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Hearing in noisy environments: noise invariance
and contrast gain control

Ben D. B. Willmore, James E. Cooke and Andrew J. King
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Abstract Contrast gain control has recently been identified as a fundamental property of the
auditory system. Electrophysiological recordings in ferrets have shown that neurons continuously
adjust their gain (their sensitivity to change in sound level) in response to the contrast of sounds
that are heard. At the level of the auditory cortex, these gain changes partly compensate for
changes in sound contrast. This means that sounds which are structurally similar, but have
different contrasts, have similar neuronal representations in the auditory cortex. As a result, the
cortical representation is relatively invariant to stimulus contrast and robust to the presence of
noise in the stimulus. In the inferior colliculus (an important subcortical auditory structure),
gain changes are less reliably compensatory, suggesting that contrast- and noise-invariant
representations are constructed gradually as one ascends the auditory pathway. In addition to
noise invariance, contrast gain control provides a variety of computational advantages over static
neuronal representations; it makes efficient use of neuronal dynamic range, may contribute to
redundancy-reducing, sparse codes for sound and allows for simpler decoding of population
responses. The circuits underlying auditory contrast gain control are still under investigation. As
in the visual system, these circuits may be modulated by factors other than stimulus contrast,
forming a potential neural substrate for mediating the effects of attention as well as interactions
between the senses.

Neuroscience @

(Received 11 April 2014; accepted after revision 30 May 2014; first published online 6 June 2014)
Corresponding author A. J. King: University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington
Building, Parks Road, Oxford OX1 3PT, UK. Email: andrew.king@dpag.ox.ac.uk

Abbreviations Al primary auditory cortex; IC, inferior colliculus; MGB, medial geniculate body; PV, parvalbumin;
SC, superior colliculus; SOM, somatostatin; V1, primary visual cortex; VIP, vasoactive intestinal polypeptide.

Introduction minimal effort in an extremely wide range of conditions,
from a whisper in a silent room to a shout in a raging
storm. This belies the difficulty of speech recognition
as a computational problem. Despite a huge economic
imperative and a proportionately large amount of effort
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Understanding speech is perhaps the most important
challenge facing the human auditory system. Listeners
with healthy auditory systems can recognize speech with
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and investment, computer speech recognition systems are
far from perfect, lagging well behind the abilities of an
average human listener. This suggests that our under-
standing of the speech recognition problem has some way
to go.

Speech recognition is most difficult when a voice is
heard in a noisy environment. The most famous and
challenging example of this is the ‘cocktail party problem’
(Cherry, 1953); in a room containing many simultaneous
speakers, understanding speech requires us to separate one
particular voice from the babble of many superimposed
voices, each of which may be perceptually and statistically
similar to the voice of interest. But speech recognition
is challenging even when the background sounds are
not speech. Computer speech recognition systems are
far more sensitive than humans to the presence of back-
ground noise. Furthermore, people with a wide range of
hearing disorders (including age-related hearing loss) find
that understanding speech in the presence of background
noise is difficult. This is often the case even if hearing
aids are used to compensate for their raised thresholds,
suggesting that the difficulty they experience in under-
standing speech in noise may arise from a deficit in central
auditory processing (Eggermont, 2014). These findings,
therefore, highlight the importance of the background
noise problem and suggest that current therapies do not
adequately solve it.

Invariance to background noise

It is useful to think of the background noise problem in
statistical terms. An auditory scene can be thought of as the
sum (superposition) of a signal, S (the sound of interest;
for example, speech that we are trying to recognize), and
background noise, N. The challenge facing the auditory
system is statistically to separate S from N. Of course, the
statistics of S and N may vary from moment to moment,
so the auditory system must be able to adapt dynamically
to changes in these statistics. The cocktail party provides
a worst-case scenario, where the statistics of S and N may
be very similar to one another. Singling out S in this case
is likely to involve highly sophisticated processes involving
inference at multiple levels (from sound waveforms to
phonemes to grammar), and a complete understanding
of this problem is likely to be decades away. However,
many commonly occurring situations involve forms of
background noise that are more tractable.

