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All sensory systems face the fundamental challenge of encoding
weak signals in noisy backgrounds. Although discrimination abil-
ities can improve with practice, these benefits rarely generalize to
untrained stimulus dimensions. Inspired by recent findings that
action video game training can impart a broader spectrum of
benefits than traditional perceptual learning paradigms, we
trained adult humans and mice in an immersive audio game that
challenged them to forage for hidden auditory targets in a 2D
soundscape. Both species learned to modulate their angular search
vectors and target approach velocities based on real-time changes
in the level of a weak tone embedded in broadband noise. In
humans, mastery of this tone in noise task generalized to an
improved ability to comprehend spoken sentences in speech
babble noise. Neural plasticity in the auditory cortex of trained
mice supported improved decoding of low-intensity sounds at the
training frequency and an enhanced resistance to interference
from background masking noise. These findings highlight the
potential to improve the neural and perceptual salience of de-
graded sensory stimuli through immersive computerized games.
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Efficient search for resources is critical to the survival of most
species. As such, foraging represents a conserved, adaptive

behavior that drives decision making under the types of natu-
ralistic contexts for which brains have evolved. Efficient foraging
involves the dynamic integration of sensory cues, memory, and
the costs and values associated with foraging decisions (1–3). The
sensory cues used to guide foraging can be either discrete or
gradient-based. For instance, moths, dogs, and humans navi-
gate odor gradients using characteristic casting and zigzagging
behaviors in response to dynamic somatosensory and olfactory
cues (4–6). Although the successful execution of these behaviors
would be expected to strongly rely on the integration of rapidly
changing, weak and noisy sensory information, previous work has
primarily focused on computations involved in cost/value deci-
sions related to the exploration/exploitation trade-off (1, 2, 7–9),
rather than whether and how foraging behavior is refined through
learned associations between these dynamic sensory cues and re-
inforcement signals (but see refs. 10–12).
Accumulating evidence suggests that sensory learning in ma-

ture animals reflects the coordinated activation of sensory brain
areas and neuromodulatory control nuclei (13). Of these neu-
romodulatory systems, cholinergic and dopaminergic neurons in
the nucleus basalis and ventral tegmental area, respectively, have
been observed to code cognitive operations of cue detection (14,
15) and reward prediction (16) associated with behaviorally
relevant sensory stimuli and to subserve learning in complex
sensory-guided tasks (17). Theoretically, these learning systems
are maximally engaged by tasks that require the continuous in-
terplay of sensory cues, dynamically updated motor action pro-
grams, and neuromodulatory feedback as occurs during the
naturalistic process of sensory-guided foraging. This “closed-
loop” approach to perceptual training has very little in common
with traditional perceptual learning studies, wherein isolated and

unpredictable stimuli are presented at low rates with sparse,
temporally distant feedback signals, and training improvements
typically do not generalize beyond the specific practice materials.
By contrast, sensory-guided foraging shares many characteristics
with exploration-based, immersive sensorimotor learning tasks
such as musical training (18, 19) and action video game play (20–
22), which appear to promote highly generalizable improvements
in sensory perception (18, 20, 21). Training protocols that engage
learning circuits at high rates and result in generalized im-
provements in sensory perception offer appealing therapeutic
options for perceptual disorders that have traditionally been
considered untreatable (23, 24), making the study of sensory-
guided foraging behavior both theoretically interesting and
clinically relevant.
Much like our foraging ancestors, the modern urbanite faces

the challenge of guiding his/her behaviors using noisy, dynamic
sensory cues. Examples of these conditions abound in the audi-
tory domain, where distractors can impede communication with
friends at social gatherings, instruction from teachers in class-
rooms, or transmission of information via a cellular phone. As
the extraction of weak signals from background distractors rep-
resents a universal perceptual problem, presenting in the hearing
impaired and typically hearing alike (25–30), it offers a good test
case for the malleability of perceptual skill following practice on
an auditory foraging task.
Using a combination of psychophysical measurements and in

vivo neurophysiological recordings in humans and mice, re-
spectively, we examined (i) whether subjects could improve their
efficiency on a closed-loop auditory foraging task requiring them
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to continuously discriminate changes in the level of a faint sound
embedded in masking noise, (ii) the behavioral strategies used to
solve the foraging task, (iii) if, in humans, learning in the context
of foraging transferred to untrained tests of speech recognition
in the presence of distractors, and (iv) if, in mice, foraging ex-
perience altered the neural representation of target signals and
distractors in primary sensory cortex. We found that, although
both humans and mice learned to improve their foraging effi-
ciency with practice, disparate behavioral strategies were used
both within and across species. Furthermore, behavioral im-
provements on the foraging game were associated with improved
speech perception in noise abilities in humans and enhanced
neural representation of weak, noisy signals in primary auditory
cortex of mice.

