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A monaural speech segregation system is presented that estimates the ideal binary mask from noisy

speech based on the supervised learning of amplitude modulation spectrogram (AMS) features.

Instead of using linearly scaled modulation filters with constant absolute bandwidth, an auditory-

inspired modulation filterbank with logarithmically scaled filters is employed. To reduce the

dependency of the AMS features on the overall background noise level, a feature normalization

stage is applied. In addition, a spectro-temporal integration stage is incorporated in order to exploit

the context information about speech activity present in neighboring time-frequency units. In order

to evaluate the generalization performance of the system to unseen acoustic conditions, the speech

segregation system is trained with a limited set of low signal-to-noise ratio (SNR) conditions, but

tested over a wide range of SNRs up to 20 dB. A systematic evaluation of the system demonstrates

that auditory-inspired modulation processing can substantially improve the mask estimation accu-

racy in the presence of stationary and fluctuating interferers. VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4901711]

PACS number(s): 43.72.Ar, 43.72.Dv [MAH] Pages: 3350–3359

I. INTRODUCTION

One of the most striking abilities of the human auditory

system is the capability to focus on a desired target source

and to segregate it from interfering background noise.

Despite substantial progress in the field of computational

auditory scene analysis (CASA) over the past decades,

machine-based approaches that attempt to replicate human

speech recognition abilities are still far away from being as

robust as humans against the detrimental influence of com-

peting sources and interfering noise. Even when considering

a very restricted task, e.g., consonant or phoneme recogni-

tion, there is still a tremendous difference of �10–15 dB in

performance when comparing machine-based recognition

with the scores obtained by human listeners (e.g., Sroka and

Braida, 2005; Meyer et al., 2011).

Assuming a priori knowledge about the energy of the

target source and all interfering sources in individual time-

frequency (T-F) units, the concept of the ideal binary mask

(IBM) has been introduced, where the T-F representation of

noisy speech is classified into either target-dominated or

interference-dominated T-F units (Wang, 2005). This classi-

fication is commonly derived by comparing the signal-to-

noise ratio (SNR) in individual T-F units to a local criterion

(LC). T-F units with an SNR above the predefined LC

threshold are considered reliable and subsequently labeled as

1. All remaining T-F units are assumed to be dominated by

noise and therefore labeled as 0. The resulting IBM can be

interpreted as the ideal segregation and many studies have

shown its potential for a wide range of applications, includ-

ing speech intelligibility in noise (Brungart et al., 2006;

Li and Loizou, 2008; Kjems et al., 2009; Wang et al., 2009),

automatic speech recognition (Cooke et al., 2001), and

speaker identification (May et al., 2012a,b). However, the

IBM is not available in practice and, therefore, its estimation

in realistic scenarios is one of the key challenges of CASA,

e.g., in connection to applications in hearing aids and com-

munication devices.

Inspired by concepts of human auditory signal process-

ing, several basic strategies of auditory grouping have been

suggested to be involved in the segregation of speech from

competing sources, e.g., based on the proximity in time and

frequency, common onsets and offsets, as well as common

amplitude modulation of a given source. Due to the increasing

availability of computational resources and modern machine

learning algorithms that are capable of dealing with high-

dimensional data, recent studies have presented speech segre-

gation systems that are based on various features, ranging

between 51 and 90 dimensions (Han and Wang, 2012; Healy

et al., 2013; Wang and Wang, 2013; Wang et al., 2013).

One drawback of using such a high-dimensional feature

space is that the actual contribution of individual features is

difficult to assess. The observation that an increasing number

of studies have considered large feature sets may imply that

the extraction of only one or a few feature types is not suffi-

cient to provide reasonable speech segregation performance.

However, it is possible that the way in which the individual

features are computed limits the overall performance

because important perceptual attributes relevant for speech

segregation may not be captured appropriately. For example,

several previous studies have employed amplitude modula-

tion spectrogram (AMS) features with linearly scaled modu-

lation filters (Kollmeier and Koch, 1994; Tchorz and

Kollmeier, 2003; Kim et al., 2009; Han and Wang, 2012;

Healy et al., 2013; May and Dau, 2013; Wang et al., 2013;
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May and Dau, 2014; May and Gerkmann, 2014), which is

not consistent with psychoacoustic data on modulation

detection and masking in humans (Bacon and Grantham,

1989; Houtgast, 1989; Dau et al., 1997a,b; Ewert and Dau,

2000). As demonstrated by Ewert and Dau (2000), the proc-

essing of envelope fluctuations can be described effectively by

a second-order bandpass filterbank with logarithmically scaled

modulation filters. Such a processing has recently also been

successful in speech intelligibility prediction studies

(Jørgensen and Dau, 2011; Jørgensen et al., 2013), computa-

tional scene analysis (Christiansen et al., 2014), and sound tex-

tures synthesis (McDermott and Simoncelli, 2011). Similar

processing based on auditory coding principles might also be

advantageous in computational speech segregation, but this

has not yet been examined. Thus, investigating the role of indi-

vidual grouping principles and specific auditory features in

computational speech segregation would allow the analysis

and verification of different feature implementations.