Consider the case where S is a human voice (whose
frequency content and sound level vary over time) and N
is a droning sound (whose frequency content and sound
level are constant), perhaps from a fan that is periodically
switched on and off. In this case, a relatively simple neural
process may be enough to allow the brain to represent Sina
way that is invariant to background noise. A first attempt
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at solving this problem computationally might involve
simply filtering out the sound frequencies of the back-
ground noise. This could be done in the brain by silencing
neurons that respond to these frequencies. However, many
possible background noises, such as a fan or running water,
are broadband, meaning that they contain a very wide
range of frequencies, overlapping those in a human voice.
In such cases, filtering out the noise frequencies would also
filter out the voice.

Adaptation to stimulus statistics

The brain has a more effective solution to this problem.
Instead of blindly filtering out the frequencies of the back-
ground noise, neurons continually adapt their responses to
match the statistics of the sounds thatare heard (Dean et al.
2005, 2008; Baccus, 2006; Nagel & Doupe, 2006; Watkins
& Barbour, 2008; Robinson & McAlpine, 2009; Zilany et al.
2009; Rabinowitz et al. 2011; Wen et al. 2012). Consider the
effect of background noise on the overall level of a sound.
Sound level is generally measured logarithmically (on a
decibel scale), reflecting the large dynamic range of the
auditory system and the fact that the perceived loudness
of a sound generally grows as a logarithm of its magnitude.
As the level of the background noise increases, the mean
overall sound level (1) of S+ Nincreases and the variance
(0?) decreases (Fig. 1; see Rabinowitz et al. 2011). If these
statistics change sufficiently slowly, it should be possible
for neurons to adapt to the statistical changes, reducing
their responses to the background sound.

Adaptation to mean sound level has been observed at
multiple levels of the auditory system, notably the auditory
nerve (Wen et al. 2009) and inferior colliculus (IC; Dean
et al. 2005). When the mean sound level is high, neurons
shift their dynamic ranges upwards, so that they are more
sensitive to louder sounds. These threshold changes are
compensatory, i.e. the changes in neuronal sensitivity tend
to compensate for the changes in mean stimulus level,
so that the neuronal responses are relatively invariant to
changes in background level.

In the primary auditory cortex of the ferret (Al),
neurons also show compensatory adaptation to sound
level variance, or contrast (Rabinowitz et al. 2011). This
process is known as contrast gain control. When the
contrast of the input to a given neuron is high, the gain of
the neuron is low, so that the neuron is relatively insensitive
to changes in sound level. When the contrast of the input is
low, the gain of the neuron is high, increasing its sensitivity.
Thus, the gain of the neuron changes in such a way that it
tends to compensate for changes in sound contrast.

The combined effect of adaptation to the mean and
contrast of sounds is to minimize the responses of cortical
neurons to a statistically stationary background sound,
N. The remaining neuronal responses mainly depend on
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the signal, S, and are relatively invariant to the contrast
of S. This confers a degree of noise invariance directly
on the responses of cortical neurons and enables them to
represent complex sounds, such as speech, in a fashion that
is robust to the presence of background noise (Rabinowitz
et al. 2013; Mesgarani et al. 2014; Fig. 2).

Other processes underlying noise invariance

Itis important to note that adaptation to stimulus statistics
is not the only strategy used by the auditory system to
separate signal from noise. The processes described above
work well only for signal and noise combinations with
particular characteristics; that is, where the statistics of
the noise, N, are constant (or change only slowly over
time), but the signal, S, is constantly varying. Under other
circumstances (such as the cocktail party problem itself,
where multiple voices are present simultaneously), this
approach will not be sufficient. The brain must therefore
employ additional strategies to separate signal from noise.

Some of these strategies are already understood. It has
been shown, for example, that neurons in the midbrain
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of songbirds (Woolley et al. 2006) and gerbils (Lesica &
Grothe, 2008) adapt their modulation tuning preferences
in order to reduce their responses to background noise.
Neurons in avian auditory cortex acquire noise invariance
through tuning for long sounds with sharp spectral
structure (Moore et al. 2013). Moreover, in humans,
a non-linear representation of sound modulations
contributes to noise robustness (Pasley et al 2012).
Finally, our spatial hearing plays a key role in separating
different sound sources that are present simultaneously,
subsequently improving our ability to identify them (Yost,
1997; Kidd et al. 2005).

