestibular inputs. Here, we found that
multisensory normalization can account for analogous phenomena
observed in multisensory integration!!.

In summary, empirical principles of multisensory integration have
guided the field for many years*, but a simple computational account
of these principles has been lacking. We found that divisive normali-
zation accounts for the classical empirical principles of multisensory
integration as well as recent findings regarding the effects of cue relia-
bility on cross-modal integration. The normalization model is appeal-
ing for its simplicity and because it invokes a functional operation that
has been repeatedly implicated in cortical function. Moreover, the
model makes a key prediction, that a non-optimal excitatory input can
produce cross-modal suppression, which can be tested experimen-
tally. Although this prediction has not yet been tested systematically, a
careful inspection of published data!®3%46 reveals some examples that
may demonstrate cross-modal suppression by a non-optimal excita-
tory input, although it is generally not clear whether the non-optimal
input is significantly excitatory. We systematically examined cross-
modal suppression in area MSTd and preliminary results support the
model predictions (T.O., D.E.A. & G.C.D., unpublished observations).
Thus, normalization may provide a simple and elegant account of
many phenomena in multisensory integration.

METHODS
Methods and any associated references are available in the online
version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS

Two different versions of the normalization model were simulated: one to model
multisensory spatial integration in the superior colliculus and area VIP (Fig. 1),
and the other to model visual-vestibular integration of heading signals in area
MSTd (Supplementary Figs. 6 and 7).

Spatial model: primary sensory neurons. Each unimodal input to the spatial
integration model is specified by its intensity ¢ and its spatial position in Cartesian
coordinates, 6 = (xg y,). The spatial receptive field of each primary sensory
neuron is modeled as a two-dimensional Gaussian

P 2
G(é;@) = expﬂ (5)

20
where 6= (x4>7g) represents the center location of the receptive field.
Arbitrarily, x4,y4 take integer values between 1 and 29, such that
there are 29 x 29 = 841 sensory neurons with distinct 8 in each primary
sensory layer. The size of the receptive field, given by o, was chosen to be 2
(arbitrary units).

The response of each primary sensory neuron was assumed to scale linearly
with stimulus intensity, ¢, such that the response can be expressed as

c: G(é; 0) (6)

In addition, we assume that two inputs of the same sensory modality, presented at
spatial positions 6, , 0, interact linearly such that the net response is given by

Cla 'G(é;ela)+C1b G(é,elb) (7)

where ¢, , ¢, represent the intensities of the two inputs.
We further assume that the linear response in each unisensory pathway is
transformed by a nonlinearity, i(x), such that the unisensory input is given by

hic-G(6;6)) ®)

We used a sublinearly increasing function, h(x) = Jx to model this nonlinearity,
although other monotonic functions such as log(x +1) or % appear to work
equally well. This nonlinearity models the sublinear intensity response functions
often seen in sensory neurons*”. It might reflect synaptic depression®? at the
synapse to the multisensory neuron or normalization operating in the unisensory
pathways. This input nonlinearity, h(x), has little effect on the multisensory inte-
gration properties of model neurons, but it is important for responses to multiple
unisensory inputs (Fig. 5).

Spatial model: multisensory neurons. Each multisensory neuron in the model
receives inputs from primary neurons of each sensory modality, as denoted by
a subscript (1 or 2). The multisensory neuron performs a weighted linear sum
of the unisensory inputs

E(d},0),d5,0535¢1,01,¢2,0,) =dy - hlcy - Gy (6130))) + dy - h(cy - Gp(6236,))  (9)

The modality dominance weights, d, and d,, are fixed parameters of each multi-
sensory neuron and each weight takes one of five values: 1.0, 0.75, 0.5, 0.25 or 0.
Thus, 5 x 5 = 25 multisensory neurons with distinct combinations of modality
dominance weights are included for each set of unisensory inputs. The linear
response of the i neuron E; (equation (9)) is then subjected to an expansive
power-law output nonlinearity and divisively normalized by the net response of
all other units, to obtain the final output (R,) of each neuron

Ef
1 N
o'+ =Y EY
N )&~ j=1"
Here, o is a semi-saturation constant (fixed at 1.0), N is the total number of
multisensory neurons, and # is the exponent of the power-law nonlinearity that

represents the relationship between membrane potential and firing rate!”-?3,
The exponent, 1, was assumed to be 2.0 in our simulations, except where noted

R = (10)

(Fig. 2d). Model responses were simulated for the following stimulus intensities:
€6, =0,1,2,4,8,16,32, 64, 128, 256, 512 and 1,024.

To compare model responses to the physiological literature, an additivity index
(AI) was computed as the ratio of the bimodal response to the sum of the uni-
modal responses

Rbimodal
Runimodal 1 *+ Runimodal 2

Al = (11)

R imodal 1» Runimodal 2 are obtained by setting one of the stimulus intensities,
€L 0rcy, to zero.

