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The auditory system drives behavior using information

extracted from sounds. Early in the auditory hierarchy, circuits

are highly specialized for detecting basic sound features.

However, already at the level of the auditory cortex the

functional organization of the circuits and the underlying

coding principles become different. Here, we review some

recent progress in our understanding of single neuron and

population coding in primary auditory cortex, focusing on

natural sounds. We discuss possible mechanisms explaining

why single neuron responses to simple sounds cannot predict

responses to natural stimuli. We describe recent work

suggesting that structural features like local subnetworks

rather than smoothly mapped tonotopy are essential

components of population coding. Finally, we suggest a

synthesis of how single neurons and subnetworks may be

involved in coding natural sounds.
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Introduction
The auditory system is a fascinating sensory system. It

has remarkable spectral and temporal resolutions, even in

rodents [1–3]. Hearing is not limited by line of sight

considerations, enabling animals to get early warning

signals about prey, predators, and conspecifics around

them, even in complete darkness when vision is limited

and even from a distance when odorous cues may be

insufficient. Audition is also central to the communi-

cation between individuals of a given species and can

promote warning and courtship signals. Auditory dis-

orders, while not lethal, can have devastating effects

on life quality of any mammalian species, humans

included.
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The auditory system has a number of highly specialized

circuits in the brainstem, but above the brainstem it has a

structure that is highly reminiscent of other sensory

system (e.g. the somatosensory system; [4]). Thus, audi-

tion is an important model for understanding system-

specific as well as general rules of neural coding in the

mammalian brain. The functional role that areas like

primary auditory cortex (A1) play in auditory coding is

still largely a mystery. While we have already a fair

amount of understanding regarding the responses of

single neurons in A1 to simple stimuli, we still do not

know how those responses guide perception and drive

behavior.

A prerequisite for a mechanistic understanding of neural

coding is to understand how both single neurons and

populations of neurons respond to real world stimuli.

Here, we will review recent progress in our understanding

of responses to natural sounds in the auditory system. We

will emphasize computations in auditory cortex, to natural

sounds, compare them with the responses to simple

sounds, and connect both to what we know about proces-

sing of sounds by ensembles of neurons. We will propose

a speculative framework to unify some of the still dis-

parate findings in these different facets of stimulus coding

by auditory cortex neurons.

The ‘right’ stimulus
Most physiological studies of the auditory system focused

on understanding how simplified stimuli (e.g. pure tones,

noises, and clicks) are encoded in the brain. Pure tones are

fundamental elements of any sound, and are simple to use

and manipulate. Perhaps more importantly, pure tone

stimuli can drive auditory neurons robustly, with some

responding selectively only to specific frequencies [5,6].

Indeed, pure tones have proven highly successful in

studying the function of the auditory system, especially

in early brain stations. In the cortex, examples include

deciphering the global and local organization of A1 [7],

revealing cortical phenomena of short term and long term

plasticity [8,9], and providing basic insights into cortical

development [10,11]. The success of using pure tones in

understanding general mechanisms of auditory proces-

sing led to the hope that these may also be instrumental in

understanding natural sounds. However, starting with the

earliest reports, evidence suggested that except in limited

conditions (e.g. [12]), one cannot reliably predict the

responses of a neuron to a complex sound based on its

response profile to pure tones [13–17]. For example, one

way to describe tuning properties of single neurons in the
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auditory system is by a two dimensional function of fre-

quency and response time called Spectro Temporal Recep-

tive Field (STRF) [18]. Carruthers and colleagues [14]

found that STRF-based models capture only a small per-

centage (on the order of �15–20%) of the response variance

to sounds as simple as mouse ultrasonic vocalizations

(USVs), which are to a large extent just amplitude-modu-

lated and frequency-modulated tones. This low prediction

accuracy is supported by earlier experiments showing sig-

nificant differences between STRFs derived from simple

stimuli vs. those derived from natural sounds [19,20].

Why are natural sounds important to study in the first

place? The main role of the auditory system is to use

sounds to drive behavior. Therefore, any sound (either

simple or complex, synthetic or natural) which can drive

behavior is valid and interesting on its own right. Natural

sounds are particularly interesting because, as their name

implies, they are what animals encounter in their normal

environment. Additionally, natural sounds form the

soundscape which shapes auditory circuits during devel-

opment in an experience dependent manner [21], as well

as over evolutionary time scales (e.g. [22]). Natural sounds

can be quite complex as they are often mixtures of sounds

produced by a number of sources, and may include both

narrow and wide spectral components. Unfortunately, the

full ‘acoustic biotope’ [23] of any animal has never been

characterized. Instead, restricted families of natural

sounds that can drive behavior are chosen for specific

study. One such family that has been used quite exten-

sively in studies of auditory cortex consists of species-

specific communication sounds. Communication sounds

(or vocalizations) are thought to be salient to animals in

many species across the animal kingdom from singing

birds to vocalizing mammals (e.g. whales, bats, rodents,

and primates [24–26,27�,28]). For example, rats are

known to emit 22-kHz vocalization in aversive situations

and 50 kHz vocalizations in appetitive situations [29,30].