It has been shown using magnetoencephalography
recordings that the human brain forms separate
representations of the voices of simultaneous speakers
(Ding & Simon, 2012). It is likely that this separation
reflects the action of several of the above processes, plus
others which operate at higher levels (for example, taking
account of phonemic and grammatical structure), and is
used to separate attended speech from the wide variety
of background sounds that are encountered in the real
world.
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Figure 1. Adaptation to stimulus contrast

-100

Probability

Sound level (dB)

Neural response (spikes / sec)

Sound level (dB)

A, spectrogram of a sample of human speech (a ‘clean’ sound), showing how the frequency content of the speech
changes over time. B, spectrogram of the same speech sample, with noise added (a ‘noisy’ sound). C, idealized
sound-level distributions of the clean (red) and noisy (blue) sound, showing that the noise reduces the standard
deviation, o, of the signal. D, idealized responses of a neuron with contrast gain control. The neuron adjusts its
gain, d, according to the standard deviation of the signal, so that, for both clean and noisy sounds, the dynamic
range of the neuron matches the range of stimulus levels encountered.
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Contrast gain control in other sensory modalities

The auditory cortex is not the only part of the brain
that uses contrast gain control; similar processes have
been observed in the retinae of cats (Shapley & Victor,
1978, 1981), salamanders and rabbits (Baccus & Meister,
2002), the primary visual cortex (V1) of cats (Heeger,
19924,b) and primates (Carandini & Heeger, 1994) and the
Drosophila olfactory system (Olsen et al. 2010). Contrast
gain control in the visual and auditory cortices seems to
behave in similar ways; in both cases, the gain changes
can be described by identical equations (Heeger, 19924,b;
Rabinowitz et al. 2011). In the visual system, contrast
is computed locally, so that the gain of each neuron
is determined by the contrast of the visual image over
an area of the retina close to the receptive field of the
neuron (Webb et al. 2003), rather than over the entire
retinal image. Likewise, in the auditory cortex, the gain
of each neuron is determined by the contrast only at
sound frequencies that are within the receptive field of
the neuron (Rabinowitz et al. 2012), suggesting that
contrast is calculated in a comparable fashion in these
two sensory modalities. Indeed, the similarities between
these processes are sufficiently striking that it has been
suggested that contrast gain control may be a canonical
neural computation (Carandini & Heeger, 2012).

Gain control in multisensory processing

Combining information from different sensory systems
can have a profound effect on perception and behaviour,
by improving stimulus detection and discrimination,
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reducing perceptual uncertainty, and by speeding up
reaction times (reviewed by Alais ef al 2010). At the
neuronal level, the principles underlying multisensory
integration have been revealed most clearly in the
mammalian superior colliculus (SC), which receives
converging visual, auditory and somatosensory inputs
and is involved in orienting the eyes and head toward
salient sensory cues. The largest gain changes tend to be
seen when the individual stimuli are weakly effective in
driving the neurons (Meredith & Stein, 1986) and when
those stimuli are presented in close temporal and spatial
proximity (King & Palmer, 1985; Meredith et al. 1987;
Meredith & Stein, 1996).

Although these principles also apply in a broad sense
to the effects of multisensory stimulation on both the
responses of neurons in other parts of the brain and
behaviour, it is clear that the manner in which stimuli
are combined depends on contextual factors, such as
past experience and behavioural relevance, too (van
Atteveldt et al. 2014). Nevertheless, several attempts
have been made to define the computations underlying
multisensory integration. On the basis of differences
in the way pairs of stimuli within and across sensory
modalities interact to determine the responses of SC
neurons, Alvarado et al. (2007) argued that different rules
operate for the integration of unisensory and multisensory
cues. More recently, however, the divisive normalization
model developed to explain contrast gain control in the
visual cortex (Heeger, 1992a) has been shown to account
for key aspects of multisensory integration, including
its dependence on the relative effectiveness and spatial
locations of the individual stimuli (Ohshiro et al. 2011).
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Figure 2. Noise-invariant neural responses

A, spectrograms of a clean sound (a sample of speech, top), embedded in increasing levels of noise (other rows).
B, simulated responses of an auditory nerve (AN) fibre to these sounds. The fibre shows clear responses to the clean
sound (top), but these are rapidly degraded as more noise is added (other rows). C and D, recorded responses of
neurons in ferret inferior colliculus (IC) and auditory cortex (AC) to the same sounds. In IC (C) and especially in AC
(D), the lower rows more closely resemble the top row, indicating that neuronal responses in the central auditory
pathway are more robust to the addition of noise (i.e. they are more noise invariant). Based on Rabinowitz et al.

