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Speech intelligibility depends on the integrity of spectrotemporal patterns in the signal. The current

study is concerned with the speech modulation power spectrum (MPS), which is a two-dimensional

representation of energy at different combinations of temporal and spectral (i.e., spectrotemporal)

modulation rates. A psychophysical procedure was developed to identify the regions of the MPS

that contribute to successful reception of auditory sentences. The procedure, based on the

two-dimensional image classification technique known as “bubbles” (Gosselin and Schyns (2001).

Vision Res. 41, 2261–2271), involves filtering (i.e., degrading) the speech signal by removing parts

of the MPS at random, and relating filter patterns to observer performance (keywords identified)

over a number of trials. The result is a classification image (CImg) or “perceptual map” that empha-

sizes regions of the MPS essential for speech intelligibility. This procedure was tested using

normal-rate and 2�-time-compressed sentences. The results indicated: (a) CImgs could be reliably

estimated in individual listeners in relatively few trials, (b) CImgs tracked changes in spectrotempo-

ral modulation energy induced by time compression, though not completely, indicating that

“perceptual maps” deviated from physical stimulus energy, and (c) the bubbles method captured

variance in intelligibility not reflected in a common modulation-based intelligibility metric

(spectrotemporal modulation index or STMI). VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4960544]

[MAH] Pages: 1072–1088

I. INTRODUCTION

Classically, speech perception researchers used speech

synthesis to isolate the acoustic cues—discrete spectrotem-

poral events visible on the speech spectrogram—that under-

lie perception of individual speech sounds (Cooper et al.,
1952; Delattre et al., 1955; Liberman, 1957; Heinz and

Stevens, 1961; Blumstein and Stevens, 1980). Recent psy-

chophysical advances allow fairly robust specification of

such cues using natural speech tokens (Li et al., 2010;

Kapoor and Allen, 2012; Li et al., 2012). However, a great

deal of modern speech research suggests that information

critical for intelligibility is transmitted via temporal and

spectral modulations—global patterns of change across the

temporal and spectral axes of the spectrogram (Houtgast

et al., 1980; Ter Keurs et al., 1992; Baer and Moore, 1993;

Ter Keurs et al., 1993; Baer and Moore, 1994; Drullman

et al., 1994a,b; Shannon et al., 1995; Zeng et al., 2004;

Henry et al., 2005; Gilbert and Lorenzi, 2006; Litvak et al.,
2007; Jørgensen and Dau, 2011).

The present study is concerned with the modulation

power spectrum (MPS) (Grace et al., 2003), which considers

jointly the temporal and spectral modulations that compose

the speech signal. The MPS is obtained by the 2D Fourier

transform of the spectrogram. As such, the MPS describes

the spectrogram as a weighted sum of 2D-sinusoidal compo-

nents known as drifting spectrotemporal ripples. A ripple

contains energy at a unique combination of temporal (Hz)

and spectral (cyc/octave or cyc/kHz) modulation rate, and

therefore the MPS shows the distribution of energy across

these joint spectrotemporal modulations.

The MPS provides a useful characterization of speech

for several reasons. First, the MPS efficiently summarizes

the subspace of modulations occupied by speech and

accurately describes cases in which the joint distribution of

spectral and temporal modulation energy differs from what

would be expected considering the spectral and temporal

envelopes individually (Singh and Theunissen, 2003;

Theunissen and Elie, 2014). Second, the receptive fields of

auditory-cortical neurons and neural ensembles can be

described in terms of tuning to drifting spectrotemporal

ripples in this space (Kowalski et al., 1996; Depireux et al.,
2001; Shamma, 2001; Langers et al., 2003; Sch€onwiesner

and Zatorre, 2009) and it has been shown that such tuning

facilitates discrimination of natural sounds including speech

(Woolley et al., 2005). Third, when speech is degraded, the

spectrotemporal modulation profile (i.e., the MPS) is also

disrupted and the extent of this disruption can be quantified

and used to accurately predict reductions in intelligibility

(Chi et al., 1999; Elhilali et al., 2003; Chi et al., 2005;

Zilany and Bruce, 2007). Finally, spectrotemporal modula-

tion sensitivity in hearing-impaired listeners predicts speech

intelligibility over and above traditional audibility measures

(Bernstein et al., 2013; Mehraei et al., 2014).

Given the apparent significance of spectrotemporal

modulations in transmitting intelligible speech information,a)Electronic mail: jvenezia@uci.edu
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one might ask which particular regions of the MPS carry the

bulk of such information. In fact, selective degradation

(filtering) of the spectral and temporal speech envelopes,

considered in isolation, suggests that most intelligible infor-

mation is conveyed by spectral modulations up to about 1.5

cycles/octave and temporal modulations up to about 16 Hz

(Ter Keurs et al., 1992, 1993; Drullman et al., 1994a,b).

Elliott and Theunissen (2009) recently developed a tech-

nique that allows selective filtering of joint spectrotemporal

modulations. The technique involves nulling particular

modulation components on the MPS. The filtered signal is

reconstructed by moving back through the spectrographic

representation to obtain a filtered speech waveform via itera-

tive spectrogram inversion. Using MPS filtering, Elliott and

Theunissen asked normal hearing listeners to comprehend

sentences that were low-pass or notch-filtered in the MPS

domain. The results indicated a so-called modulation transfer

function (MTF) for speech intelligibility in which the crucial

modulation information for speech intelligibility fell into a

“core” region of the MPS comprising spectral modulations

up to �4 cyc/kHz and temporal modulations up to �8 Hz,

consistent with data based on degradation of spectral and

temporal envelopes in isolation (Ter Keurs et al., 1992,

1993; Drullman et al., 1994a,b). The MTF within this critical

region for intelligibility was low-pass (<1 cycles/kHz) in the

spectral modulation domain and bandpass (1 to 7 Hz) in the

temporal modulation domain.

The ability to selectively filter joint spectrotemporal

modulations from the speech signal constitutes a significant

advance in signal processing, and this advance has improved

the characterization of intelligible speech in the MPS

domain. However, the paradigm employed by Elliott and

Theunissen required testing of many participants (>35) in

various filter conditions to obtain the complete speech

MTF. As a result, the technique was time consuming and the

obtained MTF was rather coarse. Moreover, noise was added

to the stimuli, which may have altered listeners’ neural rep-

resentations of spectrotemporal modulations (Chi et al.,
1999; Elhilali et al., 2003; Chi et al., 2005). Here, we

develop a technique—based on the filtering algorithm of

Elliott and Theunissen—that allows efficient classification of

the spectrotemporal modulations essential for speech intelli-

gibility in individual listeners and without additive noise.