Computational speech segregation systems typically

do not consider aspects of spectro-temporal integration of

information in their decision stage. Apart from the use of

so-called delta features, which attempt to capture feature

variations across adjacent time and frequency units, the IBM

is usually independently estimated in each T-F unit (Kim

et al., 2009; Han and Wang, 2012; Wang et al., 2013).

However, speech-dominant T-F units tend to occupy neigh-

boring T-F units, resulting in so-called glimpses (Cooke,

2005, 2006). Accordingly, if speech activity is detected in

one particular T-F unit, it is likely that speech information is

also present in neighboring T-F units. Recently, it has been

shown that considering the spectro-temporal context of the a
posteriori probability of speech and noise presence at the

classification stage can substantially improve the overall

speech segregation performance without increasing the

dimensionality of the feature space (May and Dau, 2013).

Similarly, Healy et al. (2013) reported improvements in

terms of speech segregation performance when considering

the context of neighboring T-F units. By exploiting the fea-

ture context in the classification stage, the amount of integra-

tion across time and/or frequency could be directly specified

by changing the size of the spectro-temporal integration win-

dow. However, the effect of the shape and the dimension of

the spectro-temporal integration window on speech segrega-

tion performance has not yet been determined.

Another challenge in machine learning is the ability to

generalize to acoustic conditions that have not been included

in the training stage. Typically, this problem has been

avoided by evaluating the speech segregation system only at

those SNRs that have also been used during training (Kim

et al., 2009; Han and Wang, 2012; Healy et al., 2013; May

and Dau, 2013). Because it is impossible to train the system

on all possible acoustic conditions that will be used for test-

ing, it is important that the segregation system is functional

over a wide range of SNRs, while the training has been lim-

ited to a restricted set of SNRs.

In the present study, the ideal segregation of noisy speech,

as represented by the IBM, was estimated by only exploiting

AMS features. In contrast to previous studies that employed

linearly scaled modulation filters, an auditory-inspired

modulation filterbank with logarithmically scaled modulation

filters was used here and its influence on speech segregation

performance was investigated. Moreover, the influence of

spectro-temporal integration on speech segregation was ana-

lyzed by combining information present in neighboring T-F

units. Specifically, the size and the shape of the spectro-

temporal integration window in the classification stage were

varied and analyzed in terms of their impact on speech segre-

gation. The speech segregation system was trained with AMS

features that were extracted for a limited set of low SNRs, but

evaluated over a wide range of SNRs to analyze the ability of

the system to generalize to unseen SNRs.

II. THE SPEECH SEGREGATION SYSTEM

The estimation of the IBM was accomplished in two

stages: First, the AMS features were used to train a two-class

Bayesian classifier, which estimated the a posteriori proba-

bility of speech and noise presence in individual T-F units.

Second, these probabilities were considered across a spectro-

temporal window of adjacent time and frequency units and

the final mask estimation was obtained by comparing the

probability of speech with the probability of noise presence.

Both stages are described in more detail in the following.

A. AMS features

The noisy speech signal was sampled at a rate of 16 kHz

and normalized according to its long-term root-mean-square

value. Two different representations of the AMS features were

compared: a “linear” representation based on linearly scaled

modulation filters and a “logarithmic” representation where

the modulation filters were scaled logarithmically, inspired by

findings from auditory modeling.

1. Linearly scaled AMS features

The linear AMS feature representation was similar to that

described in earlier studies (Tchorz and Kollmeier, 2003; Kim

et al., 2009; Han and Wang, 2012; Healy et al., 2013; May and

Dau, 2013; Wang et al., 2013; May and Dau, 2014; May and

Gerkmann, 2014). The noisy input was segmented into over-

lapping frames of 4 ms duration with a shift of 0.25 ms. Each

frame was Hamming windowed and zero-padded to a length of

128 samples and a 128-point fast Fourier transform (FFT) was

computed. The FFT magnitudes were multiplied by 25 band-

pass filters, in the following referred to as “frequency

channels,” with center frequencies equally spaced on the mel-

frequency scale between 80 Hz and 8000 Hz. The envelope in

each frequency channel was then extracted by full-wave rectifi-

cation, resulting in an auditory spectrogram-like representation.