(2013).
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Contrast gain control in subcortical and cortical
processing

In the visual literature, contrast gain control is frequently
referred to as contrast normalization. We have so far
avoided using this term to refer to contrast gain control in
the auditory system. In general, normalization refers to a
complete compensation. For example, Z-scoring is a form
of normalization where values are divided by the standard
deviation (much like contrast normalization). This
division means that Z-scoring completely compensates
for the effect of changing the standard deviation, so
that Z-scores from different situations can be compared
directly.

In the visual system, it has been shown that contrast gain
control operates at multiple levels, from retina (Shapley
& Victor, 1978, 1981; Baccus & Meister, 2002) to cortex
(Heeger, 1992a,b). The combined effect of these multiple
stages of gain control to is to approximate contrast
normalization. In the auditory system, however, contrast
gain control has not yet been shown to be sufficiently
complete to be described accurately as normalization
(Fig. 3). In the IC, stimulus contrast affects neuronal
response gain, but the gain changes in individual neurons
do not compensate for changes in contrast as reliably as
those in cortex; different neurons have different strengths
and even directions of gain control (Dean et al. 2005;
Rabinowitz et al. 2013). The cumulative effect of these
small, variable gain changes in individual IC neurons is
to produce a population representation that does show
contrast gain control (Dean ef al. 2005), but at the level of
individual neurons the overall effect is not one of uniform
contrast normalization.

In ferret A1, most neurons are subject to compensatory
gain control, but even here the effect is not strong
enough to compensate completely for changes in
stimulus contrast. Instead, gain changes compensate for
approximately two-thirds of stimulus contrast changes, so
that (for most neurons) responses to high-contrast sounds
are still somewhat stronger than responses to low-contrast
sounds (Rabinowitz et al. 2011).

This suggests that consistent, compensatory contrast
gain control is not a general property of auditory
processing, but is constructed gradually as one ascends the
auditory system. Complete contrast normalization may
be a desirable property of neural circuits (for example,
it would produce more complete noise invariance), so it
is possible that higher levels of the auditory cortex may
perform gain control that is more fully compensatory,
which might accurately be called contrast normalization.

Mechanism of cortical contrast gain control

Little is known about the underlying basis of cortical
contrast gain control in the auditory system, so it is pre-

© 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society
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sently unclear whether the same neuronal mechanism
appliesin all sensory modalities. Thus, it remains to be seen
whether contrast gain control at this level is implemented
through a canonical cortical processing mechanism
or whether different brain regions have independently
evolved different mechanisms to implement similar
neuronal processing strategies.

A wide variety of possible physiological mechanisms
exists, of which two have received particular attention
in the literature: shunting inhibition and synaptic
depression. Shunting inhibition has long been considered
as a mechanism for changing neuronal gain (Carandini
& Heeger, 1994; Nelson, 2008). It occurs when neuronal
membrane conductance is increased without any change
in membrane potential (Borg-Graham efal. 1998) and can
be the result of either balanced excitation and inhibition or
the opening of ion channels with reversal potentials close
to the resting potential of the neuron (Reichardt et al.
1983).

Shunting inhibition is an appealing mechanism because
shunting conductances have a divisive effect on the
membrane potential due to Ohm’s law (Fatt & Katz,
1953; Coombs et al. 1955). Nevertheless, this does not
simply translate into a divisive effect on firing rates.
In fact, modelling studies have suggested that the effect
of shunting conductances on firing rates is subtractive
rather than divisive (Gabbiani et al. 1994; Holt & Koch,
1997; Capaday, 2002), and this has been confirmed in
in vitro cortical slice preparations (Ulrich, 2003; Mitchell
& Silver, 2003). The consequences of shunting are more
complex in vivo, however, where locally generated synaptic
noise (Borg-Graham et al. 1998; Destexhe & Paré, 1999;
Destexhe et al. 2003) can alter neuronal gain by allowing
small inputs to drive the cell (Chance et al. 2002),
while having little effect on large inputs. This results in
shunting conductances altering neuronal gain by scaling
the synaptic noise. Highly variable signals are particularly
suited to being modulated in this way because this effect
depends on the variability of the synaptic input (Mitchell
& Silver, 2003), making high-contrast sensory inputs the
ideal stimulus for neuronal gain control through shunting
inhibition.