Other rats react to such calls — for example, juvenile rats

prefer to interact with rats who commonly emit 50 kHz

vocalizations [31].

In mice, several well characterized calls and related

behaviors have been studied. A first class of such sounds

arise from male mice emitting USVs towards females

[32–34], and clearly drive female attraction [35–37]. A

second class of vocalizations that has been intensively

studied is produced by newborn pups. Pup calls are the

main communication means that pups use to actively

attain attention of their mothers. The calls are already

crisp at birth and continue to develop as the pups mature

[38,39]. Mothers perceive the calls and will show pre-

ference towards these calls in two alternative force

choice bioassays [38,40]. Interestingly, not only females

respond to sounds (by males and pups). A recent study

shows that males too (in this case fathers), can be ‘called

by’ mothers to start caring for their neonates [27�].
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These encouragement calls, identified as 38 kHz USVs,

induce parental care behavior by the fathers.

In all examples discussed here, the neural mechanisms

connecting the processing of the vocalizations in the

auditory system to the behavioral output are unknown.

While it has been repeatedly shown that auditory cortex,

and earlier stations, shows preferential responses to com-

munication calls [14,21,41–43], the reported differences

in neuronal responses were often quite modest. Further-

more, species-specific vocalizations form only a small

(although extremely important) part of all auditory inputs

in most mammals, and when they occur, they often

appear in mixtures with other sounds. Thus, the role of

the auditory system in connecting communication calls

with behavior may be just a particular case of its role in

shaping the ‘auditory objects’ to which animals respond

[44]. This argument leads to the prediction that auditory

cortex would show preferential responses to any sound

that is associated with behavioral consequences.

Coding of natural sounds
Significant advances have been achieved in recent years

in understanding both the phenomenological basis and

the biological mechanisms that underlie the complexity

of responses to natural sounds in auditory cortex. The

weak ability of STRFs to account for the responses of

cortical neurons to natural sounds is a good starting point

for understanding these issues. This weakness has been

traced to at least two factors. The first is the non-linearity

of the neuronal responses in auditory cortex (and in some

subcortical stations as well; [45]). The non-linear response

properties cause biases in the estimation of the STRF

[46], making STRFs depend on the sound ensemble used

to estimate them [16]. A number of authors tried to get

around the problem of non-linearity of spectro-temporal

processing in auditory cortex by first calculating sound

features that are either non-linear functions of the stan-

dard time-frequency representations (such as the instan-

taneous frequency of a frequency-modulated chirp;

[14,47�]), or are hand-tailored for the task (such as the

amplitude and time derivative of the amplitude of an

amplitude-modulated noise burst [48�]). The predictive

power of such models may be better than that of the

STRF, certainly in inferior colliculus (IC) [47�], but is still

low in cortex [14].

In fact, strong non-linearities in the responses to combi-

nations of narrow-band and wide-band stimuli lead to

effects that cannot be even approximated by a linear

model based on simple sound features. For example,

Nelken and coworkers demonstrated, in a number of

studies, very strong occlusion caused by a weak broad-

band stimulus added to a high-level narrowband stimulus

[44,49,50], as well as in the reverse situation of a weak

tone added to a high-level broadband noise [51]. Chechik

and Nelken argued that such effects are consistent with
www.sciencedirect.com



Coding natural sounds Mizrahi, Shalev and Nelken 105
the representation of abstract categories rather than the

physical structure of the sound, consistent with the notion

that auditory cortex represents sounds by their relevance

[44].

The second factor that renders STRFs a rather weak

descriptor of cortical responses is the context-sensi-

tivity of these responses. The same stimulus may evoke

different responses when presented in different con-

texts. For example, Asari and Zador [52] played sounds

composed of a number of 1 s segments that could be

permuted, and found that the response to the same

segment may depend on the sound as far as 4 s back.