Each frequency channel of the auditory spectrogram

was further divided into overlapping segments of 32 ms du-

ration with a shift of 16 ms. Each segment was Hamming

windowed and zero-padded to a length of 256 samples and a

256-point FFT was applied to compute a modulation spec-

trogram for each frequency channel. Finally, the modulation

spectrogram magnitudes were multiplied with 15 triangular-

shaped modulation filters that were linearly spaced between

15.6 Hz and 400 Hz. Because the modulation spectrogram
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had a frequency resolution of 15.6 Hz, each triangular filter

contained modulation information derived from three adja-

cent FFT bins.

2. Logarithmically scaled AMS features

Each frequency channel of the auditory spectrogram was

processed by a first-order low-pass filter with a cutoff frequency

of 4 Hz and 8 second-order bandpass filters with center frequen-

cies spaced logarithmically between 8 and 1024 Hz, altogether

representing a modulation filterbank. The bandpass filters were

assumed to have a constant-Q factor of 1 inspired by auditory

modeling and speech intelligibility prediction studies (Ewert

and Dau, 2000; Jørgensen and Dau, 2011; Jørgensen et al.,
2013). The absolute value of the output of each modulation fil-

ter was averaged across segments of 32 ms duration with a

shift of 16 ms to produce the final set of nine logarithmically

scaled AMS features for each frequency channel.

3. Normalization

Machine-learning-based segregation systems are typically

trained with features that are extracted for a specific acoustic

scenario, e.g., for a particular set of SNRs that were included

in the training stage. The problem with these systems is that

performance rapidly deteriorates as soon as a mismatch occurs

between the acoustic conditions used for training and those

used for testing. To alleviate the influence of the overall signal

level on the AMS feature distribution, a normalization strategy

was employed in the present study with the aim of improving

the robustness of the system to mismatches between the SNRs

in the training and the testing conditions. More specifically,

the temporal envelope of the output of each frequency channel

was normalized by its median prior to extracting the AMS fea-

tures. The subband envelope signal is distributed between zero

and an upper limit, leading to an asymmetric and skewed dis-

tribution. Therefore, a median-based normalization was chosen

here and its influence is described in Sec. IV B.

B. Segregation stage

The segregation stage consisted of a Gaussian mixture

model (GMM) classifier that was trained for each individual

frequency channel, representing the AMS feature distribu-

tions of speech and noise-dominant T-F units (Kim et al.,
2009; May and Dau, 2013). Given the trained GMM models

for speech and noise, denoted by k1 and k0, as well as the

AMS feature vector, X(t, f), for a given time frame, t, and

frequency channel, f, the a posteriori probabilities of speech

and noise presence were given by

P k1;f jX t; fð Þ
� �

¼
P k1;f

� �
P Xðt; fð Þjk1;f Þ

P Xðt; fð ÞÞ ; (1)

P k0;f jX t; fð Þ
� �

¼
P k0;f

� �
P Xðt; fð Þjk0;f Þ

P Xðt; fð ÞÞ ; (2)

where the two a priori probabilities, P(k0,f) and P(k1,f), were

determined by counting the number of feature vectors during

training. Subsequently, the IBM was estimated by comparing

the a posteriori probabilities of speech and noise presence

for each individual T-F unit

Mðt; f Þ ¼ 1 if Pðk1;f jXðt; f ÞÞ > Pðk0;f jXðt; f ÞÞ;
0 otherwise:

�
(3)

C. Information integration across time and frequency

Instead of using the output of the Bayesian classifier

directly to estimate the IBM according to Eq. (3), the a pos-
teriori probability of speech presence, P(k1,fjX(t, f)), was

considered as a new feature spanning across the spectro-

temporal integration window, Wðt; f Þ, and representing the

centered T-F unit

�Xðt; f Þ :¼ fPðk1;vjXðu; vÞÞ : ðu; vÞ 2 Wðt; f Þg; (4)

with the window function, Wðt; f Þ, defining the amount of

spectro-temporal integration with respect to adjacent time and

frequency units. The different window functions that were con-

sidered in the present study are shown in Fig. 1. Similar to

Healy et al. (2013), this new feature vector, �X(t, f), was learned

by a second classifier for speech- and noise-dominant T-F units.

Depending on the size of the integration window,Wðt; f Þ, the

dimensionality of this new feature vector could be quite large.

Therefore, a support vector machine (SVM) classifier was

employed here, capable of dealing with high-dimensional data

and requiring only a little amount of training data.