A particular class of cortical interneuron appears to
be specialized to provide shunting inhibition. These cells
have been described anatomically as basket and chandelier
cells due to their extensive axonal arbors, which heavily
innervate the soma and axon initial segment of pyramidal
cells (Markram et al. 2004). The inhibition provided
by these cells occurs primarily via GABA, receptors
(Klausberger et al. 2002), which have a reversal potential
close to the resting potential of pyramidal cells. These
neurons are therefore ideally placed to provide large, peri-
somatic shunting conductances required for the effect of
this form of inhibition to be divisive. Innervation of the
soma also enables these cells to modulate the spiking
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responses of pyramidal neurons without affecting their
tuning (Isaacson & Scanziani, 2011; Fino et al. 2013).

Many basket and chandelier cells have been described
physiologically as fast-spiking interneurons (as a result
of their tendency to fire bursts of narrow action
potentials; Markram et al. 2004) and express the
calcium-binding protein parvalbumin (Xu et al. 2010).
In mouse V1, optogenetic manipulation of parvalbumin
(PV)-expressing interneurons has been found to alter the
gain of visually evoked pyramidal cell spiking responses
without affecting the tuning of these cells (Atallah et al.
2012; Wilson et al. 2012), supporting their possible
involvement in contrast gain control.

Synaptic depression, i.e. the reduction in efficacy of
a synapse that is repeatedly engaged, can alter neuro-
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Figure 3. Gain control and normalization
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nal gain in cerebellar granule cells in vivo and in
simulations of cortical neurons (Abbott et al. 1997;
Rothman et al. 2009) and has also been proposed
to account for contrast gain control as well as other
physiological properties of cortical neurons (David et al.
2009). If synaptic depression of thalamic or intracortical
glutamatergic afferents does indeed underlie contrast gain
control, the inputs that cause gain changes should be the
same as those that excite the neuron. In the auditory
cortex, the frequency tuning of gain control is similar,
but not identical to the excitatory component of each
neuron’s receptive field (Rabinowitz et al. 2012). This
implies that synaptic depression of excitatory inputs
alone may not be a sufficient mechanism for gain
control.
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A, the waveform of a clean sound (black line) and the same sound after noise has been added (red line). The
effect of the noise is both to increase the mean sound level and to reduce the sound contrast (variance of sound
level). B-D, idealized neuronal responses to the clean sound (black) and noisy sound (red). B shows a neuron that
adapts its dynamic range to compensate for changes in mean sound level. Due to this adaptation, the neuron
does not produce an ongoing response to either the clean or the noisy sound; instead, it responds to deviations
of the sound from the mean level. As the neuron does not adapt to compensate for stimulus contrast, the relative
strength of the responses depends on whether the sound is clean or noisy. C shows a neuron which also adapts
to compensate partly for changes in stimulus contrast. The gain of the neuron is higher for the noisy sound than
for the clean sound, and so the strengths of responses to the clean and noisy sounds are more similar than in B.
Contrast gain control of this kind is frequently seen in ferret primary auditory cortex. D shows a neuron which
completely compensates for changes in both mean sound level and sound contrast. The responses are now very
similar, differing only in the fine structure introduced by the noise. Complete compensation of this kind (contrast
normalization) has not yet been observed in the auditory system. Rmax, maximal firing rate.
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It remains to be seen whether auditory contrast gain
control occurs at a network level or at the level of specific
inputs to cortical neurons. The majority of single units
in ferret Al have been shown to exhibit contrast gain
control (Rabinowitz et al. 2011), suggesting that it may
be present in pyramidal cell populations throughout all
cortical layers. This may be due to contrast gain control
occurring within layer 4, allowing these gain changes sub-
sequently to be inherited by neurons in other cortical
layers (Fig. 4). Alternatively, gain may be modulated
incrementally within each layer of the cortex. A third
possibility is that gain modulation occurs across all
cortical layers simultaneously. In mouse V1, cortico-
thalamic layer 6 excitatory neurons have been found to
modulate the gain of pyramidal cells in all other cortical
layers (Olsen et al. 2012) through the recruitment of
a translaminar-projecting, fast-spiking interneuron sub-
type, whose cell bodies also reside within layer 6 (Bortone
et al. 2014). This deepest cortical layer receives direct
thalamic input, which may drive gain changes across
the cortical column simultaneously via this intracortical
circuit.
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Gain control during behavioural tasks may be
implemented by modulation of these circuits. In
mouse Al, activation of vasoactive intestinal polypeptide
(VIP)-expressing interneurons by reinforcement feed-
back signals can increase the gain of pyramidal cells via
inhibition of both somatostatin (SOM) and PV-expressing
interneurons (Pi et al. 2013). Long-range cortical inputs
to mouse barrel cortex have been shown preferentially
to target VIP interneurons, which are located in the
superficial layers of the cortex, over those expressing
PV or SOM, providing a potential route for the gain
of cortical pyramidal cells to be modulated by inputs
from other areas, including those potentially mediating
multisensory or sensorimotor interactions (Lee et al.
2013). In mouse Al, layer 1 interneurons can be activated
by cholinergic inputs to the cortex (Letzkus ef al. 2011),
resulting in inhibition of layer 2/3 PV-expressing inter-
neurons. VIP-expressing interneurons have been shown to
be activated by cholinergic inputs to mouse V1, resulting
in an increase in the gain of pyramidal cell responses (Fu
etal. 2014). This may, therefore, represent a route by which
the gain of sensory neurons is modulated by attention or
other behavioural states.
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Figure 4. Possible cortical circuits underlying contrast gain control