Results
Humans and Mice Learn to Forage in a Soundscape for Hidden
Rewards. Human participants played an auditory foraging game
for approximately one-half hour per day (33 ± 1 min) over the
course of 1 mo. The objective of the game was to use a remote-
controlled avatar to search a 2D, virtual soundscape for the lo-
cation of a hidden target before time expired (Fig. 1A, Upper).
The target location varied randomly from trial to trial. Visual
search cues were not provided. The only available cue to locate
the hidden target came from the level of a 500-Hz tone pre-
sented in a constant level of broadband masking noise. To make
the task perceptually demanding, the level of the tone relative to
distractor [signal-to-noise ratio (SNR)] was decreased in real
time according to the Euclidean distance between the subject
and the hidden target location (Fig. 1A). Mice were engaged in
a live-action version of the game played by humans, wherein they
also foraged within a 2D soundscape to find the location of a low
SNR target and receive a water reward (Fig. 1A, Lower). Thus,
mice and humans learned to develop adaptive movement strat-
egies that would reveal subtle changes in SNR, allowing them to
find the virtual target location and receive reward.
Consistent with observations in insects (4) and mammals (5,

31) (including humans) moving along odor gradients, we rarely
observed direct paths to the target location. Rather, we typically
noted sweeping initial searches that were ultimately refined as
the subjects closed on the target location. On some trials, these
paths resembled the casting and zigzagging search strategies used
by insects operating on sporadic cues and partial information
(4) (Fig. 1B). Over the course of training (humans, 1 mo; mice,
3 mo), both species learned to find the auditory target location
more successfully (n = 10 humans, P = 5 × 10−7; n = 4 mice, P =
2.9 × 10−3, Friedman test; Fig. 1C) and to identify the target lo-
cation more quickly (humans, P = 3 × 10−5; mice, P = 3 × 10−3,
Friedman test; Fig. 1D). For humans, but not mice, the reduced
time to target was accompanied by a decrease in average travel
distance per trial (humans, P = 3 × 10−4; mice, P = 0.13,
Friedman test; Fig. 1E). By contrast, in mice, but not humans,
search speed progressively increased over training (humans, P =
0.34; mice, P = 6 × 10−4, Friedman test; Fig. 1F). This double
dissociation between adaptive changes in path length and speed
led us to hypothesize that the humans and mice solved the for-
aging task differently.

Humans and Mice Use Different Strategies to Solve the Auditory
Foraging Task. To delineate the strategies used by humans and
mice in this task, we analyzed their moment-by-moment behav-
ioral decisions by dividing behavioral traces from training trials
(Fig. 2 A–C, Far Left in black) into movement vectors that were
sampled every 0.3 s (Fig. 2 A–C, colored arrows). At any given
time point, the optimal bearing toward the target could be cal-
culated between the forager’s current position and the target
location (Fig. 2D). By subtracting the forager’s movement vector
at each 0.3-s behavioral “moment” from the ideal bearing, we
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Fig. 1. Humans and mice learn to use dynamic auditory cues to locate hidden
targets. (A,Upper) Humans played an audio gamewherein themovements of an
avatar were controlled with a game pad, while (Lower) mice trained in a physical
behavioral arena. The heat map corresponds to SNR. (B) A representative trial for
a human and a mouse illustrates casting and zigzagging behaviors along the
sound gradient. The filled and open circles indicate the center and perimeter of
the target (red) and “dummy” (gray) zones. The green dots indicate position at
the start of the trial. (Scale bar: 10 and ∼3.5 cm for the mouse and human arena,
respectively.) Time spent in “dummy” targets provides the basis for calculating
target identification by chance alone. (C) Percentage of trials in which humans
(Left) and mice (Right) located the target within the time constraints across the
training period. (D) Time and (E) length of path required to complete trial as
a function of training time. Path length taken to reach the target was normal-
ized by the diagonal distance of the training arena. (F) Likewise, running speed is
reported as normalized distance per second and plotted as a function of training
time. The line plots reflect mean ± SEM. Significant learning effects are indicated
with an asterisk in the upper right-hand corner of the plot.
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Fig. 2. Adaptive sensory-guided foraging strategies emerge with practice. (A–C , Far Left) Individual early and late training trials for two humans and
a mouse. (Right) Movement speed and trajectory from sequential epochs of the corresponding “late” exemplar trial (time progresses from left to right). The
concentric circles demarcate the mapping of auditory SNR onto the 2D training arena. Direction of arrowheads reflect trajectory, color of arrows represents
search speed normalized at the trial level, and arrow size reflects search speed normalized across all three examples. The gray arrows are superimposed from
the previous time epoch(s). (Scale bar: 10 and ∼3.5 cm for the mouse and human arena, respectively.) The filled and open circles indicate the center and
perimeter of the target (red) and “dummy” (gray) zones. The green dots indicate position at the start of the trial. (D) The difference between actual trajectory
and the ideal bearing is calculated every 0.3 s. Adaptive search strategies could emphasize movements toward the target (target bias, magenta) or along the
steepest slope of the SNR gradient (SNR bias, cyan). (E) Like angular target and SNR bias, normalized search speed can also be expressed across movement
trajectories. (F–H) Normalized distributions of (Upper) search trajectories and (Lower) speed modulation early vs. late in training for the two example human
subjects (F and G) and one mouse (H). [Speed axis bar: 0.13–0.19 d/s in humans and 0.09–0.21 d/s in the mouse; mean speed (white foreground); SEM (gray
background).] (I–K) Target and SNR bias in movement trajectories (Upper) or speed (Lower) for human subjects who used foraging strategy A (I; n = 4) or B
(J; n = 6), and all trained mice (K; n = 4) plotted as a function of training time. Foraging strategy A is defined by an exclusive increase in toward target bias
with training (four subjects, including Human 1, used this strategy), while foraging strategy B is defined by increased SNR and toward target bias (six subjects,
including Human 2, used this strategy). The line plots reflect mean ± SEM.
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were able to represent, with search trajectories, how the forager’s
movements deviated from the optimal trajectory. For both spe-
cies, we found that search trajectories were fairly randomly dis-
tributed early in training (Fig. 2 F–H, Upper). By later stages in
training, we found that search trajectories in humans were gen-
erally biased toward the target (Fig. 2F) and, in many cases,
along the most informative SNR vector within the sound gradi-
ent (i.e., greatest increase or decrease in tone amplitude per unit
distance; Fig. 2G). We quantified target bias as the degree to
which subjects moved along any angle that took them closer to the
target (Fig. 2D, magenta) and SNR bias as the degree to which
subjects selected movement trajectories that provided the
greatest SNR change per unit distance (either directly toward or
away from the target; Fig. 2D, cyan). We found that all human
foragers were more likely to increase their angular target bias
over the course of training (P = 2 × 10−6, Friedman test; Fig. 2 I
and J, Upper, and Fig. S1). This class of search strategy typically
began with high-speed, wide excursions and multiple turns to
likely reveal the general flow of the gradient, followed by a
winding, slower local search that was most often directed to-
ward the target (Fig. 2A). In addition, 6 of 10 human subjects
also developed an SNR bias over the course of training (P = 5 ×
10−3, Friedman test; Fig. 2J and Fig. S1). These subjects essen-
tially performed coordinate descent optimization by creating
orthogonal excursions along the axes within the soundscape as-
sociated with the steepest slopes in the SNR gradient (Fig. 2 B
and G, Upper). Improved use of either strategy allowed human
subjects to identify the hidden target with a reduced path length
(Fig. 1E). As befitting their relatively constant path length over
training, mice did not exhibit an improvement in target or SNR
bias. If anything, their search trajectories became more random
over the course of training (target bias, P = 0.31; reduction
in SNR bias, P = 0.02, Friedman test; Fig. 2 H and K, Upper,
and Fig. S1).
Their improved success in the foraging task (Fig. 1C) and