The MPS, like the spectrogram, is just a 2D image in

which temporal modulation rates are plotted along the x
axis, spectral modulation rates are plotted along the y axis,

and intensity gives the modulation power at a given [x,y]

coordinate (see Sec. II A 2 b). For this reason, we designed a

classification procedure that parallels the 2D-image classifi-

cation technique from vision research known as “bubbles”

(Gosselin and Schyns, 2001). In the bubbles procedure, a

visual image (e.g., a face) is overlaid with an opaque mask

that is “pierced” with randomly placed, transparent Gaussian

apertures (bubbles). The bubbles allow participants to sam-

ple (see) different parts of the image on different trials.

Participants are asked to perform a task (e.g., gender identifi-

cation) based on the limited information available to the

visual system. After a pre-determined number of trials, bub-

bles masker patterns across trials can be reverse correlated

with participant behavior to derive a classification image

(CImg). Essentially, if one imagines overlaying (i.e., sum-

ming) all the maskers from correctly identified trials on

top of one another, crucial visual information is revealed by

virtue of clear elements in the otherwise opaque “summed

masker.” Visual information that contributes, but may not be

crucial, is revealed as a quasi-opaque element in the sum.

One can then sum the maskers from incorrect trials and

compare them to the correct-trial sum (i.e., take a difference)

to derive a CImg. This procedure is essentially a multiple

regression that uses opacity in the bubbles masker to predict

participant behavior (Chauvin et al., 2005).

We extend the bubbles technique to the auditory speech

domain by applying a bubble mask to the MPS. Thus, a sen-

tence’s MPS is filtered by multiplication with a randomly

generated bubbles masker that allows some spectrotemporal

modulations to pass (clear pixels in the visual example)

while other modulations are removed. Following Elliott and

Theunissen (2009), a filtered spectrogram is then obtained

from the inverse transformation of the MPS, and a filtered

waveform is recovered by spectrogram inversion. The result-

ing sentence is degraded in terms of intelligibility such that

the extent of degradation depends on the particular pattern of

bubbles (i.e., on the particular spectrotemporal modulations

preserved in the signal). In the current study, we asked par-

ticipants to identify keywords from filtered sentences so that

we could relate patterns of spectrotemporal modulations

to keyword identification performance—i.e., so we could

classify the regions of the MPS essential for transmitting

intelligible speech. Our study builds on previous work using

regression and/or reverse correlation techniques in auditory

psychophysics and auditory neurophysiology including some

recent applications in the modulation domain (Ahumada and

Lovell, 1971; Huang and Richards, 2008; Kumar et al.,
2008; Shub and Richards, 2009; Pasley et al., 2012; Santoro

et al., 2014; Theunissen and Elie, 2014).

The bubbles technique succeeded in producing reliable

CImgs for intelligibility of speech in individual, normal-

hearing listeners. Consistent with previous work, the resulting

high-resolution CImgs revealed a low-pass form in the spec-

tral modulation domain (3 dB-down cutoff¼ 1.5 cyc/kHz)

and a band-pass form in the temporal modulation domain

(peak¼ 3.7 Hz).1 We validated CImgs by using individual

participant classifications to accurately predict performance

on independent (held-out) data from the same participant. To

test whether the classification procedure would be sensitive

to an expected change in behavior based on a physical change

in the stimulus, in a second experiment we obtained CImgs

using 2�-time-compressed sentences. The time compression

procedure effectively doubled the temporal modulation rates

present in the stimuli. This caused the classified region of the

MPS to shift up by �1/3 octave in the temporal modulation

domain, confirming the ability of the bubbles procedure to

detect changes related to time compression. However, the

shift did not strictly follow the change in modulation energy

induced by time compression, indicating some limitation

either on participants’ strategies or on the neural representa-

tion of the speech envelope. In a follow-up experiment, we

demonstrated that high temporal modulation rates (>10 Hz)
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influence intelligibility even for uncompressed speech,

suggesting that observers are capable of using information

encoded on a more rapid timescale.

II. APPLICATION OF BUBBLES IN THE MPS DOMAIN
WITH NORMAL-RATE AND 23-TIME-COMPRESSED
SENTENCES

A. Methods

1. Participants

A total of 27 (16 female) participants were recruited for

two main experiments and a follow-up experiment. Twenty-

two of the participants were right-handed (self-report) and

20 participants were native English speakers. All participants

were classified as fluent (native-like) English speakers based

on conversations with the experimenters, who themselves

were native English speakers. The participants were between

18 and 45 years of age (M¼ 21.6, SD¼ 5.6) and all but one

had audiometric thresholds of 20 dB hearing level (HL) or

better at frequencies from 250 to 4000 Hz in both ears. One

participant had a threshold of 25 dB HL at 500 Hz in the

right ear. For each participant we tested the better ear based

on pure tone thresholds from 1000 to 4000 Hz. If both ears

had equal average thresholds from 1000 to 4000 Hz, the ear

with lower average thresholds across the entire audiometric

range (250–8000 Hz) was tested.

Twelve participants completed an experiment using

normal-rate speech stimuli and a second, unique group of

10 participants completed an experiment using time-

compressed speech (see Sec. II A 2). Two participants were

dropped from normal-rate group—one failed to complete the

entire experiment and one failed to meet the established

performance criterion (see Sec. II A 3). Thus, a total of ten

participants from each group were included in the final anal-

ysis. Five additional participants participated in a follow-up

experiment (see Sec. II B 5).

2. Stimuli

a. Uncompressed and 2�-time-compressed sentence

stimuli. Auditory sentence stimuli were drawn from the

Institute of Electrical and Electronics Engineers (IEEE) sen-

tence corpus (IEEE, 1969). Sentences were spoken by an adult

female with an American accent. For each of the 720 sentences

in the corpus, the nouns, verbs, pronouns, adverbs, and adjec-

tives were marked as keywords. The “uncompressed” speech

stimulus set was composed of 452 sentences containing five

keywords each. To generate time-compressed stimuli the

uncompressed recordings were compressed by a factor of 2

(i.e., [1/2] duration) using the pitch-synchronous overlap and

add (PSOLA) technique (Moulines and Charpentier, 1990) as

implemented in PRAAT software (Boersma and Weenik, 2010).

The PSOLA procedure reduces the duration of the signal while

maintaining the original fundamental frequency contour and

largely preserving the original spectrum (including formant

spacing). Panel (A) of Fig. 1 plots a one-third octave analysis

of the long term average spectrum (LTAS) of the uncom-

pressed (UC) sentence stimuli and the LTAS of the time-

compressed stimuli (2�). The LTAS for UC and 2� stimuli

are nearly identical, confirming the success of the PSOLA pro-

cedure in preserving the spectral content of the 2� stimuli.