FIG. 1. Four different spectro-temporal integration functions, Wðt; f Þ, that

are centered at t¼ 4 and f¼ 10, as indicated by the gray rectangle. The win-

dow size with respect to time and frequency was set to Dt¼ 5 and Df¼ 7,

where u and v denote the indices of the new feature space along time and

frequency after spectro-temporal integration. The spectro-temporal integra-

tion was applied across all T-F units within the corresponding window shape

(a) rectangle, (b) rectangle causal, (c) plus, and (d) plus causal. The causal

windows only rely on past and present T-F units.
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III. METHOD

A. Stimuli

Noisy speech mixtures were created by corrupting sen-

tences from the Danish hearing in noise test (D-HINT;

Nielsen and Dau, 2011) with seven different types of

background noise. The sentences were spoken by a male

talker at a conversational speech rate and sentences were

down-sampled from 44.1 kHz to 16 kHz prior to processing.

The following maskers were used: two types of speech-

shaped noise (stationary ICRA1-noise and non-stationary,

speech-modulated ICRA7-noise; Dreschler et al., 2001), 8-Hz

amplitude-modulated pink noise, non-stationary traffic noise

with strong low-frequency modulations, classical music with

strong harmonic components taken from B€uchler (2002), as

well as the more stationary destroyer noise and the highly

fluctuating factory noise selected from the NOISEX database

(Varga and Steeneken, 1993). These seven noise types and

their overall duration are listed in Table I. Recently, it was

shown that the amount of spectro-temporal noise variations

that occur during training and testing determines the achieva-

ble segregation performance (May and Dau, 2014). Unlike in

other studies where the same noise file was used for training

and testing (Kim et al., 2009; Healy et al., 2013), the speech

and the noise corpora were split in two halves of equal size in

the present study. This ensured that there was no overlap

between the signals used for training and evaluation. For each

noisy speech mixture, a different randomly selected segment

of the corresponding noise type was used. The noise was

switched on 150 ms before the speech and was switched off

150 ms after the speech offset. Noisy speech mixtures had an

average duration of 1.84 s.

B. Model training

The GMM-based segregation system was trained with

180 randomly selected sentences from the D-HINT corpus

that were corrupted with one of the seven noise types at three

different SNRs (�5, 0, and 5 dB SNR). The segregation

models were separately trained for each noise type. To prop-

erly train the speech and the noise models, k1 and k0, the re-

spective AMS features were selected by comparing the a
priori SNR in individual T-F units with LC¼�5 dB, which

was used for all frequency channels. This choice was moti-

vated by previous studies (Han and Wang, 2012; May and

Dau, 2013). All GMM classifiers were restricted to only 16

Gaussian components with full covariance matrices to avoid

over-fitting. The corresponding GMM parameters were

initialized by 15 iterations of the k-means clustering algo-

rithm and further refined using 5 iterations of the

expectation-maximization algorithm. The spectro-temporal

integration stage was based on linear SVMs (Chang and Lin,

2001) and the following two-step training procedure was

performed. First, an SVM classifier was trained for each fre-

quency channel with a small set of ten sentences mixed with

each of the seven noise types at �5, 0, and 5 dB SNR. In the

second step, a re-thresholding procedure was applied accord-

ing to Han and Wang (2012), whereby new SVM decision

thresholds were obtained that maximized the hit rate (HIT;

percentage of correctly classified speech-dominant T-F

units) minus the false alarm rate (FA; percentage of errone-

ously identified noise-dominant T-F units) using a validation

set of ten sentences mixed with each of the seven noise types

at �5, 0, and 5 dB SNR. Unlike the GMM-based segregation

models that were separately trained for each noise type, the

SVM-based integration stage was trained on all background

noises. For a given spectro-temporal integration window,

Wðt; f Þ, a separate SVM classifier was trained.

C. Model evaluation

The segregation system was evaluated with 60 randomly

selected sentences from the D-HINT corpus that were differ-

ent from those used during the training stage. Each sentence

was mixed with the seven different background noises listed

in Table I at �5, 0, 5, 10, 15, and 20 dB SNR.

In order to evaluate the speech segregation performance,

the percentage of correctly identified T-F units was com-

puted by comparing the estimated binary mask with the

IBM. Specifically, HIT-FA was reported because this metric

has been shown to correlate with human speech intelligibil-

ity (Kim et al., 2009).

D. Analysis of modulation processing in
computational speech segregation

The contribution of individual modulation filters to the

overall speech segregation performance was analyzed.

Therefore, the segregation system was first trained with an

AMS feature vector that only consisted of the first (lowest)

modulation filter. In the next steps, the feature vector was

incrementally extended by incorporating higher modulation

filters, until the full bank of modulation filters was used for

training. The different AMS feature implementations and the

effect of the normalization strategy on speech segregation

performance were investigated.