overall increase in running speed (Fig. 1F) suggested that mice
used an alternate gradient-based strategy to solve the foraging
task. When navigating a light gradient, Chlamydomonas nivalis,
a species of green algae, has been observed to be directly pho-
tokinetic, modulating its speed in a graded fashion relative to the
“ideal” angle toward a light source (32). We tested whether mice
might use a similar gradient-based strategy by calculating the
running speed of each mouse with respect to the angular de-
viation from the optimal bearing (Fig. 2E). At early stages of
training, running speed was not modulated by the mouse’s cho-
sen angle. However, over the course of training, mice learned to
increase their running speed when moving toward the target and
along bearings associated with the most pronounced SNR
changes (target bias, P = 3 × 10−4; SNR bias, P = 5 × 10−4,
Friedman test; Fig. 2 C, H, Lower, and K, Lower, as well as Fig.
S1). Humans were not observed to modulate their running speed
by either strategy (target bias, P = 0.79; SNR bias, P = 0.42,
Friedman test; Fig. 2 I and J). These findings suggested that
humans and mice used different types of adaptive foraging
strategies; humans learned to bias their search trajectories to-
ward the target and in most cases also along the steepest slopes
in the SNR gradient, whereas mice continued to move along
a variety of angles but selectively increased their running speed
according to real-time changes in SNR.

Foraging Strategies Depend on Local Sensory Environment.As a final
step, we asked how foraging strategies learned over a period of
weeks were dynamically coordinated over the course of a single
trial. We first characterized whether target and SNR angular
biases observed in human foragers depended on sensory context
by measuring each type of bias according to position within the
overall SNR gradient (Fig. 3 A and B and Fig. S2). Well-trained
human subjects exhibited target bias at all SNRs (Fig. 3A, Up-

per). Human subjects who performed coordinate descent opti-
mization in the soundscape (strategy B) demonstrated SNR bias
in their search trajectories at low and high SNRs. There was a
dip in SNR bias at moderate SNRs that roughly coincided with
the peak of the angular target bias function, suggesting that
foragers who used gradient descent strategies may have flexibly
switched between gradient orientation at the lowest and highest
SNRs and target bias at intermediate SNRs (SNR effect, P =
9.1 × 10−11, ANOVA; Fig. 3 A and B, Upper). Contrasting trials in
which subjects successfully located the target within the allotted
time (solid lines) vs. those where they did not (dashed lines),
revealed that failures in successful foraging were distinguished by
strategic search differences within a region close to the low SNR
target (enclosed by vertical, red lines, Target Bias, Correct vs.
Failed by SNR interaction, P = 4.3 × 10−6; SNR bias, Correct vs.
Failed by SNR interaction, P = 0.69, ANOVA; Fig. 3 A and
B, Upper).
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Fig. 3. Foraging strategy is modulated by local sensory context. This visu-
alization breaks down the overall foraging biases plotted in Fig. 2 according
to spatial position within the SNR training arena. For all plots, behavioral
data are shown from well-trained subjects (second half of training) accord-
ing to spatial proximity to the target, expressed as SNR. The broken vertical
red lines indicate target SNRs. The solid and broken lines reflect data from
successful (i.e., rewarded) and failed trials, respectively. The broken hori-
zontal black bars indicate unbiased foraging behavior. (A and C) Target bias
in angular search trajectory (Upper) and speed (Lower) for all humans (A)
and mice (C). (B and D) SNR bias in angular search trajectory (Upper) and
speed (Lower) for humans (B) and mice (D). SNR bias is plotted separately for
subjects using strategy B vs. those that did not (strategy A, Inset). (E and F)
Overall search speed is plotted as a function of distance from target in
humans (E) and mice (F). The unit of measurement for speed (d/s) is distance
traveled, normalized to the diagonal length of the training arena, per sec-
ond. Data are plotted as mean ± SEM.
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Although our trial-level analysis suggested that mice did not
use angular target bias as a search strategy in the foraging task,
our more detailed SNR-based analysis revealed that mice did, in
fact, use this strategy, albeit only at low SNRs that were local to
the target (n = 4, SNR effect, P < 3 × 10−16, ANOVA; Fig. 3C,
Upper). At higher SNRs, we found that mouse running speed was
modulated with a combination of angular target and SNR bias
(Speed Target Bias; SNR effect, P < 3 × 10−16, Speed SNR bias;
SNR effect, P < 3 × 10−16, ANOVA; Fig. 3 C and D, Lower).
Similar to the human subjects, we noted that failures in foraging
success for mice were associated with strategic differences restricted
to a low SNR region local to the target (Target Bias, Correct vs.
Failed by SNR interaction, P < 3 × 10−16; Speed Target Bias,
Correct vs. Failed by SNR interaction, P = 1.2 × 10−10; Speed SNR
bias, Correct vs. Failed by SNR interaction, P = 0.03, ANOVA).
Finally, to further examine the dependence of foraging strat-