Panel (B) of Fig. 1 plots a one-third octave analysis of the tem-

poral modulation spectra for UC and 2� stimuli. Temporal

modulation power in the 2� stimuli is translated upward in

frequency by one octave because the 2� stimuli are half the

duration of the UC stimuli.

b. Modulation power spectra of UC and 2� stimuli. To

analyze the stimuli in terms of their joint spectrotemporal

modulations, we calculated the MPS for both the UC and the

2� stimuli. The MPS is a measure of phase-invariant modu-

lation power obtained by the two-dimensional Fourier trans-

form (2D-FFT) of the spectrogram. By this procedure the

spectrogram [Fig. 2(A)] is described as the weighted sum of

2D-sinusoidal components where each component corre-

sponds to a unique broadband ripple sound (analogous to

2D-sinusoidal gratings in vision) characterized by amplitude

modulations in time (x axis of the spectrographic representa-

tion) and frequency (y axis of the spectrographic representa-

tion). Different combinations of spectral and temporal

modulation rate yield ripples of unique period and orienta-

tion [Fig. 2(B)]. Each pixel (2D-FFT “bin”) in the MPS [Fig.

2(C)] reflects the modulation power of a particular ripple

component (i.e., at a particular combination of spectral and

temporal modulation rate). Note, the MPS has four symmet-

rical quadrants (upper left¼ lower right, upper right¼ lower

left), so it suffices to focus on the upper quadrants. By

convention, the x axis (Hz) has both positive and negative

values, where negative values correspond to upward drifting

FIG. 1. (Color online) (A) One-third octave analysis of the long-term aver-

age spectra of uncompressed (UC) and time-compressed (2�) sentences. (B)

One-third octave analysis of the temporal modulation spectrum of uncom-

pressed (UC) and time-compressed (2�) sentences.

1074 J. Acoust. Soc. Am. 140 (2), August 2016 Venezia et al.

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  86.198.5.221 On: Tue, 08 Nov 2016 09:03:27



ripples and positive values correspond to downward drifting

ripples.

The procedures outlined by Theunissen and colleagues

were used to calculate the MPS (Singh and Theunissen,

2003; Elliott and Theunissen, 2009). For each sentence, a

time-frequency representation of the stimulus was estimated

as the log-power (dB) of a spectrogram obtained with

Gaussian windows (4.75 ms-33.5 Hz time-frequency scale).

The time-frequency scale of the spectrogram determines the

upper bounds of the temporal and spectral modulations rep-

resented in the MPS (Singh and Theunissen, 2003; Elliott

and Theunissen, 2009). Thus, we chose the parameters of the

Gaussian window to ensure that most of the modulation

energy in speech would be contained within the MPS bound-

aries (Elliott and Theunissen, 2009). The MPS was then

obtained as the modulus of the 2D-FFT of the spectrogram,

converted to power on a dB scale. The boundaries of the

MPS at the time-frequency scale of 4.75 ms-33.5 Hz were

6105 Hz and 14.9 cyc/kHz (Singh and Theunissen, 2003),

although further processing of the MPS was restricted to

650 Hz on the temporal modulation axis. Stimuli were zero-

padded prior to processing to ensure an MPS representation

with the same dimensions for each sentence (165� 429

pixels for the UC stimuli, and 165� 265 pixels for the 2�
stimuli). Figure 3 shows the average MPS for UC [panel

(A)] and 2� [panel (B)] stimuli. Note that most of the modu-

lation energy for both UC and 2� is near the origin (combi-

nations of low spectral and low temporal modulation rates).

A second region containing high modulation power appears

near 6 cyc/kHz on the y axis. This region corresponds to

modulations around the fundamental frequency (a spectral

modulation at 6 cyc/kHz has a period of 166.67 Hz along the

frequency axis of the spectrogram), and so can be conceived

of as the “pitch” region of the MPS. Figure 3(C) shows a dif-

ference MPS, 2� minus UC. This was generated by first

upsampling the 2� MPS (linear interpolation) to match the

FIG. 2. (Color online) (A) Spectrogram of an example sentence (“the birch

canoe slid on the smooth planks”). (B) Schematic of the 2D Fourier trans-

form operation, which decomposes the spectrogram into spectrotemporal

ripple components (light/dark gratings) at different temporal (x axis, Hz)

and spectral (y axis, cyc/kHz) modulation rates. Each ripple component is a

2D sinusoid in time-frequency space (i.e., a unique combination of spectral

and temporal modulation rate). (C) The sentence modulation power spec-

trum (outcome of the 2D Fourier transform). A pixel in this representation

corresponds to a single square as depicted in (B). The color scale (dB, arbi-

trary ref.) indicates the relative amount of energy across joint spectrotempo-

ral modulations (light ¼ more energy, dark ¼ less energy).

FIG. 3. (Color online) (A) Average modulation power spectrum for uncom-

pressed sentences. (B) Average modulation power spectrum for time-

compressed sentences. (C) “Difference” modulation power spectrum formed

by subtracting (A) from (B) after equating for total power. Light-colored

(yellow online) regions reflect relatively greater modulation energy in time-

compressed speech, and dark-colored (purple online) regions reflect rela-

tively greater modulation energy in uncompressed speech. Decibel scales

are relative to an arbitrary reference.
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dimensions of the UC MPS and scaling to match total power

across pixels representing temporal modulation rates above

1 Hz (this was done to avoid the DC and other “noisy” pixels

near the origin during scaling). There was a positive differ-

ence in energy (2� > UC; bright pixels) at temporal modu-

lation rate above �4 Hz, but this was restricted to spectral

modulation rates below �2 cyc/kHz. There was a negative

difference in energy (UC > 2�; dark pixels) at low temporal

modulation rates in the pitch region, indicating that the

PSOLA procedure likely flattened some amplitude modula-

tions of the closely spaced harmonics of the fundamental.

c. Experimental stimuli (bubbles-filtered sentences). To

create “bubbles” versions of the UC and 2� stimuli, we

implemented a filtering technique that removed portions of

the MPS from each stimulus at randomly selected locations

(Fig. 4). For each sentence, the MPS was obtained as

described above with the exception that the modulation spec-

trum was not converted to log power (dB). Rather, subse-

quent operations were performed on the magnitudes of the

2D-FFT, which we will continue to refer to as the MPS for

convenience. Given the MPS, a multiplicative mask (i.e.,

filter) with randomly placed apertures (bubbles) was applied.