Furthermore, the contribution of the spectro-temporal

integration stage was considered. First, the effect of the size

of the rectangular integration window,W, on the speech seg-

regation performance was analyzed by systematically chang-

ing the window dimensions with respect to time (Dt) and

frequency (Df) units: Dt 2 [1, 3, 5, 7] and Df 2 [1, 3, 5, 7, 9,

11]. Second, for a fixed window size, the influence of the fol-

lowing four window shapes was studied: “rectangle,” “plus,”

“rectangle causal,” and “plus causal.” An example of the four

window functions is shown in Fig. 1. The causal window

shapes were limited to only rely on past and present T-F units,

whereas all future T-F units with respect to the most central T-

TABLE I. Types of background noises.

Noise type Description Duration

ICRA1 Stationary speech-shaped noise 120 s

ICRA7 Non-stationary six persons babble 1200 s

PSAM 8 Hz Sinusoidal amplitude-modulated pink noise 1 s

Traffic Cars, trams, trucks, and trains passing by 360 s

Music Classical music 570 s

Destroyer Destroyer operations room noise 235 s

Factory Factory floor noise inside a car factory 235 s
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F unit were removed. These causal window shapes have been

considered to be particularly relevant for real-time applica-

tions, such as hearing aids. A final comparison was performed

to quantify the overall contribution of spectro-temporal inte-

gration to computational speech segregation.

IV. RESULTS

A. Contribution of individual modulation filters

The contribution of individual modulation filters to the

overall segregation performance is shown in Fig. 2 for noisy

speech at �5 dB SNR. Figure 2(a) shows HIT-FA obtained

with the linear (“lin AMS”; open symbols) and the logarith-

mically scaled (“log AMS,” filled symbols) AMS features,

respectively, as a function of the exploited modulation fre-

quency range. In addition, the gray symbols represent results

obtained with the linear AMS features when the upper mod-

ulation frequency range was extended from 400 Hz to

1025 Hz, i.e., employing 40 linearly scaled modulation fil-

ters. All segregation systems were first trained with an AMS

feature vector that only contained the first modulation filter.

The AMS feature vector was then gradually extended by

higher modulation filters until the complete modulation fil-

terbank was used.

The performance increase obtained with the linear AMS

feature representation was found to saturate beyond the first

four AMS features. The difference in performance when

using the first 4 (33.5%) or 15 linear AMS features (35.4%)

was only 2%. Even when using as many as 40 linear AMS

features that exploit modulation frequencies up to 1025 Hz,

only a minor improvement was achieved. The reason for this

can be seen in Fig. 2(b), where the HIT rates and the FA

rates are shown separately. The HIT rate, i.e., the percentage

of correctly identified speech-dominant T-F units, increased

with increasing modulation frequency range. However, the

FA rate also increased at a similar rate. Thus, including

higher-frequency modulation filters did not lead to an overall

increase of the segregation performance. Since the linear

AMS features were derived using an FFT-based modulation

analysis with a frequency resolution of 15.6 Hz, each modu-

lation filter was based on three FFT bins. Consequently, the

linear AMS features are very frequency selective and, there-

fore, prone to the impact of noise. The classification results

suggest that the linear AMS feature representation does not

reliably capture speech or noise-specific modulations at high

modulation frequencies.

In contrast, the segregation system trained with the loga-

rithmically scaled AMS features showed a substantial per-

formance improvement when higher frequency modulation

filters were sequentially integrated. While the HIT rate

increased systematically, the FA rate slightly decreased with

increasing modulation frequency range, presumably because

the increased bandwidth at higher modulation frequencies

provided more robust modulation features. The benefit of

analyzing modulation frequencies up to 1024 Hz indicates

that it might not be sufficient to only consider modulation

frequencies that are primarily relevant for speech. At the

same time, it seems important to properly analyze noise-

specific characteristics present at higher modulation frequen-

cies, allowing the segregation system to identify the back-

ground noise and to distinguish it from the speech

components.

Moreover, the logarithmically scaled modulation filters

allow the analysis of low-frequency modulations, which are

known to be important for speech perception in stationary

noise (e.g., Drullman et al., 1994). Although the frame size of

32 ms only resolves full periods of modulation frequencies

>30 Hz, it is possible to analyze a fraction of modulation fre-

quencies <30 Hz in one single frame, and this information can

be successfully exploited by the segregation system. When

considering only the first four logarithmically scaled modula-

tion filters up to 32 Hz, a segregation performance of �35%

was achieved. This corresponds to the maximum performance

obtained with all 15 linear AMS features, and demonstrates

the significance of low-frequency modulations for computa-

tional speech segregation. In addition, the systematic perform-

ance improvement with sequentially added modulation filters

indicates the importance of modulation frequency selectivity.