egy on sensory cues, we analyzed the overall search speed as
a function of SNR (Fig. 3 E and F). Across both species, we
found that search speed decreased at the lowest SNRs on suc-
cessful trials (humans, SNR effect, P < 3 × 10−16; mice, SNR
effect, P < 3 × 10−16, ANOVA; Fig. 3 E and F). Importantly,
unsuccessful trials were characterized by a failure to modulate
search speed with sensory cues for these same SNRs (humans,
Correct vs. Failed by SNR interaction, P = 0.04; mice, Correct vs.
Failed by SNR interaction, P < 3 × 10−16, ANOVA; Fig. 3 E
and F).
To summarize, across both species, we observed that at fa-

vorable SNRs, a high speed search was conducted, driven by

either choosing search trajectories that were biased toward the
target and steepest changes in the SNR gradient (humans) or
modulating running speed with angular target and SNR bias
(mice). As the foragers moved to lower SNRs (local to the tar-
get), slower, systematic exploration dominated the search strat-
egy, representing a strategy switch from speed modulation to
choosing more accurate search trajectories in mice. Across all
foragers, the behavioral strategies used to successfully solve the
foraging task were only disrupted at the lowest SNRs on failed
trials, suggesting that failures in slow, systematic, local explora-
tion at locations providing the most degraded sensory feedback
accounted for limitations in trial-level success.

Learning on the Auditory Foraging Task Transfers to an Untrained
Speech Perception Task. We next asked whether increased pro-
ficiency in the auditory foraging game generalized to other
measures of auditory perception. Psychophysical tests were per-
formed on human subjects who had been randomly assigned
either to train on the foraging game for 1 mo or had been pas-
sively exposed to game stimuli for the same time period (Fig.
4A). First, we assessed near transfer (Fig. 4A, Middle) by mea-
suring detection thresholds for pure tones (250, 375, 500, and
750 Hz) presented in the presence of a simple broadband masker
before and after foraging or passive listening. We observed in-
creases in response thresholds for trained subjects compared
with passively exposed controls that were specific to the fre-
quency channels (based on peripheral excitation patterns) used
in the foraging task (Group by Test frequency interaction, P =
0.05; 250 Hz, P = 1.38; 375 Hz, P = 0.24; 500 Hz, P = 0.17; and
750 Hz, P = 0.04, ANOVA followed by post hoc two-sample
t tests with Holm–Bonferroni correction for multiple compar-
isons; Fig. 4B). This finding of stimulus-specific elevated de-
tection thresholds following a task that relied primarily on stimulus
discriminations is consistent with previous observations (33, 34).
We next tested whether observed improvements in using weak

tones in noise to guide behavior in the auditory foraging task also
transferred to more ethologically relevant situations such as
understanding speech in noisy environments (Fig. 4 A and C, and
Fig. S3 A–C). Toward this goal, we administered the Quick
Sentence in Noise Test, a common clinical tool used to assess
real-world speech in noise perception. We found that subjects
who trained on the foraging task improved their word recogni-
tion scores at the most difficult SNR tested (0 dB SNR) by an
average of 12% (Fig. 4C). This represented a significant im-
provement compared with the passive exposure group (Group
by SNR interaction, P = 8 × 10−4; 0 dB SNR, P = 1 × 10−3,
ANOVA followed by post hoc two-sample t tests with Holm–