Specifically, a binary bubbles mask of the same dimensions

as a single quadrant of the MPS (165� 215 for UC,

165� 133 for 2�) was created. Beginning with an all-zero

image, a number of randomly selected pixels were set to

value 1. The particular number of pixels set to 1 determined

the number of bubbles in the filter. The image was then

smoothed with a symmetric Gaussian filter with sigma¼ 7

pixels for UC. For 2�, an asymmetric Gaussian filter was

used with sigma¼ 7 pixels in the spectral modulation dimen-

sion and sigma¼ 4.33 pixels in the temporal modulation

dimension. This ensured that the sigma of the Gaussian filter

in the temporal modulation dimension, expressed in Hz

rather than pixels, was matched across the UC and 2� stim-

uli. Following smoothing, all values above 0.1 were set to 1

and all other values were set to zero, creating a binary mask

with circular apertures (i.e., bubbles). Note, when the

number of bubbles was large the apertures “bumped into”

each other and created a variety of shapes as in Fig. 4. The

binary mask was smoothed again with a Gaussian filter

(sigma¼ 1 pixel) to prevent abrupt changes in spectrotempo-

ral modulation energy across neighboring pixels, which

could potentially lead to spurious noise (i.e., splatter) on fil-

tered spectrograms (see below). This final mask was multi-

plied symmetrically to all quadrants of the MPS, removing

modulation power at some locations but not at others.

Application of the same mask in each quadrant ensured that

modulation power at upward- and downward-drifting ripple

components was filtered equally, a simplification that

increased the statistical power of the data analysis [see Sec.

II A 4]. The resultant filtered MPS was then converted back

to a spectrogram representation (inverse 2D-FFT), and a fil-

tered stimulus waveform was obtained by iterative spectro-

gram inversion (Griffin and Lim, 1984). Twenty iterations

were used in the inversion procedure. To quantify the per-

cent error introduced by spectrogram inversion, we com-

pared the desired spectrogram (prior to inversion) with the

actual spectrogram of the final filtered waveform by squaring

the differences between them, dividing by the power of the

desired spectrogram, and summing over time and frequency

(Elliott and Theunissen, 2009). The mean error of the spec-

trogram inversion procedure was 4.43% (SD¼ 0.60) for the

UC stimuli and 3.61% (SD¼ 0.66) for the 2� stimuli. Error

tended to increase as the number of bubbles decreased (UC:

mean at 20 bubbles¼ 5.53%, mean at 100 bubbles¼ 3.64%;

2�: mean at 150 bubbles¼ 2.75%, mean at 30 bubbles

¼ 4.98%). The MATLAB code for modulation filtering, spec-

trogram inversion, and error calculation was obtained from

Elliot and Theunissen (2009) who themselves modified code

from Slaney (1998).

For each of the 452 sentence stimuli, filtered versions

were created using random, independent bubbles masks.

Further, separate sets of filtered stimuli were created using

different numbers of bubbles in the masks (UC: 20–100 in

steps of five; 2�: 30–150 in steps of five). All stimuli were

generated and stored prior to running the experiments. The

FIG. 4. (Color online) Schematic of the

bubbles filtering procedure. The MPS is

obtained by 2D Fourier transform of the

spectrogram, and random components

of the MPS are nulled according to the

bubbles filter pattern (top row). A fil-

tered speech spectrogram is obtained

from the modified MPS by inverse 2D

Fourier transform (bottom row). Finally,

a filtered waveform is obtained by itera-

tive spectrogram inversion (not pic-

tured). (A) Stimulus spectrogram. (B)

Unfiltered modulation power spectrum.

(C) Application of bubbles. (D) Filtered

modulation power spectrum. (E) Filtered

spectrogram. Decibel scales are relative

to an arbitrary reference.
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unique bubbles mask for each stimulus was also stored for

later analysis. Examples of bubbles stimuli are provided in

supplementary2 audio 1–3.

During the experiments, the filtered speech stimuli were

presented at an overall level of 70 dB sound pressure level

(SPL). The target speech signals were generated digitally at a

sampling rate of 22 050 Hz and presented monaurally via a 24-

bit soundcard (Envy24 PCI audio controller, VIA technologies,

Inc.), passed through a programmable attenuator and head-

phone buffer (PA4 and HB6, Tucker-Davis Technologies, Inc.)

and presented to the listener though either a Sennheiser HD410

SL or a Sennheiser HD600 headset.

3. Procedures

The UC and 2� experiments were conducted in two

1–1.5 h sessions for each listener. During the first session,

listeners typically completed nine blocks of 25 trials of sen-

tence recognition with the bubbles-filtered speech stimuli.

During the second session, listeners typically completed an

additional eight blocks of 25 trials and one block of 27 trials

(18 total blocks). On each trial, the target sentence was

drawn at random, without replacement, from the 452 poten-

tial sentences. Thus, no listener heard the same sentence

twice and each listener heard all 452 items in the stimulus

set. Data from the first block of each session were discarded

(see adaptive procedure below) leaving 402 total trials from

16 blocks for subsequent analysis.

Listeners were seated in a double-walled sound-attenu-

ated booth and were asked to follow the on-screen instruc-

tions displayed on a PC monitor. A mouse and a keyboard

were provided to the listener. On each trial, after the presen-

tation of the stimulus, the listener was asked to type the

sentence s/he heard into an edit-box on the screen. After the

listener confirmed her/his response, the typed text remained

on the screen but could not be edited. At this point, five

boxes appeared on the screen, each of which was labeled

using a true keyword from the target sentence presented on

that trial. The listener was instructed to select the keywords

that were correctly identified in their typed response by

clicking the corresponding buttons. By instruction, errors in

tense or obvious typos were counted as correct. The next

trial began after the self-scoring process was complete.

An up-down adaptive tracking procedure (Levitt, 1971)

was implemented in which the number of bubbles applied to

the filtered stimulus varied from trial to trial. When listeners

correctly identified more than half of the keywords presented

in the trial, the number of bubbles was decreased by 5.

Otherwise, the number of bubbles was increased by 5. A

new track was started at the beginning of each testing

session. The particular bubbles mask associated with each trial

was stored for later analysis along with the participant’s

response (correct or incorrect for each keyword). An increased

number of bubbles generally allowed more spectrotemporal-

modulation information through to the listener. Thus, the task

was easier with a large number of bubbles and harder with a

small number of bubbles. The tracking procedure converged

on a performance level in which listeners correctly identified

three or more keywords in 50% of trials.

After data collection was completed, verification of par-

ticipant self-scoring was carried out. Scores were re-

calculated by an automated algorithm that checked stored

participant response strings against the actual keywords

from each trial. Any items for which the automated score

disagreed from a participant’s self-score were checked man-

ually by an experimenter for minor spelling errors or errant

keystrokes that “fooled” the automated algorithm. A final

percent agreement (self-scores vs experimenter-verified

scores) was tabulated for each participant. Percent agreement

exceeded 96.5 for every participant (mean¼ 99.1).

Prior to testing, listeners in the 2� experiment were

given two training sessions (25 trials each) with unfiltered

time-compressed speech. The training was carried out in the

same listening environment as the test sessions. Fifty addi-

tional, unfiltered 2� stimuli were generated by randomly

selecting items from the IEEE corpus with greater or less than

five keywords (i.e., from the remaining 268 items after

excluding the 452 experimental items) and submitting the

items to the PSOLA time-compression procedure. The 2�
participants were asked to listen to each item and repeat out

loud what they heard. After pressing the “enter” key on the

keyboard the actual text of the sentence was displayed on the

computer screen to provide the participant with feedback.