The contribution of individual modulation filters to

computational speech segregation was found to depend on

the modulation characteristics of the interfering background

noise. Figure 3 shows the HIT-FA rates obtained with the

two AMS feature representations for the individual types of

background noise. It can be seen that, in all noise conditions,

the logarithmic AMS representation (filled symbols)

achieved a higher classification performance than the linear

AMS feature representation (open symbols). In general, the

ability of the logarithmic AMS features to analyze lower

FIG. 2. Classification results of individual T-F units for noisy speech at

�5 dB SNR as a function of the exploited modulation frequency range.

Results are averaged across all noise types and frequency channels. (a)

presents HIT-FA, whereas the corresponding HIT and FA rates are sepa-

rately shown in (b). See main text for details.
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modulation frequencies seemed particularly beneficial when

the background noise contained strong low-frequency modu-

lations, such as in the case of traffic noise (middle left panel)

and classic music (central panel). Moreover, the benefit of

extracting higher-frequency modulations of the speech is

evident for ICRA1 noise (upper left panel) and 8-Hz

amplitude-modulated pink noise (upper right panel), which

are stationary or contain only low-frequency modulations.

Considering the speech-modulated ICRA7 noise (upper mid-

dle panel), the modulation characteristic of the noise is very

similar to that of speech, which results in only a small differ-

ence between the two AMS feature representations. Hence,

it seems that the benefit of the logarithmic AMS features is

largest when the information in a particular modulation fre-

quency range is dominated by either the speech or the noise.

B. Effects of modulation analysis, SNR, and noise type

Figure 4 shows the speech segregation performance

obtained with the linear (“lin AMS”; open symbols) and the

logarithmically scaled AMS features (“log AMS”, filled

symbols), respectively, as a function of the SNR [Fig. 4(a)],

and for the different types of background noises [Fig. 4(b)].

For the three lowest SNRs (-5, 0, and 5 dB), the acoustic

conditions matched those that were used during training.

Therefore, segregation performance can be assumed to be

mainly influenced by the two AMS feature representations.

At the higher SNRs (10, 15, and 20 dB), the segregation sys-

tem was evaluated with noisy speech for which it was not

trained. Therefore, the influence of the normalization scheme

was most pronounced at these SNRs.

The logarithmically scaled AMS features produced a con-

siderably higher classification accuracy than the linear AMS

features, although only 9 rather than 15 modulation filters

were exploited. This performance difference was consistent

across a wide range of SNRs and was �10%. Without normal-

ization, the performance of both AMS feature representations

decreased as soon as the segregation system was evaluated at

SNRs that were outside the training range (i.e., >5 dB SNR),

although the segregation task should become easier at higher

SNRs. This decrease resulted from the SNR-dependent behav-

ior of the AMS features. The fact that the performance for the

linear AMS feature representation at 20 dB SNR was worse

than at �5 dB SNR indicates that the linear AMS features are

very sensitive to mismatches between the acoustic conditions

used for training and testing. In contrast, when applying the

normalization, the segregation performance continuously

increased with increasing SNR, despite the fact that the system

was only trained at lower SNRs. In other words, the median-

based normalization strategy enables the segregation system to

generalize to unseen SNRs. In addition, the median-based nor-

malization also improves the segregation performance in the

matched condition.

The classification performance averaged across all SNRs

[Fig. 4(b)] was found to strongly depend on the characteris-

tics of the background noise. For examples, for the stationary

ICRA1 noise, the segregation performance for the logarith-

mic AMS feature representation was very high and >70%. In

FIG. 3. Classification results of individual T-F units for noisy speech at �5 dB SNR as a function of the exploited modulation frequency range. Results are

averaged across all frequency channels and shown separately for each background noise.
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the presence of the non-stationary ICRA7 noise (six persons

babble), the modulation characteristics of speech and noise

were more similar, such that the performance decreased by

�20%. Considering the 8-Hz amplitude-modulated pink

noise, there is a substantial performance difference between

the linear and the logarithmic AMS feature representations,

suggesting that the 8-Hz component of the masker cannot be

sufficiently captured by the linear AMS features.

C. Effect of spectro-temporal integration

The effect of a rectangular spectro-temporal integration

window on speech segregation performance is shown in

Fig. 5 using the logarithmically scaled AMS feature repre-

sentation. The relative performance improvement (in %) due

to spectro-temporal integration is shown as a function of

the window size with respect to the dimensions time Dt 2 [1,

3, 5, 7], shown on the ordinate, and frequency Df 2 [1, 3, 5,

7, 9, 11], indicated on the abscissa.