A, contrast gain control may be implemented within layer 4, by either shunting inhibition or synaptic depression,
and these changes may be inherited subsequently by pyramidal cells in supragranular and infragranular layers.
Further gain control may also occur within these non-granular layers. B, alternatively, a subpopulation of
thalamorecipient layer 6 cells may drive gain changes in all other cortical layers via feedforward inhibition (adapted
from Bortone et al. 2014). C, vasoactive intestinal polypeptide (VIP)-expressing interneuron activity may modulate
pyramidal cell gain by controlling the activity of parvalbumin (PV)-expressing interneurons. The VIP interneurons
may be recruited by cholinergic inputs during attention or by corticocortical inputs during multisensory or sensori-
motor integration. Abbreviation: MGB, medial geniculate body.
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Computational advantages of contrast gain control

We have discussed one main computational advantage
of contrast gain control, i.e. that it helps to generate
noise-tolerant representations of signals of interest
(Rabinowitz et al. 2013). There are several more reasons
why this is an advantageous coding strategy.

Dynamic range. The simplest of these reasons is that
contrast gain control makes efficient use of neuronal
dynamic range. The dynamic range is the range of stimulus
values encoded by a neuron by a change in its firing rate,
which is limited by the maximal rate at which a neuron
can fire action potentials (Ryay, typically 100-500 Hz).

Imagine a simple, static coding strategy, in which
neuronal firing rate, R, is proportional to sound level,
L. If neurons employed such a coding strategy, they
might encode the loudest sound the animal ever
encounters, L., with this maximal firing rate, Ryax.
Under normal circumstances, however, the animal will
typically encounter sounds at a fraction of this maximal
level. As a result, these static neurons will usually use
only a fraction of their dynamic range. Moreover, at any
given moment, the range of sound levels that an animal is
likely to hear will be correlated; sounds that are nearby
in time tend to come from the same sources and are
therefore likely to have similar sound levels. This further
reduces the proportion of the dynamic range that is used
at any given time. As a consequence, small (but potentially
important) differences in sound level will be encoded
by tiny differences in neuronal firing rate, making them
difficult to discriminate.