In the simulations of Figures 2-5, the receptive fields of the two primary
sensory neurons projecting to a multisensory neuron were assumed to be spa-
tially congruent (él = éz)~ In total, there were 841 (receptive field locations) x
25 (modality dominance weight combinations) = 21,025 distinct units in the
multisensory layer.

For the simulations of Figure 2f, the exponent (n) was fixed at 1.5, and responses
were generated for all nine combinations of three dominance weights: d,, d, = 0.50,
0.75 or 1.00. Five neurons having each combination of dominance weights were
simulated, for a total population of 45 neurons (similar to that recorded previ-
ously?®), Responses were computed for five stimulus intensities (4, 16, 64, 256
and 1,024), Poisson noise was added and eight repetitions of each stimulus were
simulated. A z score metric of response additivity was then computed using a boot-
strap method”»6. Within-modal responses were also simulated (Fig. 2f) for pairs of
stimuli of the same sensory modality, one of which was presented in the receptive
field center while the other was offset from the receptive field center by 1c.

For the simulations of Figure 4d, responses were generated for model neurons
with all possible combinations of five dominance weights (d,,d, = 0, 0.25, 0.50,
0.75 or 1.00) except d, = d, = 0, and semi-saturation constants (¢) taking values
of 1, 2, 4, 8 or 16. The exponent (n) was fixed at 2.5 for this simulation. Two
cross-modal stimuli with intensity = 1,024 were presented at the receptive field
center to generate responses.

To replot published data (Figs. 2e and 4d), a high-resolution scan of the origi-
nal figure was acquired and the data were digitized using software (Engauge,
http://digitizer.sourceforge.net/). To replot the experimental data in Figure 3d,
peristimulus time histograms from the original figure were converted into binary
matrices using the ‘imread’ function in MATLAB (MathWorks). Spike counts
were tallied from the digitized peristimulus time histograms and used to compute
the enhancement index.

Visual-vestibular heading model. To simulate multisensory integration of head-
ing signals in macaque area MSTd (Supplementary Fig. 6), the normalization
model was modified to capture the basic physiological properties of MSTd neu-
rons. Because heading is a circular variable in three dimensions!?, responses of
the unisensory neurons (visual, vestibular) were modeled as

1 1+cos(9) + 5.10076

100 2 100

(12)
Here, c represents stimulus intensity (for example, the coherence of visual motion)
ranging from 0-100, and ¢ represents the angle between the heading prefer-
ence of the neuron and the stimulus heading. ¢ can be expressed in terms of the
azimuth () and the elevation (§) components of the heading preference, as well
as azimuth (¢) and elevation (6) components of the stimulus
@ = arccos(H-H) (13)
where H = [cosé -cos, cosb- sin(i),siné] and H=[cos0-cos¢,cos0-sin@,sinb].
The dot operator denotes the inner product of the two vectors.

In the spatial model (equations (5-10)), we assumed that stimulus intensity
multiplicatively scales the receptive field of model neurons. However, in areas MT
and MST, motion coherence has a different effect on directional tuning*®4°. With
increasing coherence, the amplitude of the tuning curve scales roughly linearly,
but the baseline response decreases*®. To model this effect (see Supplementary
Fig. 7d), we included the right-hand term in equation (12), with & in the range
from 0 to 0.5 (typically 0.1), such that total population activity is an increasing
function of c. However, our conclusions regarding changes in mixing weights with
coherence (Fig. 6d-f) do not depend appreciably on the value of &.

doi:10.1038/nn.2815
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Each model MSTd neuron performs a linear summation of its visual and
vestibular inputs

1+ cos(. ) 100—c¢
E= dvest '(Cvest . ‘Pvest + é vest)

2 100 (14)
1+ cos(@yis) 100 —cy;
+ dvis '(Cvis : P VS é 100 VIS)

where d,,, d,; are the modality dominance weights which take values from the
array [1.0, 0.75, 0.5, 0.25, 0]. In equation (14), the input nonlinearity h(x) was
omitted for simplicity, because it has little effect on the multisensory integration
properties of model neurons, including the simulations of Figure 6 (data
not shown).

In area MSTd, many neurons have heading tuning that is not matched for visual
and vestibular inputs'>. Thus, the model included multisensory neurons with
both congruent and mismatched heading preferences. Our model also incorpo-
rated the fact that there are more neurons tuned to the lateral self-motion than
fore-aft motion!>3. Specifically, two random vector variables, (Pyests Vest) and
(Pyis» VIS) were generated to mimic the experimentally observed distributions of
heading preferences (Supplementary Fig. 7a,b) and visual and vestibular heading
preferences were then paired randomly (200 pairs). To mimic the finding that
more neurons have congruent or opposite heading preferences than expected by
chance!®, we added 28 units with congruent heading preferences, and another 28
with opposite preferences (Supplementary Fig. 7c). Combining these factors, a
population of 256 (heading preference combinations) x 25 (dominance weight
combinations) = 6,400 units comprised our MSTd model. The linear response of
each unit (equation (14)) was squared and normalized by net population activity,
as in equation (10). The semi-saturation constant was fixed at 0.05.