An improvement in segregation performance of up to

12% was obtained when the context of the a posteriori prob-

ability of speech presence was exploited across adjacent

time and frequency units. Across-frequency integration

appears to be more important than extending the integration

window across adjacent time frames. When using a rectan-

gular window over Dt¼ 3 adjacent time frames and Dt¼ 9

neighboring frequency channels, as indicated by the black

cross, the overall performance improvement saturated and

no additional improvement was obtained when further

extending the window across time or frequency.

The influence of the four different window shapes

shown in Fig. 1 on speech segregation performance was

investigated by keeping the overall window size fixed to

Dt¼ 3 adjacent time frames and Df¼ 9 neighboring fre-

quency channels. The corresponding classification accura-

cies are averaged across three SNRs (�5, 0, and 5 dB SNR)

and are shown in Table II for both, linear and logarithmic,

AMS feature representations. In addition, for each window

shape, the average number of T-F units involved in the

spectro-temporal integration is specified in Table II.

Although the rectangular window contains more than

twice the T-F units compared to the plus-shaped window, the

classification accuracies were quite similar. This difference is

particularly small when using the logarithmic AMS feature

representation. Thus, for a given time frame, considering the

probability of speech presence in neighboring frequency chan-

nels seems most important for the identification of speech-

dominant T-F units. The evaluation of across-frequency

information at past frames appears to be less important, pre-

sumably due to the sparse distribution of speech-dominant T-F

units in the presence of noise. Moreover, no substantial per-

formance decrease was observed when using causal window

shapes that only rely on past and present T-F units, which is an

important aspect for real-time applications.

FIG. 4. Classification results of individual T-F units for various AMS fea-

ture implementations as a function of (a) the SNR averaged across all back-

ground noises and frequency channels and (b) the background noise

averaged across all SNRs and frequency channels.

FIG. 5. (Color online) The effect of a rectangular spectro-temporal integra-

tion window on speech segregation performance for the logarithmically

scaled AMS features. The relative performance improvement is averaged

across three SNRs (�5, 0, and 5 dB SNR) and all noise types.

TABLE II. Classification accuracy of individual T-F units measured in HIT-

FA % as a function of the window shape for Dt¼ 3 and Df¼ 9.

Spectro-temporal integration AMS features

Window

shape

Number of

T-F units

Linearly scaled

AMS

Logarithmically

scaled AMS

Rectangle 24.6 63.0 67.5

Rectangle causal 16.4 60.0 67.2

Plus 10.2 60.8 66.8

Plus causal 9.2 59.3 66.8
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Figure 6 shows the effect of the spectro-temporal inte-

gration stage as a function of the SNR [Fig. 6(a)] and for the

different background noises [Fig. 6(b)]. The integration stage

was based on a causal plus-shaped integration window that

spans three adjacent time frames and nine frequency chan-

nels. A performance increase compared to the results shown

in Fig. 4 (without integration) for both the linear and loga-

rithmic AMS feature representations was obtained. This

improvement in terms of speech segregation performance

was close to 13% and most prominent at low SNRs.

Moreover, the integration stage seems particularly beneficial

for non-stationary background noises, e.g., for the ICRA7

and the factory noise, as shown in Fig. 6(b).

D. Visualization of modulation-based speech
segregation

An illustration of the modulation-based speech segrega-

tion is shown in Fig. 7. The IBM is presented in Fig. 7(a) for

speech mixed with factory noise at 0 dB SNR. It can be seen

that the distribution of speech-dominant T-F units in the

IBM is quite compact. Figures 7(b) and 7(c) present the esti-

mated IBMs using the linear and the logarithmically scaled

AMS features, respectively, with the benefit of spectro-

temporal integration represented in Figs. 7(d) and 7(e),

respectively. In addition to the estimated IBM patterns, the

average HIT-FA rates for each frequency channel are pro-

vided in the right part of each panel. When the IBM was

estimated on the basis of individual T-F units [Figs. 7(b) and

7(c)], following Eq. (3), some speech-dominated T-F units,

particularly at higher-frequency channels, were erroneously

classified as background noise. In addition, several noise-

dominated T-F units were classified as being speech domi-

nated. In general, the logarithmic AMS features achieved a

higher classification accuracy compared to the linear AMS

features, especially at higher frequencies. The spectro-

temporal integration stage in Figs. 7(d) and 7(e) reduced the-

ses outliers and, more importantly, recovered many target-

dominant T-F units at higher-frequency channels. Still, the

linear AMS features missed many speech-dominant T-F

units at higher-frequency channels, which cannot be recov-

ered by the spectro-temporal integration stage.