Forward masking is probably the best documented

form of context-dependence in auditory cortex. It

has been studied for some time [53,54], and shown

to have rather long recovery times (100’s of ms). Wehr

and Zador demonstrated that recovery times from for-

ward masking in rat auditory cortex are substantially

longer than in the thalamus, suggesting a specific role

for auditory cortex in this process [55]. While forward

masking has been mostly studied with simple sounds

(pure tones and white noise), it has obvious relevance

to the coding of natural vocalizations, many of which

consist of long trains of short sounds. In recent years,

longer contextual dependences in the auditory system

have been mostly studied in the context of stimulus-

specific adaptation (SSA, [56]). These studies uncov-

ered time constants of tens of seconds and possibly

longer [57�]. Such long time constants are obviously

important for shaping the responses to a constantly

changing acoustic environment.

What are the biological mechanisms underlying these

complex effects? A number of recent studies emphasized

the role of inhibitory mechanisms in shaping the

responses to complex, natural sounds. Already starting

in the IC, inhibition shapes the responses of neurons to

complex sounds [43], increasing the variability and com-

plexity of the responses [58]. In auditory cortex, inhibi-

tory mechanisms are also important in shaping the

responses of neurons in many ways [59–62]. Inhibition

by itself need not introduce non-linearities into the neural

responses. In fact, STRFs work better in IC than in

cortex, in spite of the importance of inhibition in shaping

responses to complex sounds in IC. But there may be two

specific ways in which inhibition complicates the coding

of sounds in auditory cortex. First, the background

activity of many neurons in auditory cortex is very low,

and inhibition may contribute to the threshold non-lin-

earity in the responses. An elegant example of such effect

has been recently demonstrated in IC [63], where an

‘iceberg effect’ was demonstrated to be controlled by

GABA-A receptors that governs the contrast in the

responses to standards and deviants in the context of

SSA. Second, inhibition may be multiplicative rather than

additive. Multiplicative inhibition has been shown in
www.sciencedirect.com 
visual cortex [64], and similar studies in auditory cortex

will be very important.

The other mechanism that has been commonly invoked

to account for the complexity of responses in auditory

cortex is synaptic depression. Synaptic depression is

present in auditory cortex, both in thalamocortical and

corticocortical synapses. Synaptic depression is an import-

ant component of forward masking. Wehr and Zador [17]

used intracellular recordings to demonstrate that both

excitatory and inhibitory currents depress, and therefore

forward masking cannot be accounted for by long-lasting

inhibition. Since recovery times in the thalamus were

faster than in cortex, they concluded that forward mask-

ing in cortex represents mostly synaptic depression of the

thalamo-cortical neurons. David and colleagues [65] com-

pared STRFs estimated using speech (as a natural

stimulus) and ripple noise (as an artificial stimulus),

and showed that much of the difference between the

resulting STRFs can be accounted for by rapid depression

of the synaptic input to A1. However, synaptic depression

may still be insufficient to account for all context-depen-

dence in auditory cortex. For example, Taaseh and col-

leagues [66] showed that a model based on synaptic

depression substantially underestimates the responses

to rare sounds when presented over a background of a

single repeated tone. Thus, additional mechanisms that

shape the responses of cortical neurons to complex

sounds, and in particular to species-specific vocalizations,

remain to be found.

Population coding and maps in auditory
cortex
While synaptic and cellular response profiles can provide

mechanistic views of how single neurons encode stimuli,

neuronal computations are eventually carried out by large

cohorts of cells. In fact, population codes bear useful

information that can go without notice when studying

single cells [67,68]. Extracellular recordings from A1

showed how information (of simple stimuli) flows across

its laminae [69]. Under spontaneous activity conditions,

incoming input spreads onward from thalamocortical-

recipient layers to other layers, and then slowly to neigh-

boring columns while evoked activity crosses to neigh-

boring columns sooner. Although the consequences of

these observations to the coding of sounds are not fully

understood, they emphasize the role of the cortical cir-

cuitry in shaping the spatiotemporal structure of the

evoked activity. In a separate study from the same group,

Luczak and colleagues found that population activity in

A1 is highly structured. The highly structured activity was

similar when it emerged ‘spontaneously’ or when it was

evoked by sounds. Interestingly, consistent with the

hypothesis that stimuli are encoded on the same footing

in auditory cortex, no particular differences emerged in

structured activity when the cortex was confronted with
Current Opinion in Neurobiology 2014, 24:103–110
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simple tones or with natural sounds (voices from animals

in a swamp) [70].