Bonferroni correction for multiple comparisons; Fig. 4C and Fig.
S3 A and B) with large effect sizes measured at both +5 and 0 dB
SNR (effect sizes, 0.8 and 1.9, respectively; Hedges’ g). The small
speech in noise improvements demonstrated by the passively
exposed group are expected based on learning that occurs during
the pretest evaluation (35). Combined with the stimulus-specific
modulation of tone detection thresholds reported above, these
far transfer findings demonstrate that training on an auditory
foraging task is associated with both stimulus-specific and gen-
eralized learning effects.
We then examined whether improved comprehension of the

most degraded speech in noise samples could be predicted from
individual differences in game play strategy. Although more
traditional measures such as success rate or time to target were
not significantly predictive of learning transfer (Fig. S4), we
found that dynamic search behaviors, specifically in low SNR
conditions close to the target, were significantly predictive of
improved processing of highly degraded speech (0 dB SNR; Fig.
4 D and E). Specifically, subjects who learned to slow their
search speeds and to move along the steepest slope of the SNR
gradient when within 5dB of the target demonstrated the
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greatest improvement in speech comprehension in high levels of
background speech babble (Low SNR Speed, R = −0.78, R2 =
0.60 P = 0.03; SNR Bias at Low SNRs, R = 0.77, R2 = 0.60, P =
0.03, Pearson’s correlation with Holm–Bonferroni correction
for multiple comparisons; Fig. 4 D and E). Thus, the same search
strategies that differentiated successful vs. failed foraging trials
(Fig. 3 B and E) were also associated with the highest general-
ized improvement in speech comprehension. Although foraging
at low SNRs (local to the target) could be accomplished using

rapid motor excursions that were guided less by fine sensory
cues, it was the subjects who slowed their search speeds (perhaps
integrating noisy information over longer time periods) and
guided their searches by the weak, noisy sensory cues who
showed the most benefit on the transfer task. Interestingly, by
contrast to several previous auditory training studies that used
the same speech transfer measure, improvement on this un-
trained task secondary to training was not correlated with
pretraining performance (35–37) (R = 0.14, R2 = 0.02, P = 0.69,
Pearson’s correlation).
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Improved Foraging Ability Is Associated with a Reorganized Cortical
Representation of Weak Tones.We examined the neural correlates
of learning on the auditory foraging task by making unit re-
cordings from the auditory cortex (A1) of mice that were
trained on the task or passively exposed to the same auditory
stimuli but did not participate in the task. We hypothesized that
training on the task would be associated with an altered repre-
sentation of trained stimulus features, such that the representa-
tional salience of weak, noisy inputs would be enhanced. We first
collected frequency response areas (FRAs) in both groups of
mice by presenting pure tones with pseudorandomly varied fre-
quencies between 4 and 48 kHz and intensity levels from 0 to 80
dB sound pressure level (SPL) (Fig. 5A). Training was associated
with a marked overrepresentation of characteristic frequencies
(CFs) (the preferred frequency at threshold) near the 16-kHz
training frequency compared with passively exposed controls
(n = 151 neural recording sites from four trained mice; n = 180
neural recording sites from four passively exposed mice; P = 6 ×
10−4, two-sample Kolmogorov–Smirnov test; Fig. 5B). This
proportional increase in frequency tuning was not limited to 16
kHz, but rather extended a half octave above and below the
training frequency. Because the foraging task emphasized rec-
ognition of subtle variations in tone level, we examined the
encoding of sound frequency across the full range of levels en-
countered in the task.
In passively exposed control mice, increasing the tone level

above threshold was associated with a monotonic increase
in firing rate and little change in best frequency, as has previ-
ously been described in rodent A1 (38) (Fig. 5 A, C, and D). In
trained mice, we observed that many rate-level functions were
nonmonotonic, decreasing their firing rate in response to high-
level stimuli (P = 9 × 10−13, two-sample t test; Fig. 5 C and D)
and, accordingly, were often best driven by relatively faint tone
levels, near the target intensity range in the foraging task (P =
3 × 10−10, two-sample Kolmogorov–Smirnov test; Fig. 5E). By
contrast to units recorded in passively exposed controls, many
FRAs recorded in trained mice “leaned,” such that best fre-
quency shifted downward by nearly one octave across the range
of sound levels tested here (Group effect, P < 3 × 10−16; Level
effect, P < 3 × 10−16; Group by Level interaction, P < 3 × 10−16,
ANOVA; Fig. 5 A and F). Finally, we plotted the mean nor-
malized neural response across all recording sites to characterize
how the combination of the described distortion in frequency
tuning, increase in nonmonotonicity in level tuning, and the in-
teraction of frequency tuning with presentation level might alter
the representation of sounds in the absolute frequency/intensity
coordinates. We found that, in the trained animals, population
neural activity maximized responsiveness across the frequency–
intensity range of the target (Fig. 5 G and H).

Neural Responses in Trained Animals Are Resistant to Suppression by
Continuous Background Noise. The SNR foraging task places a
premium on suppressing the distraction imposed by the masking
noise as well as enhancing the representational salience of low-
level tones at the target frequency. To better understand how A1
responses were modified according to both of these perceptual
demands, we derived tonal receptive fields under a background
of continuous broadband masking noise ranging from 40 to 70
dB SPL. In passively exposed mice, increasing masker amplitude
suppressed tone-evoked spiking, elevated thresholds, and re-
stricted the range of frequency tuning (Fig. 6A and Fig. S5).
However, FRAs measured in trained mice were more resistant to
noise degradation at levels matching the background distractor
intensities encountered in the foraging task (40–50 dB SPL; Fig.
6A and Fig. S5). We next asked whether this reduced suppression
of neural responses to tones in the presence of a continuous
distractor might also result in an improved neural SNR. Thus, at
each recording site, we calculated the ratio between the response