V. DISCUSSION AND CONCLUSION

This study addressed the problem of segregating speech

from a noisy mixture by the supervised learning of AMS fea-

tures. It was shown that AMS features based on an auditory-

inspired modulation filterbank with logarithmically scaled

modulation filters were more robust in detecting speech-

dominated T-F units than an AMS feature representation

based on a linear frequency scale. The performance increase

obtained with the logarithmic representation was mainly

caused by the ability of the system to analyze low-frequency

modulations and an increased robustness against interfering

noise due to the increased bandwidth of the higher-

frequency modulation filters. It was demonstrated that an

accurate estimation of the IBM can be obtained by only

exploiting a limited set of nine modulation features per fre-

quency channel. This suggests that auditory-based features

may be more informative and more robust than higher-

dimensional variants of AMS features.

The classification results also illustrated that computa-

tional segregation systems can be quite sensitive to a mis-

match between training and testing conditions. In the present

study, the median-based normalization scheme allowed the

segregation system to function over a wide range of SNRs,

despite being only trained at low SNRs. This normalization

scheme represented a pragmatic choice and may not be phys-

iologically plausible. Conceptually, this normalization can

be interpreted as an automatic gain control, reducing the

effect of variations in the background noise level. However,

auditory-inspired adaptation processes as, for example,

reflected in auditory signal processing models (e.g., Meddis

et al., 1990; Dau et al., 1996; Dau et al., 1997a; Heinz et al.,
2001; Zilany et al., 2009; Zilany et al., 2014), might be more

appropriate to provide a level-invariant AMS feature repre-

sentation. In addition to the robustness to unseen levels of

background noise, the ability of computational speech segre-

gation to generalize to unseen types of interference repre-

sents another important property. This has not been

considered in the present study, but should be evaluated in

future investigations.

The spectro-temporal integration stage in the segrega-

tion system was shown to substantially improve the accuracy

of the IBM estimation by �12%, particularly for non-

stationary background noises and low SNRs. The

FIG. 6. Classification results of individual T-F units for various segregation

systems as a function of (a) the SNR averaged across all background noises

and frequency channels and (b) the background noise averaged across all

SNRs and frequency channels.
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observation that across-frequency integration was more ben-

eficial than the integration across adjacent time frames indi-

cates that the decision about speech or noise activity has to

be made with a relatively high temporal accuracy to avoid

temporal smearing. This is consistent with other studies that

reported that only IBMs with a high temporal resolution are

capable of improving speech intelligibility (Anzalone et al.,
2006). It was shown in the present study that a plus-shaped,

causal integration window achieved a similar performance to

a rectangular, non-causal integration window that spans

more than twice the T-F units. A causal integration stage

implies that the method can be used in real-time applica-

tions, such as hearing aids. In addition, since the a posteriori
speech presence probability distribution across the integra-

tion window is learned by a classifier, a lower-dimensional

integration window simplifies the training procedure and

will facilitate the combination of AMS features with other

feature types that might further improve the distinction

between speech and noise activity.

The approach presented here, indeed, is limited because

only AMS features have been considered. In comparison to

stationary interferences, the accuracy of estimating the IBM

is reduced in the presence of noise with speech-like modula-

tion characteristics. Thus, the combination of AMS features

with other complementary features is likely to further

improve the speech segregation performance. For example,

the combination of AMS features with pitch (Han and

Wang, 2012) or periodicity features (May and Dau, 2013)

has been shown to improve the mask estimation accuracy as

opposed to a system that solely relies on AMS features.

Furthermore, the analysis of common onsets and offsets

might be beneficial in order to organize and integrate T-F

units originating from the same source across frequency (Hu

and Wang, 2007). However, it seems important to study sep-

arately the robustness of the individual types of features and

their ability to generalize to unseen acoustic conditions

before combining them into a higher-dimensional feature

vector.

Finally, the segregation system has been evaluated here

by computing the difference between correctly classified

speech-dominant T-F units and erroneously identified noise-

dominant T-F units. Although this technical measure has been

FIG. 7. IBM estimation and the frequency-dependent HIT-FA rates for an utterance mixed with factory noise at 0 dB SNR. (a) IBM, (b) estimated IBM using

linear AMS features, (c) estimated IBM using logarithmic AMS features, (d) estimated IBM using linear AMS features and spectro-temporal integration, and

(e) estimated IBM using logarithmic AMS features and spectro-temporal integration.
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shown to correlate with human speech intelligibility (Kim

et al., 2009), the next step would be to use the presented

speech segregation system as a front-end for speech enhance-

ment. Specifically, the knowledge about speech-dominant T-F

units could be used to attenuate the T-F units that are domi-

nated by the interfering background noise. Ultimately, the

ability of such a speech enhancement system to improve the

intelligibility of noisy speech for human listeners needs to be

evaluated in corresponding behavioral listening tests.
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