Oral responses were recorded on the internal computer micro-

phone and stored but were not analyzed. The goal of the prac-

tice session was to allow listeners to acclimate to 2� speech.

4. Analysis

a. Construction of classification images. The main pur-

pose of the UC and 2� experiments was to create classifica-

tion images (CImgs) in the MPS domain—i.e., “heat maps”

showing precisely which spectrotemporal modulations con-

tributed maximally to speech intelligibility. To create CImgs

for each participant, the pattern of responses (number of key-

words correct) across trials was related to the pattern of bub-

bles in the MPS domain across trials. This procedure is

equivalent to a multiple linear regression with behavioral

responses serving as the criterion variable and across-trial

bubble-mask values at each pixel serving as the predictor

variables (Chauvin et al., 2005).

Classification images were estimated as follows. First,

responses on each trial were coded so that each correctly

identified keyword was assigned the value “1” and the

remaining keywords were assigned the value “0.” Each trial

was assigned an overall score equal to the sum across all

five keywords (i.e., a number ranging from 0 to 5 depend-

ing on the number of correctly identified keywords). Scores

were then converted to “deviation scores” by subtracting

the mean score across trials. A CImg was produced by sum-

ming the bubble-mask values (bÞ over all trials (t) at each

pixel location (x; y), weighting each trial by its deviation

score (dÞ

CImgx;y ¼
Xntrials

t¼1

dtbt for x ¼ 1; 2;…; 215 ð133Þ;

y ¼ 1; 2;…; 165: (1)
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The result was a map of coefficients that constituted a

“raw” CImg with dimensions equal to one quadrant of the

MPS. Deviation scores were chosen as weights due to the fol-

lowing desirable properties: they take on large positive values

for trials in which many keywords are correctly identified;

they take on large negative values for trials in which few or

no keywords are correctly identified; and they sum exactly to

zero over all trials, which yields an unbiased classification.

We created multiple raw CImgs for each participant

using a hold-one-block-out procedure (Kohavi, 1995). This

was done to avoid violations of independence when the data

used to construct the CImgs were also used to validate the

regression model (see Sec. II A 4 c). Overall individual-

participant CImgs were taken to be the average of the raw,

hold-one-out CImgs. These overall CImgs were smoothed

with a Gaussian filter (sigma¼ 5 pixels) and converted to z-

scores. To create a group-level CImg, the raw CImgs from

each participant were summed across all participants in a

group (UC, 2�), smoothed with a Gaussian filter (sigma¼ 5

pixels) and converted to z-scores. Null-distribution CImgs

were created for each participant and both groups by repeat-

ing the analysis steps listed above 1000 times with the order

of responses (dt) randomly shuffled across trials. Thus, par-

ticipant and group-level null distributions were distributions

of z-scores. Significant pixels were those for which the

z-score in the true CImg fell outside the 2.5–97.5 percentiles

of the null distribution (i.e., two-sided p< 0.05). A differ-

ence CImg was formed by subtracting the group-level CImg

for UC from the group-level CImg for 2�. Prior to subtrac-

tion, the 2� CImg was upsampled (linear interpolation) to

match the dimensions of the UC CImg. Both the UC and 2�
CImgs were then scaled to have a maximum value of 1 and a

minimum value of 0, such that the difference CImg could

range from �1 to 1.

b. Spectral and temporal modulation transfer

functions. While individual pixels in the CImg represent the

relative contribution to intelligibility of joint spectrotempo-

ral modulations, individual spectral and temporal MTFs can

be estimated by collapsing across one or the other dimension

of the CImg. We estimated the spectral modulation transfer

function (SMTF) by obtaining the maximum z-score across

each row (i.e., across every temporal modulation rate in Hz

for a given spectral modulation rate in cyc/kHz). Similarly,

we estimated the temporal modulation transfer function

(TMTF) by obtaining the maximum z-score across each col-

umn (i.e., across every spectral modulation rate in cyc/kHz

for a given temporal modulation rate in Hz). The SMTF and

TMTF were estimated from each participant’s CImg and

both group-level CImgs. The shape of the SMTF was consis-

tently low-pass and the shape of the TMTF was consistently

band-pass. Accordingly, we measured for each participant

and each group the 3-dB down cutoff of the SMTF (cyc/

kHz), the peak of the TMTF (Hz), and the 3-dB down point

at the right of the TMTF peak (Hz). The MTF parameters

extracted from individual-participant CImgs were compared

between groups using an independent-samples t-test with

Bonferroni correction to account for multiple comparisons

(corrected threshold p< 0.0167).

c. Model validation. As stated above, a bubbles CImg is

essentially a regression model that predicts responses from

the pattern of a bubbles filter on a given trial. In this case,

the responses are the number of correct keywords for each

sentence (0 to 5 correct). It is of interest to generate predic-

tions for trials not used to construct the model (the CImgs),

which we achieved using a hold-one-out cross-validation

procedure (Kohavi, 1995). For each participant, a CImg was

constructed using a subset of the data for which trials from

one block were excluded. For each of the excluded trials, a

decision variable was formed by multiplying the trial-

specific bubbles masker and the estimated CImg, and sum-

ming the result across all pixels. High values of the decision

variable indicated that the CImg “hot spot” was largely

revealed by the bubbles masker on a given trial. Keep in

mind that the mask itself, not the stimuli filtered by the

mask, were used to form the decision variable. This process

was repeated so that each of the 16 total blocks was excluded

once, yielding an observed decision variable (i.e., a predic-

tion) for all 402 trials.

Once decision variables were formed for each trial, they

were transformed to have the same properties as responses,

as follows. First, the true number of responses of each type

(0–5 keywords correctly identified) were counted,

n0; n1;…; n5: The decision variables were then sorted from

low to high, and the top n5 values were assigned a predicted

response of 5, the next n4 values a predicted response of

4, etc. The actual participant responses from each trial

(number of keywords correct from 0 to 5) were sorted in the

same order to facilitate comparison of predicted and true

responses. Model performance was quantified using two

methods, each of which provided a different way of summa-

rizing the relationship between predicted and true responses.

First, the percent agreement between predicted and true

responses was estimated for each of the six possible response

types. Second, Kendall’s tau (s), a measure of association

between two ordinal variables that takes values from �1 to

1, was computed between the full-length predicted and true

response vectors. Group-level model performance was calcu-

lated by taking the mean of each performance measure (per-

cent agreement, s) across all participants in a group (UC,

2�).

Chance performance was determined using permutation

testing in which the hold-one-out cross-validation procedure

was repeated 1000 times for each participant using a ran-

domly shuffled order of the true responses in each iteration.