In the simulations of Figure 6, motion coherence took on values of 25, 50
and 100%, while the intensity of the vestibular input was fixed at 50, reflecting
the fact that vestibular responses are generally weaker than visual responses in
MSTd™. In equation (3), baseline activity (Cyis = Cyeqt = 0) Was subtracted from
each response before the linear model was fit. In MSTd!!, the effect of coherence
on the mixing weights, w, . and w;, did not depend on the congruency of visual
and vestibular heading preferences. To examine this in our model (Fig. 6d-f), we
present results for three particular combinations of heading preferences, congru-
ent (Pyest = 90°, Pyis = 90°), opposite (Pyest = 90° Pyis = 270°) and intermediate
(Gyest = 90%(yis =180°), all in the horizontal plane (Byeq = 6yis = 0°). Note,
however, that all possible congruencies are present in the model population
(Supplementary Fig. 7c). For each congruency type, all possible combinations of
modality dominance weights from the set (d,, d, = 1.0,0.75, 0.5, 0.25) were used.
Thus, we simulated responses for a total of 3 (congruency types) x 16 (dominance
weight combinations) = 48 model neurons (Fig. 6d-f). For each congruency
type, simulation results were sorted into three groups according to the ratio of
dominance weights: d /d;; <0.5,0.5 < d, /d;  <2.0,0r2.0<d, /d ;. Data
were averaged within each group. Thus, results are presented (Fig. 6d-f) as nine
curves, corresponding to all combinations of three congruency types and three
weight ratio groups.

Derivation of the cue-reweighting effect. Here, we derive the expression for the effec-
tive mixing weights of the model MSTd neurons (equation (4)) through some simpli-
fication and rearrangement of the equations for the normalization model. Assuming
that the exponent (1) is 1 and that tuning curves simply scale with stimulus intensity
(& = 0), the net population activity in response to a vestibular heading (¢,,) with

intensity c, . and a visual heading (¢,; ) with intensity ¢,,, can be expressed as

de[ z(pmt zdm 2 Ayest *Crest * Frest (Prests Pvest) + yis *Cvis * Fois Puis Puis))

= 2 dyost Zémt 2 dyis Z Ayest * Cvest * Frest (Prests Prest)) + (15)
> doest > oot > e 2 dyis - Cyis * Fuis (Piss Pis))

where Fyegt (Pyests Pvest > Fis (Pvis ,(pws) represent vestibular and visual tuning
curves with heading preferences at et and @y, respectively. Because heading
preferences and dominance weights are randomly crossed in the model popula-
tion, we can assume that this expression can be factorized

Cyest * 21 ) Zl 2 dvest

AZ F vest (¢vest 3 Pyest )

dyis Pvis dyest Pvest
(16)
+ Cyis 2 1| z 1 z dvis 2 vis (pvis;(Pvis)
dyest Pvest dyis buis

If we make the additional simplification that heading preferences, Qyes and
Pvis, are uniformly distributed, then terms involving sums of tuning curves,

z vest (Pvests Pyest) and z ls((p\,ls,(pv]s)become constants. Moreover,
‘Pvest ‘Pvns

the summations z dyest and Z dyis are also constants because d, ., d; are

dyest dyis
fixed parameters in the model. With these simplifications, equation (15) can be
expressed as

k- (Cvest +Cvis) (17)

where k is a constant that incorporates the sums of tuning curves and dominance
weights. The bimodal response of a model neuron can now be expressed as

Rbimodal ((Pvest >Qvis )

Frest (@vest; Prest) + dis - Cvis * Fuis ((Bvis 3 Puis) (18)

0+ k- (cyest + Cyis)

- dvest “Cvest *

Unimodal responses can be obtained by setting one of the stimulus intensities,

orc, ., tozero

Crest vis®

dVESt Cvest FVCSt ((pVESt > (pVESt )

Vest(wvest) o+k- Cyest
@uis) = dyis * Cvis * Fis ((;’vis;(l’vis) (19)
Ryis (@yis ot k-

With these simplifications, the bimodal response (equation (18) can be expressed
as a weighted linear sum of the unimodal responses, with weights that depend
on stimulus intensity

o+ k- cyegt

Ryimodal (Pvest> Pvis) = “Ryest (Pyest)

o+ k'(cvest + Cvis)

oa+kc (20)

vis

vis \Pvis
o+ k'(cvest + Cvis)

Comparing equations (3) and (20), the closed forms of the mixing weights
(equation (4)) are obtained.
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