There is rather good evidence that neuronal response

properties in A1 show columnar organization, at least in

some species like monkeys, cats and ferrets. For example,

in the cat A1, both selectivity to tone frequency [71] and

binaural response properties [72] have long been known

to be organized in columns (for more subtle columnar

analyses using STRFs see [73]). More complex sound

properties have been shown to possess columnar organ-

ization as well, including the tendency to show stimulus-

specific adaptation in cats [74], and asymmetry of the

inhibitory sidebands surrounding best frequency in fer-

rets [75]. Notably, the temporal response patterns to

natural calls also seem to cluster in columns, as was shown

for the representation of the purr call in the guinea pig

[76]. In other species, like rats, no columnar organization

was obviously evident for pure tone responses [77]. Of

note, however, in the rat study loose patch recording was

used while in the other studies classic extracellular

methods were used which may have a bias towards the

more active cortical cells.

Is there additional order beyond columnar organization

in A1? In recent years there has been a steady increase in

advances of novel technologies to study neural circuits

with new kind of detail. Specifically, in vivo two photon

calcium imaging (i2PCI) has been particularly important

because of its superb spatial resolution and ability to

penetrate optically into scattering tissue [78]. i2PCI

continues to develop and cover a wide range of scales

from submicron resolution for structural and functional

spine imaging [79], to larger volumes for imaging a few

dozens of neurons in close proximity [80]. In the auditory

cortex, the use of these new techniques is still in its

infancy but has already started to produce interesting

new insights about how populations of neurons work in

concert. For example, imaging local populations of

neurons in A1 showed that neighboring neurons could

have both similar as well as diverse response profiles

[81�,82�] yet still share common features as shown by a

strong correlation between their signal as well as noise

correlations and the distance between them [81�]. In a

recent study, Bathelier and colleagues studied local net-

work dynamics and found that small cohorts of nearby

neurons are activated as distinct modules, suggesting the

existence of local subnetworks that share common prop-

erties. The transitions between the activity of modules

responding to different stimuli were shown to be highly

non-linear, suggesting that local subnetworks code categ-

orical information [83��]. Local subnetworks have been

demonstrated in the visual cortex before and may be a

general property of neocortical coding [84]. Recently, in
vivo imaging and slice physiology were combined to

directly show that neurons with shared stimulus response

profiles were also preferentially connected to each other,
Current Opinion in Neurobiology 2014, 24:103–110 
forming local subnetworks [85]. Moreover, it appears that

during development, response properties emerge earlier

than subnetworks do (at least in the visual cortex of

mice), suggesting that subnetworks may develop ad
hoc to serve the functional demands of the circuit

[86�]. As suggested by imaging [81�,83��], there is good

evidence that local subnetworks in auditory cortex exist

as well, although their nature, especially in the context of

natural sounds, remains to be discovered.

Are functional response properties of neurons in auditory

cortex mapped in a continuous way on the cortical sur-

face? The most dominant structural feature in the audi-

tory system is tonotopy. Tonotopy refers to the orderly

organization of neuronal responses to pure tones, such

that nearby neurons respond to similar tone frequencies.

Tonotopy in A1 has been reported in all species that have

been examined to date [7]. Nevertheless, recent studies

in the mouse auditory cortex reported seemingly contra-

dictory results when tonotopy was measured with high-

resolution methods. Two independent imaging studies

found rather weak tonotopic order among neurons within

<200 mm of each other, suggesting a ‘salt and pepper’ like

organization at these short distances [81�,82�]. Shortly

thereafter, two studies (both from the same group) using

electrical multiunit recordings argued that tonotopy is

robust [87,88]. A closer look at these studies suggests that

the differences between these two groups of studies may

not be so large despite major differences in measurement

techniques and analyses. In both studies coarse-grain

tonotopy was clearly present while fine-grain tonotopy

was somewhat noisy (as much as 2–3 octaves apart in

neurons separated by only 250 mm).

Regardless of the existence of fine-grain topographical

precision, did tonotopy teach us anything new about

auditory cortex? The answer is a definite yes — for

example, comparing tonotopy under different conditions

proved highly useful, particularly in the context of cortical

plasticity [7]. For example, Kilgard and colleagues

showed that map plasticity is necessary for learning

[89�]. However, following learning, functional architec-

ture (i.e. map plasticity) returned to baseline. These

transient changes strengthen the argument that A1 is

highly sensitive to the contingencies of the recent

stimulus stream.