Contrast gain control provides a better strategy,
whereby neuronal gain is continuously adjusted so that
the dynamic range of the neurons covers the range of
sound levels that the animal is currently experiencing.
Thus, the full dynamic range is used to represent the
changes in sound level that really occur, improving the
accuracy (and the information rate; Laughlin, 1981; Dean
et al. 2005) of the neuronal representation. Behaviourally,
this strategy should also improve an animal’s ability
to discriminate small changes in sound level when the
auditory environment is relatively static.

Redundancy reduction. Another potential advantage of
contrast gain control is that it may reduce the redundancy
of the neural code. Redundancy is thought to be
undesirable in neural representations (Attneave, 1954;
Barlow, 1961, 2001). A form of redundancy which
is inherent in natural stimuli is that, at any given
moment, different stimulus features tend to occur at
similar contrasts. For a naive neural code, this would
mean that the responses of sensory neurons would be
correlated (Schwartz & Simoncelli, 2001). In principle,
contrast gain control ought to reduce these correlations,
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however, resulting in a less redundant, sparse code (Field,
1994; Olshausen & Field, 1996) for sensory information.
Sparse codes have been observed in the auditory system
(Schneider & Woolley, 2013), but it remains to be seen
whether contrast gain control is responsible for this.

Population coding. It has been suggested that contrast
gain control offers a number of advantages for population
coding. It may, for example, have a role in the development
of distributed representations whereby neurons become
tuned to different features of sensory input (Willmore
etal.2012). Contrast gain control also results in population
codes that can be decoded easily using a linear classifier
(Olsen et al. 2010) and that can exhibit winner-take-all
behaviour depending on the relative contrast of different
stimuli that are presented simultaneously (Busse et al.
2009). The latter is a feature that is frequently required
by object-recognition algorithms and computation of
stimulus saliency (Itti & Koch, 2000, 2001).

Attentional modulation of neuronal gain

The ability to detect a signal against a background of noise
depends not only on the way neurons adapt to the stimulus
statistics, but also on the level of attention to the task.
This has been illustrated by recordings from neurons in
the auditory cortex of ferrets trained to discriminate target
tones against background noise or to discriminate between
different tones or tone complexes (Fritz ef al. 2007; Atiani
et al. 2009; Yin et al. 2014). These studies have shown
that the gain and shape of the spectrotemporal receptive
fields of cortical neurons can change within a few minutes
of beginning the task in ways that appear to enhance the
contrast between the two stimulus categories and pre-
sumably, therefore, improve perceptual discrimination.
Indeed, the magnitude of the spectrotemporal receptive
field plasticity has been found to correlate with task
performance, implying a direct relationship between levels
of attention and the extent of these physiological changes
(Atiani et al. 2009).

There are also other examples of selective attention
modulating the representation of stimulus information
in early sensory cortex in a manner consistent with gain
control. Focusing on one speaker in a ‘cocktail party’
situation leads to enhanced tracking of the attended
speech stream in neural activity recorded from the
human auditory cortex (Zion Golumbic et al. 2013).
Likewise, in the visual system, it has been proposed
that covert spatial attention (the ability to process
information preferentially at a particular point on the
retina without moving the eyes) may be subserved by
a gain control process, which increases the responses of
neurons with receptive fields in the attended location,
thereby conferring a processing advantage, and decreases

© 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society
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responses to unattended locations. It is conceivable that
attentional gain control (Kerlin et al. 2010) might use
the same neuronal circuits as contrast gain control; such
an arrangement has been proposed in the visual system
(Lee et al. 1999; Reynolds & Heeger, 2009). In this case,
an additional (probably) top-down input to the gain
control circuit would be required, modulating the effect of
contrast.

Conclusion

Contrast gain control is emerging as an important feature
of central auditory processing, as it is in the visual system.
It becomes more prevalent as one ascends the auditory
pathway, suggesting that one function of higher auditory
cortex might be to produce a fully contrast-normalized
representation of behaviourally relevant sounds. Such
a representation would have numerous computational
advantages for the representation of sound, including
increased noise invariance, sparse representation and
simpler decoding, but additional recording studies will
be required to find whether this representation exists in
higher auditory areas. More work will also be required
to uncover the cellular circuits and synaptic mechanisms
responsible for auditory contrast gain control and to
determine whether the networks that implement gain
control are also those engaged by attentional modulation
and during experience-dependent plasticity.
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