to the target signal (low level, 16-kHz tones) and the response to
the continuous distractor. We found that the neural SNR index
was significantly higher in the trained than passively exposed ani-
mals in the quiet condition and in the presence of low (40–50 dB
SPL) but not high (60–70 dB SPL) noise levels (Group effect, P =
0.18; Noise effect, P < 3 × 10−16; Group by Noise level interaction,
P = 1 × 10−4; Quiet, P = 3 × 10−3; Low Noise, P = 9 × 10−4; High
Noise, P = 0.02, ANOVA followed by post hoc two-sample t tests
with Holm–Bonferroni correction for multiple comparisons; Fig.
6B). Further analysis revealed that this improvement in neural SNR
was largely due to a decrease of the neural response to the ongoing
white-noise stimulus across noise levels, whereas the response to
target signals were equivalent between the groups (Noise Response,
Group effect, P = 2 × 10−5; Noise level effect, P = 0.12; Group by
Noise level interaction, P = 0.30; Signal Response, Group effect,
P = 0.1; Noise level effect, P < 3 × 10−16; Group by Noise level
interaction, P = 0.32; Fig. 6C).

SNR Foraging Enhances the Neural Coding of Weak Signals.As a final
step to characterize changes in the cortical representation of
task-relevant acoustic parameters, we analyzed rate-level func-
tions at the training frequency under varying levels of back-
ground noise. In passively exposed mice, the steeply sloping
region of the rate-level functions shifted according to the
masking noise level. Under levels of masking noise encountered
in the training task (50 dB), this shift reduced the availability of
dynamic firing rate cues for tone levels associated with the target
(Fig. 6D and Fig. S6). By contrast, in trained mice, we found that
the steepest slopes of the firing rate functions remained inside
the range of weak signal levels that served as targets in the for-
aging task regardless of the masker level (Fig. 6D and Fig. S6).
This relationship is captured by the first derivative of the rate-
level function, which confirmed significantly steeper growth of
response across weak signal levels in trained mice compared with
passively exposed controls (Group effect, P = 1 × 10−3; SNR
effect, P = 3 × 10−16; Group by SNR interaction, P = 0.3 × 10−16;
−15–0 dB SNR, P < 3 × 10−6, ANOVA followed by post hoc
two-sample t tests with Holm–Bonferroni correction for multiple
comparisons; Fig. 6E, Upper, and Fig. S7). Often, the steeply
sloping region of a growth function contains the most in-
formation for coding differences between stimuli because the
contrast between neural responses to similar physical stimuli is
high and the variability in trial-by-trial responses is low. This can
be expressed quantitatively using Fisher information (39) for
neural responses obtained from trained and passively exposed
mice. Under low-noise conditions, Fisher information was low
for weak signals in passively exposed mice, reaching a maximum
at levels just above the masker. By contrast, the Fisher in-
formation function peaked at weak signal levels in the trained
mice, perhaps supporting the perceptual demands of the auditory
foraging task (Fig. 6E, Lower, and Fig. S7).
To test whether task-related plasticity conferred any adaptive

benefit to sound coding, we used an in silico poststimulus time
histogram (PSTH)-based classifier (40) to decode tone stimulus
intensity across the populations of neurons recorded in trained
or passively exposed mice. In this template matching model, the
neural response is classified as belonging to the stimulus class
to which its Euclidean distance is shortest. We found that the
classification of sound level using the neural data from the
trained animals was superior to that of the passive controls
under low-noise conditions, indicating that the representational
plasticity in trained animals supported an improved neural code
for stimulus properties encountered in the foraging task (Quiet,
P = 0.12; Low Noise, P = 6 × 10−3; High Noise, P = 0.14, boot-
strapped permutation test for difference in means with Holm–

Bonferroni correction for multiple comparisons; Fig. 6F).
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Discussion
By tapping into an evolutionarily conserved behavior, we were
able to compare learning on a closed-loop audiomotor task
in two commonly used species for neuroscience research. We
expected that movement trajectories would coalesce around the
general direction of the target as subjects learned to use sensory
cues to guide foraging behavior. Although this “target bias” in
foraging strategy was used to some degree by all human subjects
over the course of training, we also found that some subjects also
learned to restrict their search trajectories to the steepest, most
informative slope in the SNR gradient (both toward and away
from the target). A similar strategy has been described in the
echolocating Egyptian fruit bat when “locking” to a target and
has been computationally shown to provide optimal discrimina-
tory feedback for localization at the expense of detection (41).
Employment of an SNR bias strategy suggests that, as sensory
information accumulated, most humans built a detailed model of
the sensory search space. Evidence of similar modeling of the
search space was not generally observed in mice. We found that
mice increased angular target bias only at low SNRs, during slow
search on the foraging task. By contrast to humans, most of their
foraging efficiency improvements were attributable to an in-
creased running speed when moving toward the target, a phe-
nomenon that has previously been observed in green algae
during phototaxis (32).
Following 1 mo of training on an auditory foraging task with