Group-level performance measures were calculated for each

iteration resulting in 1000 draws from a group-level null dis-

tribution. Model performance was taken to be significantly

above chance when a group-level measure calculated with

unshuffled responses exceeded the value in the 97.5 percen-

tile of the group-level null distribution for that measure

(two-sided p< 0.05).

B. Results

1. Behavioral data

On average, the UC group correctly identified more than

half of keywords on 50.5% of trials (SD¼ 0.7%) and the 2�
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group correctly identified more than half of keywords on

50.7% of trials (SD¼ 0.9%). The mean number of bubbles

for the UC group was 53.7 (SD¼ 8.5), and the mean number

of bubbles for the 2� group was 90.7 (SD¼ 11.0). These

data indicate that the up-down tracking procedure generally

converged on the target performance criterion. The distribu-

tion of responses (0–5 keywords correctly identified) is

shown in Fig. 5 for each group. Both groups identified either

zero or five keywords correctly in a large proportion of trials,

with the remainder of responses distributed rather evenly

across 1–4 keywords correct. The UC group on average had

a larger number of trials with zero or five keywords correct.

2. Classification images

Representative CImgs (unthresholded) from four partici-

pants in the UC and 2� groups are displayed in Figs. 6

and 7, respectively. These CImgs are plotted in the space of

the upper right quadrant of the MPS, with the x axis reflect-

ing temporal modulation rate in Hz and the y axis reflecting

spectral modulation rate in cyc/kHz. The right quadrant

of the MPS reflects downward-sweeping spectrotemporal

ripple components, while the left quadrant reflects upward-

sweeping components. Because the stimuli were filtered

symmetrically in the left and right quadrants, the classifica-

tion results are essentially averaged over both quadrants.

Large positive values in the CImg occur at pixels for which

modulation energy tended to be removed on trials with poor

performance (no or few keywords identified) and preserved

on trials with good performance (many or all keywords

identified). Thus, pixels with large positive values mark the

spectrotemporal modulations that contribute most to speech

intelligibility. The opposite interpretation can be given to

pixels with large negative values, namely, that modulation

energy at such pixels hinders intelligibility, although signif-

icant negative-valued pixels were never observed. Also,

significant positive values were only observed within a

restricted range of spectrotemporal modulations (<20 Hz

and <3 cyc/kHz). Therefore, CImgs are plotted over a sub-

space of the MPS ranging from 0 to 25 Hz on the temporal

modulation axis and 0–5 cyc/kHz on the spectral modula-

tion axis.

A cursory examination of Figs. 6 and 7 reveals some

general features of the measured CImgs. The CImgs consis-

tently display a single “hot spot” near the origin correspond-

ing to combinations of low spectral (<3 cyc/kHz) and low

temporal (<20 Hz) modulation rates. This region of the MPS

has been identified previously as contributing significantly to

intelligibility (Elliott and Theunissen, 2009). However, the

current classification technique provides a high-resolution

depiction of relative contributions to intelligibility within the

“hot spot,” as evidenced by the consistent “bull’s-eye” shape

FIG. 5. Distribution of responses in the UC (grey bars) and 2� (white bars)

groups. Responses are binned by number of keywords correctly identified

(i.e., performance; x axis). Height of bars gives the average number of trials

for which a given level of performance was achieved. Error bars reflect 1

SEM.

FIG. 6. (Color online) Individual participant CImgs for the UC group.

Colormap reflects the normalized magnitude (z-score) of the CImg, where

larger z-scores indicate a greater contribution to intelligibility. Temporal

modulation rate (Hz) is plotted along the x axis and spectral modulation rate

(cyc/kHz) is plotted along the y axis. Individual CImgs are labeled with par-

ticipant codes.

FIG. 7. (Color online) Individual participant CImgs for the 2� group.

Colormap reflects the normalized magnitude (z-score) of the CImg, where

larger z-scores indicate a greater contribution to intelligibility. Temporal

modulation rate (Hz) is plotted along the x axis and spectral modulation rate

(cyc/kHz) is plotted along the y-axis. Individual CImgs are labeled with par-

ticipant codes.
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where modulations at the center of the bull’s-eye contributed

relatively more to intelligibility. Additionally, it is clear that

there was relatively little variation in the broad pattern of

CImgs across individuals, although significant individual

variation can be seen at high temporal modulation rates par-

ticularly in the 2� group (supplementary2 Figs. 1 and 2).

The group-level CImgs (Fig. 8, A/C) largely mirror the

broad patterns observed in individual-participant CImgs

from the respective groups.

Group (UC vs 2�) differences are apparent in the indi-

vidual participant CImgs (Figs. 6 and 7) and the group-level

CImgs (Fig. 8, A/C). The “hot spot” for the 2� group is

reduced in the spectral modulation domain (y axis) and

enlarged in the temporal modulation domain (x axis). This

can be seen most clearly by examining the thresholded

CImgs for each group (Fig. 8, B/D), which show the color-

map only for those pixels that contributed significantly to

intelligibility (permutation test, p< 0.05). Thresholded

individual-participant CImgs also show this pattern (supple-

mentary2 Figs. 1 and 2). Also clearly apparent in the group-

level CImgs is that the “hot spot” is low-pass for spectral

modulations (center of the bull’s-eye crosses zero cyc/kHz)

and band-pass for temporal modulations (center of the bull’s

eye occurs at �4 Hz and does not include 0 Hz). The effi-

cacy of the bubbles technique is demonstrated in supple-

mentary2 audio 4–6, which give examples of UC sentences

with the entire hot spot filtered out from the MPS, rendering

the filtered sentences far less intelligible.

3. Modulation transfer functions

Spectral and temporal MTFs were calculated by taking

the maximum z-score across one dimension of a CImg (e.g.,

the maximum z-score at 4 Hz across all values of cyc/kHz)

across all locations in the other dimension (e.g., repeated for

all Hz). Group-level MTFs were formed from the group-

level CImgs, and individual-participant MTFs were formed

from individual-participant CImgs. The group-level MTFs

are shown in Fig. 9 where the maximum height is set to 1.

The TMTFs [panel (A)] are band-pass, while the SMTFs

[panel (B)] are low-pass. Additionally, the TMTF for the 2�
group is translated upward in frequency relative to the

TMTF for the UC group (UC peak at 3.7 Hz, 2� peak at

4.9 Hz). The modulation frequencies at the peak and 3-dB

down (i.e., a value of 0.707) from the peak were measured

from the TMTF of each individual participant. The mean

TMTF peak across participants in the UC group was 3.72 Hz

(SEM¼ 0.15) and the mean TMTF peak across participants

in the 2� group was 4.85 (SEM¼ 0.14). The mean 3-dB

down point (i.e., temporal modulation rate at 3-dB down to

the right of the TMTF peak) was 7.14 Hz (SEM¼ 0.15) for

UC and 9.48 Hz (SEM¼ 0.23) for 2�. These differences

were statistically reliable [peak: t(18)¼ 5.7, p< 0.001;

3-dB: t(18)¼ 8.7, p< 0.001]. Thus, the effect of time-

compression was to shift CImg “hot spot” up in temporal

modulation frequency by just over one third of an octave. A

shift in this direction was expected given the upward shift in

the modulation spectrum induced by time-compression [Fig.