Did tonotopy teach us anything about the coding of

natural sounds in auditory cortex? The answer to this

question seems to be not much. Neither strict tonotopy

on the one hand, nor ‘salt and pepper’ (implying more

random local connectivity) on the other hand, provide

satisfactory explanations for the unique attributes of

cortical responses to sounds as discussed above. In fact,

it may be puzzling that tonotopy still exists in A1. Unlike

earlier auditory stations where tonotopy is a result of

frequency decomposition or used for computing
www.sciencedirect.com
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Figure 1

N
or

m
al

iz
ed

 r
es

po
ns

e

F
re

qu
en

cy
 (

kH
z)

F
re

qu
en

cy
 (

kH
z)

F
re

qu
en

cy
 (

lo
g 

kH
z)

(a)

(b)

(c)

(d)

20 20 60

0

80
dB SPL dB SPL

kHz
12

1

1

0

10 ms

10 ms

10 ms

10 ms

10 ms
0

F
re

qu
en

cy
 (

kH
z)

20

0

20

0

20

0

kHz

0

0

Current Opinion in Neurobiology

How are simple and complex sounds represented early and late along the auditory hierarchy? (a) Spectrograms of 2 sounds. Left: synthesized

sequence of 7 short pulses of pure tones from 2 to 20 kHz with low background noise. Right: a recorded bird chirp [13]. (b) Basilar membrane

responses simulated with AIM-MAT [95]. Left: simulated response of the membrane to the sequences of pure tones from ‘a’. Right: simulated response

of the membrane to the bird chirp from ‘a’. Note that responses are near perfect reflection of the frequency domain of the stimulus. (c) Left: illustrated

spiking responses of single neurons in auditory cortex. Each line represents the activity of one neuron, in one trial when playing all the pure tone stimuli

(from ‘a’). The location in the y-axis corresponds to the approximate location of the neuron in A1, according to the map in the center and color indicates

the best frequency of the neuron. Center: an illustration of large scale tonotopy of A1 where each polygon represents the best frequency of its region.

Right: how single neurons and networks respond to natural sounds may, but probably may not be (hence the question mark) a reflection of the

frequencies of the stimulus nor the underlying tonotopic organizations of A1. (d) Topographical distributions of responses in A1 from the cat. Top:

tonotopic map of A1 that was depicted using pure tone stimuli. Bottom: responses of the same electrode locations to a natural bird chirp (the one

shown in ‘a’). The magenta line represents the 7 kHz isofrequency contour where most energy of the chirp resides.

The panel is a variation of Figure 7, from Bar Yosef and Nelken [13].
attributes which depend on frequency, A1 is different.

Intuitively, A1 seems more involved in combining

different frequencies that belong to given contexts

rather than keeping frequencies apart.

In summary, early in the auditory stream single neurons

behave as expected by a mechanism of frequency
www.sciencedirect.com 
decomposition; be it simple or complex sounds

(Figure 1a,b). By the time information has arrived to

the cortex, the simple frequency decomposition mech-

anism is no longer the only computation that has occurred,

as the stimulus has gone further processing (Figure 1c).

Notably, even for simple stimuli like pure tones, the

cortex is not a simple reflection of the cochlea as tonotopic
Current Opinion in Neurobiology 2014, 24:103–110
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maps are no longer faithful [7]. In fact, A1 seems to be one

of last tonotopic regions along the auditory hierarchy.

Recently, tonotopy has been suggested to break in the

transition from L4 to other cortical layers [90]. However,

it may be expected that when complex sounds are used to

describe A1s functional architecture, smooth tonotopic

mapping is no longer dominant and new patterns of

organization will emerge (Figure 1c, question mark).

Indeed, in a small number of studies where responses

to natural sounds have been mapped in A1, the resulting

topographic patterns showed little similarity to the under-

lying tonotopic map (Figure 1d; [50]).

Synthesis and speculation
While a full synthesis of all of these results is not feasible

at this point, we risk offering a highly speculative peek

into what may be a more complete picture of the

responses of auditory cortex to natural stimuli. As early

as primary auditory cortex, neuronal responses are categ-

orical, presumably linked to the behavioral meaning of

the sounds. They are determined by the joint activity of

multiple neurons simultaneously and are strongly con-

strained by single neuron biophysics as well as the net-

work modes that the sensory inputs can evoke. These

population properties could be yet another source of non-

linearity in the cortical responses, and a major reason for

the weakness of STRFs as a link between the responses

to simple and complex stimuli. Furthermore, the network

properties that determine the responses in this view are

the result of plastic mechanisms that are partially devel-

opmental but could also occur during adulthood, for

example, in processes of learning or other natural life

experiences such as recently studied during pregnancy

and following birth [91–93,94�]. This view suggests a

mechanistic explanation for the possibility that all sounds,

simple as well as complex, artificial as well as natural, are

treated on equal footing in auditory cortex — the

responses to all of them are determined eventually by

factors that are, to some extent, not purely auditory.
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