simple acoustic stimuli, we observed significant transfer of
learning to an untrained task of speech recognition in the pres-
ence of four-talker babble that was well predicted by game
performance. Learning transfer to a more complex signal in
noise task was surprising given that stimulus specificity has been
repeatedly associated with sensory learning since the seminal
report of Fiorentini and Berardi (42) over 3 decades ago.
However, recent studies have cast doubt on the inviolate speci-
ficity of perceptual learning, suggesting that the particular
training methodology may influence the degree of learning
transfer (43–48). For example, experience with action video
games has been associated with accelerated learning of non-
native phonetic contrasts (49) and enhanced visual abilities on
tasks ranging from useful field of view to contrast sensitivity (20,
21, 23, 24). The key elements of action video game play that lead
to appreciable transfer of visual learning are not yet clearly un-
derstood. However, the varied perceptual demands in these tasks
are congruent with many of the conditions that promote learning
transfer on traditional perceptual learning paradigms (45–47,
50). Musicianship represents yet another form of sensorimotor
learning that shares a number of qualities with the auditory
foraging game (e.g., audiomotor feedback that is both immediate
and directional) and has recently been associated with general-
ized enhancement of auditory skills (18, 19, 51). Interestingly,
musicians have been shown to outperform nonmusicians on the
same speech in noise perception test administered in the present
study, with years of experience positively correlating with better
performance (ref. 18; but see ref. 52). Thus, it is plausible that,
due to the dynamic nature of the discriminanda, which, like
roving reference paradigms, offers no “standard” reference stim-
ulus, or because of the immersive game-based sensorimotor ap-
proach, learning in this auditory foraging task transferred to
challenging listening contexts that were dissimilar, both acousti-
cally and cognitively, from the conditions of the training task.
Another possible explanation for the observed learning

transfer is that training to extract signals from noise might rep-
resent a more generalizable skill than the fine feature discrimi-
nation that is typically trained in perceptual learning studies.
Evidence for this notion comes from a recent study in the visual
system, which found that human participants who were trained to
discriminate the orientation, motion, or displacement of random

dot stereograms in the presence of visual distractor noise, dem-
onstrated learning transfer to both untrained stimulus dimensions
(53). Although distractor stimuli in that study were similar across
training and transfer test conditions, our results indicate that
transfer effects can also be observed when both the stimulus and
distractor in the transfer tests are more complex than the training
stimuli (speech and four-talker speech babble vs. a pure-tone
and broadband continuous noise). By systematically varying the
spectrotemporal and linguistic structure of untrained targets and
maskers in future studies, it may be possible to further elucidate
the limits of far transfer effects (52).
Perceptual improvements conferred by both traditional

learning paradigms and action video game play are thought to
arise from reductions of internal noise and filtering of external
noise (54, 55), increased efficiency (24, 56), and improved
probabilistic inference (57–59). Pertinent to the experiments
reported here, probabilistic inference was measured using a tone
in noise lateralization task in the experiments reported by Green
et al. (57), demonstrating some cross-modal transfer of learning
to auditory signal in noise perception following video game play.
In many of these studies, neural plasticity associated with train-
ing, expressed either as induced bias or increased connection
strength, was localized to connections between higher cortical
areas that update movement representations based on dynamic
sensory information (54, 55, 57).
We explored the neural correlates of training in A1, a com-

paratively early stage of cortical processing where unit responses
are known to be strongly modulated by auditory associative
learning (10, 11, 60–65). We noted that neural responses of
trained mice were globally suppressed relative to passive con-
trols. However, response suppression was far more robust for
tone frequencies far from the target or for broadband continuous
maskers (Fig. 6C), resulting in a relative enhancement of target
signal representation. Differential suppression of neural activity
in primary auditory cortex has also been observed in ferrets
during engagement in a signal in noise detection task (66), with
suppression scaling indirectly with SNR and directly with per-
formance. Similar findings have been reported in early auditory
(62, 67, 68), visual (69, 70), and somatosensory cortices (71) of
primates trained to discriminate targets from distractors. Al-
though the training studies mentioned here, as well as the cur-
rently reported experiment, suggest that learning to extract
signals from noise alters the relative neural representation of
task-specific targets and distractors in primary auditory cortex
(perhaps explaining behavioral improvements on trained tasks
and stimulus-specific changes in tone-detection thresholds), the
transfer effects observed in our study as well as another (53)
suggest an additional stimulus-general effect of training, perhaps
via response plasticity in sensory-motor brain areas (72, 73) or
frontoparietal networks involved in sensory distractor suppres-
sion (22, 74–76). The latter possibility could be tested across
species by making preforaging and postforaging training unit
recordings in the primary auditory cortex of awake, behaving
mice and recording steady-state auditory evoked potentials in
behaving humans to examine attentional modulation of target
and distractor responses.
The ability to improve generalized, auditory signal in noise per-

ception through a learning paradigm makes it an appealing thera-
peutic for certain clinical populations. There are an estimated 48
million individuals living with hearing impairment in the United
States alone (77). Even after treatment with hearing aids or co-
chlear implants, these individuals present with substantial deficits
when attempting to extract target speech signals from background
talkers. There are several potential factors that contribute to this
difficultly, some of which are associated with peripheral pathology
[e.g., reduced spectral resolution of auditory filters (78)], and others
with impaired central processing (79–81). As the need to quickly
and reliably extract signals from background noise is ubiquitous in
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work, educational, and social contexts, improved signal in noise
extraction in these listening environments may improve quality of
life for these individuals.

Materials and Methods
Auditory Foraging Task Procedures. All procedures performed with humans
were approved by the Human Studies Committees atMassachusetts Eye and
Ear Infirmary and theMassachusetts Institute of Technology. Twenty young
adult subjects with audiologically confirmed normal hearing sensitivity
were randomly assigned to train on the auditory foraging task for 1 mo (30
min per day for 5 d per week) or to be passively exposed to the training
stimuli over the same time period. Humans controlled the movements of an
avatar in a 2D virtual arena using a game pad in the context of a custom
audio game. The game was downloaded on the participants’ laptop PCs
and circumaural headphones were provided. Humans used audio feedback
(level of a continuous 500-Hz tone) to guide their avatar to a location
associated with the lowest sound level. A broadband masker of ∼65 dB SPL
(calibrated at their initial visit) was played continuously as a distractor.
Like the mice, human subjects received no verbal instructions about the
goals of the game; rather, they learned to forage for rewards (points)
through trial and error.