1(B)], although the shift in the CImg did not perfectly follow

the shift in stimulus energy (one-third octave versus a full

octave).

FIG. 8. (Color online) Group-level CImgs. Colormaps reflect the normal-

ized (z-score) magnitude of the group CImg, which is obtained by sum-

ming CImgs across participants. In all CImgs, temporal modulation rate

(Hz) is plotted along the x axis and spectral modulation rate (cyc/kHz) is

plotted along the y-axis. (A) Unthresholded group-level CImg for uncom-

pressed speech. (B) Thresholded group-level CImg for uncompressed

speech. Pixels not exceeding threshold have not been assigned a color

value (i.e., appear white). The threshold criterion was established on the

basis of a null distribution formed by estimating 1000 group-level CImgs

with participants’ responses shuffled. (C) Unthresholded group-level CImg

for time-compressed speech. (D) Thresholded group-level CImg for time-

compressed speech.

FIG. 9. (Color online) (A) Group-level temporal modulation transfer func-

tions. Plots reflect the maximum z-score value obtained along the spectral

modulation dimension of the group CImg, as a function of temporal modula-

tion rate (Hz). Function heights have been normalized to a maximum value

of 1. (B) Group-level spectral modulation transfer functions. Plots reflect the

maximum z-score value obtained along the temporal modulation dimension

of the group-level CImg, as a function of spectral modulation rate (cyc/

kHz). Function heights have been normalized to a maximum value of 1.
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The SMTF for the 2� group was also shifted relative to

the SMTF for the UC group, but the shift was downward in

frequency in the spectral modulation dimension [Fig. 9,

panel (B)]. As with the TMTFs, SMTFs were estimated from

both group-level and individual-participant CImgs. The

group-level SMTF cutoff at 3-dB down was 1.45 cyc/kHz

for UC and 1.11 cyc/kHz for 2�. The mean cutoff of

individual-participant SMTFs for the UC group was 1.45

cyc/kHz (SEM¼ 0.04) and the mean cutoff for the 2� group

was 1.20 cyc/kHz (SEM¼ 0.04), and the group difference

was statistically reliable [t(18)¼ 4.14, p< 0.001]. Thus, a

second effect of time-compression was to shift the CImg

“hot spot” down one quarter of an octave in the spectral

modulation dimension. This effect was not expected but is

consistent with the effect of time compression on the MPS

(Fig. 3). The largest relative increase in modulation power

induced by time compression occurred for temporal modula-

tion rates above 4 Hz, but only at very low spectral modula-

tion rates (<2 cyc/kHz). This is apparent in Fig. 3(C), which

shows a difference MPS (2� minus UC). To explore the

relation between differences in the UC and 2� CImgs and

differences in MPS energy for UC and 2� stimuli, a

“difference” CImg was generated as follows. Group-level

CImgs were scaled to have a maximum value of 1 and a min-

imum value of 0, and the UC CImg was subtracted from the

2� CImg such that the difference CImg ranged from �1 to

1. Figure 10 compares the difference MPS (panels A/B) and

the difference CImg (panels C/D). The difference CImg

overlaps strongly with the difference MPS, especially for

low temporal and spectral modulation rates (panels B/D;

note the change in axes for panels B and D relative to panels

A and C), which suggests that CImgs follow stimulus energy

to a considerable extent. Note also the similar boundary

between bright and dark regions of the difference MPS and

the difference CImg (dotted black line, panels B/D).

4. Model validation

The results reported in the preceding sections suggest

that (a) the bubbles technique yielded a highly reliable clas-

sification of the spectrotemporal modulations that support

intelligibility, and (b) the resolution of the technique was

sufficient to detect fine-grained changes in the relative

importance of different modulations after time compression.

Given the fact that bubbles CImgs are essentially a regres-

sion model formed under the assumption that trial-to-trial

variation in bubbles masks predicts trial-to-trial variation in

behavior, we can also ask how well the CImg predicts

behavior. This was evaluated using a hold-one-out cross-

validation procedure (see Sec. II A 4 c). Separate CImgs

were constructed on subsets of the data by holding out data

from one block, performing the classification analysis on the

remaining data, and repeating this procedure holding out

each block. In each iteration, the CImg was used to generate

observations of a decision variable, which was a simple

multiplication-and-sum of the CImg and the bubbles mask

from each trial of the held out block. These observations

formed the basis for model predictions.

The average percent agreement between true responses

and responses predicted by the model, binned by type of

response (0–5 keywords correct), is shown in Fig. 11. For

example, the height of the bar for “five keywords correctly

identified” shows, for those trials in which the participants

actually identified five keywords, the proportion of predicted

responses (model guesses) equal to 5. Two features of this

plot are noteworthy, and they apply equally to the UC and

2� groups. First, the pattern of model performance across

bins mirrors the distribution of participant responses (Fig. 4),

a fact that was ensured by the prediction strategy which

FIG. 10. (Color online) (A) “Difference” modulation power spectrum (2�
� UC) reproduced from Fig. 3(C). (B) Zoomed view of (A) focusing on low

temporal and spectral modulation rates. Note the scale change on the axes.

(C) “Difference” CImg (2� � UC) formed by scaling z-scored group-level

CImgs to the range [0 1] and subtracting the scaled UC CImg from the scaled

2� CImg. Values can take the range [�1 1]. Light pixels (yellow online)

reflect a relatively greater contribution to intelligibility for 2� vs UC. Dark

pixels (purple online) reflect a relatively greater contribution to intelligibility

for UC vs 2�. (D) Zoomed view of (C) focusing on low temporal and spectral

modulation rates. Note the scale change on the axes. Dotted lines in B/D

show the boundary between light (yellow online) and dark (purple online)

pixels. For all plots, temporal modulation rate is plotted along the x axis (Hz)

and spectral modulation rate is plotted along the y axis (cyc/kHz).