All procedures performed with mice were approved by the Animal Care
and Use Committee at Massachusetts Eye and Ear Infirmary and followed the
guidelines established by the National Institutes of Health for the care and
use of laboratory animals. Eight male CBA-CaJ mice, aged 6 wk, were water
restricted and their light/dark cycles were reversed. Four mice were chosen to
train on the auditory foraging task, and the other four served as passively
exposed controls. Passive exposure was implemented through yoking; while
one mouse was training, their yoked counterpart was placed in an elevated
listening chamber situated inside the training arena. The auditory foraging
task for mice was similar to the game played by humans except that it
occurred in a physical (rather than virtual) space (40 × 65 cm, sound treated,
training arena with overhead tweeter) and used a 16-kHz carrier frequency
for the tone. The position of the mouse relative to the target was monitored
with a webcam and custom software. If the mouse was able to navigate to
the target location (a 14-cm-diameter circle) and remain within this space for
2 s, the auditory stimulus stopped, indicating that the mouse could return to
the water spout for a reward of variable magnitude.

Auditory Foraging Task Data Analysis. For the moment-by-moment behavioral
analysis, we divided behavioral traces from training trials into movement
vectors thatwere subsampled every 0.3 s. At any given time point, the optimal
bearing toward the target could be calculated between the forager’s current
position and the target location. By subtracting the forager’s actual move-
ment vector at each 0.3-s behavioral “moment” from the ideal bearing, we
were able to represent, with search trajectories, how the forager’s move-
ments deviated from the optimal search vector. Toward target bias of search
trajectories was quantified as the mean cosine of difference vectors across
each trial (max possible value, 1). SNR bias was quantified in a similar fashion
using the absolute value of the sine of the vectors subtracted from random
performance, defined as the sine of an average vector angle of π/4 (maxi-
mum possible value, 0.707). Speed target bias and SNR bias were quantified
in the same manner as described for the angular measures. The difference
between these two methods was that the length of each behavioral re-
sponse vector was defined as the speed at which the animal or avatar was
moving (rather than 1). All vectors were binned into 1 of 16 categories from

0 to 15π/8 rad in increments of π/8. The mean speed was calculated for all
response vector categories and then normalized before the cosine or sine of
the vectors was determined.

Tests of Learning Transfer. All testing was performed in a sound-treated re-
search booth. We tested whether learning on the foraging task transferred
outside of the task demands bymaking preintervention and postintervention
measurements of signal in noise perception using both tonal and speech
stimuli. Tone in noise detection thresholds were measured using a two-
interval, two-alternative forced-choice procedure. Stimuli were generated and
the testing protocol was implemented using the SoundGen system (82) to
adaptively identify the threshold for 79% response accuracy (83). Thresholds
were measured for tones with carrier frequencies of 250, 375, 500, and 750 Hz.
Speech perception in noise was measured using a standard clinical assessment
tool called the Quick Sentence in Noise Test (84) that is meant to assess real-
world hearing in noise abilities. This test requires that a listener extract and
repeat a sentence (with low predictability) spoken by a target female speaker
in the presence of four-talker babble at increasingly difficult SNRs.

Neurophysiological Recording Procedures. Trained (n = 4) and passively ex-
posed (n = 4) mice were anesthetized, and a scalpel was used to make a 4 × 3
mm (rostrocaudal by mediolateral) craniotomy over the right auditory cor-
tex. A 16-channel silicone probe (177-μm2 contact area, 50-μm contacts on
each of four shanks, 125 μm between shanks; NeuroNexus) was inserted
orthogonal to the cortical surface to record multiunit responses from the
middle cortical layers (0.3–0.5 mm).

All acoustic stimuli were delivered to the left ear of the mouse via custom
miniature acoustic assemblies. FRAs were measured at each recording site by
pseudorandomly presenting tone pips with carrier frequencies of 4–48.5 kHz
in 0.12-oct steps at intensity levels from 0 to 80 dB SPL in 5-dB steps with and
without continuous noise playing in the background.

Neurophysiological Data Analysis. The raw response traces were digitized and
all subsequent analyses were performed in MATLAB (MathWorks) using
custom scripts. Multiunit spikes were identified adaptively as voltage deflections
that exceeded 4.5 SDs from the mean recorded activity. The boundaries of the
FRAs (FRA mask) were defined objectively in most cases (85).

CF, Best level, and monotonicity were objectively defined using stand-
ard procedures. The index of neural signal-to-noise ratio was defined as
ðS−NÞ=ðS+NÞ, where S is the average response (spikes per second) of each
site to tones presented at 16 kHz (±0.12 oct) and 35–60 dB SPL, and N
represents the average spike rate at that site recorded over a 0.1-s win-
dow beginning 150 ms before stimulus onset. The first derivatives of
smoothed rate level functions (5-point median filter) were approximated
using a 5-point centered numerical algorithm. Fisher information func-
tions were computed for each recording site using the methods described
by Dean et al. (39). The PSTH classifier model was implemented using the
approach described by Foffani and Moxon (40). Behavioral and neuro-
physiologic methods are further elaborated in SI Materials and Methods.
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