FIG. 11. Performance in hold-one-block-out cross validation of bubbles-

based CImgs for UC (grey bars) and 2� (white bars) groups. Height of the

bars indicates the across-participant average percent agreement between pre-

dicted and true responses. True responses are binned by number of keywords

correctly identified (0–5, x axis) with percent agreement calculated sepa-

rately for each bin. Dashed lines show chance performance determined on

the basis of a null distribution formed by repeating the cross-validation pro-

cedure 1000 times with the order of true responses shuffled.
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matched the proportion of model guesses to the true distribu-

tion of responses for each participant. Second, model predic-

tions most clearly exceeded chance (dotted lines, determined

by permutation testing) for 0 and 5 keywords correct, indicat-

ing that these trials were by far the most informative to the

classification analysis. The next most informative trials were

those with four keywords correct. The model was generally

not successful at discriminating between trials with 1–3 key-

words correct, indicating that significant variation in partici-

pant behavior could not be accounted for. However, although

the model did not succeed in generating the correct number

of keywords for trials with 1–3 keywords correct, guesses

were “close” to the correct category. This is reflected in the

strength of association (s) between predicted responses and

true responses, which was large for each group (UC:

M¼ 0.53, SEM¼ 0.01; 2�: M¼ 0.45, SEM¼ 0.01) and

greatly exceeded the critical values (P< 0.05) established by

permutation testing (UC: scrit¼ 0.04; 2�: scrit¼ 0.03).

5. Follow-up experiment

The results of the UC experiment suggest that temporal

modulations above �10 Hz are not crucial for the intelligi-

bility of speech spoken at a normal rate [Fig. 9(A)].

However, some potentially useful linguistic information is

encoded at these rapid timescales (e.g., individual phonemes;

Poeppel, 2003). It is possible that the bubbles procedure

failed to capture the perceptual significance of temporal

modulations above 10 Hz. Specifically, since the bubbles

procedure is essentially a multiple regression, it will pick out

components of the MPS that capture the majority of the

variance in intelligibility, potentially underweighting com-

ponents that contribute to intelligibility less reliably or to a

lesser extent. We conducted a follow-up experiment with

five additional participants to investigate this possibility. In

the follow-up experiment, the bubbles procedure was

repeated using new versions of the experimental UC stimuli

in which spectrotemporal modulations that contributed sig-

nificantly to intelligibility in the original UC experiment

[Fig. 8(B)] were attenuated by a fixed amount on each trial

equal to 0.15 times the initial magnitude of the MPS. This

ensured that variation in the stimulus introduced by the bub-

bles procedure was limited to pixels outside the original hot

spot. The experimental procedures were identical to those

described in Sec. II A 3, and the classification analysis was

repeated as described in Sec. II A 4 a. The distribution of

responses was much flatter in the follow-up experiment

(mean N for 0–5 keywords correct¼ 47.4, 58, 75.4, 78, 69,

74.2), suggesting that trials with 1–4 keywords correct were

weighted more heavily than in the original UC experiment.

This further suggests that variance in performance was

driven by more fine-grained differences in the information

conveyed by the stimuli relative to the original UC experi-

ment. The group-level CImg for the follow-up experiment is

plotted in Fig. 12 using the full axes of the MPS to allow

proper visualization of high spectrotemporal modulation

rates. The figure demonstrates that temporal modulation

rates above 10 Hz contributed significantly to intelligibility.

Specifically, the follow-up hot spot is shifted to the right of

the original and centered at �15 Hz. Thus, when the slow

temporal modulation rates in the original hot-spot were pre-

vented from accounting for variance in intelligibility, the

contribution of faster temporal modulation rates was statisti-

cally revealed.

III. GENERAL DISCUSSION

The primary goal of the current study was to develop an

efficient procedure to classify the spectrotemporal modula-

tions essential for speech intelligibility. Our approach

involved adaptation of the “bubbles” technique from vision

research (Gosselin and Schyns, 2001) to the auditory

domain. We implemented the bubbles procedure by ran-

domly filtering out portions of the MPS (Elliott and

Theunissen, 2009), and we examined the effect of this filter-

ing on the perception of uncompressed (UC) and 2�-time-

compressed (2�) sentences in normal-hearing listeners.

Some of the randomly generated filter patterns impaired per-

ception more than others, providing a means of relating trial-

by-trial patterns in the bubbles filters to trial-by-trial patterns

in behavior (multiple regression). The procedure determined

weights on each pixel of the MPS (i.e., on particular spectro-

temporal modulations), with larger weights indicating larger

contributions to intelligibility. Overall, the procedure suc-

ceeded in producing robust, reliable classifications in indi-

vidual participants (Figs. 6 and 7, supplementary2 Figs. 1

and 2), and we were able to use individual-participant CImgs

to predict sentence intelligibility on independent (held out)

data (Fig. 11). In the UC experiment, the bubbles procedure

highlighted a particular subregion or “hot spot” of the MPS

consisting of low temporal (<10 Hz) and spectral (<2 cyc/

kHz) modulation rates [Fig. 8(B)]. The MTF for UC speech

was low-pass in the spectral modulation domain (SMTF

cutoff¼ 1.5 cyc/kHz) and band-pass in the temporal modulation

FIG. 12. (Color online) (A) Unthresholded group-level CImg for uncom-

pressed speech with the original bubbles “hot spot” removed by attenuating

the magnitude of the modulation power spectrum in that region by a factor

of 0.15. This prevented the hot spot region from accounting for variance in

performance. (B) Thresholded version of (A). Pixels not exceeding threshold

have not been assigned a color value (i.e., appear white). The threshold cri-

terion was established on the basis of a null distribution formed by estimat-

ing 1000 group-level CImgs with participants’ responses shuffled. Colormap

reflects the normalized magnitude (z-score) of the CImg, where larger

z-scores indicate a greater contribution to intelligibility. Temporal modula-

tion rate (Hz) is plotted along the x axis and spectral modulation rate (cyc/

kHz) is plotted along the y axis.
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domain (TMTF peak¼ 3.7 Hz). The location and shape of

the MTF accorded well with previous results as described in

the introduction (Ter Keurs et al., 1992, 1993; Drullman

et al., 1994a,b; Elliott and Theunissen, 2009). However,

Elliott and Theunissen (2009) found spectral modulations

less than 1 cyc/kHz were most crucial for intelligibility,

whereas we observed a cutoff in the SMTF at 1.5 cyc/kHz.

This difference might be explained in part by smearing intro-

duced by the bubbles procedure, which essentially applies a

2-D low-pass filter to the true MTF.

We expected the hot spot to be translated upward in the

temporal modulation domain for 2� speech due to the dou-

bling of temporal modulation rates induced by time com-

pression [Fig. 1(B)]. In fact, the hotspot was translated

upward by one-third octave in the temporal modulation

domain [TMTF peak¼ 5.5 Hz; Fig. 8(C), 8(D), 9(A)] and

downward by one-quarter octave in the spectral modulation

domain [SMTF cutoff¼ 0.8 cyc/kHz; Fig. 8(C), 8(D), Fig.

9(B)]. The latter finding was surprising but was reconciled

by comparing the MPS for UC speech to the MPS for 2�
speech (Fig. 10), which demonstrated that time compression

produced an increase in modulation energy only at very low

spectral modulation rates. Together, these findings indicate

that the results of the bubbles procedure reflected the modu-

lation energy in the stimulus, though not completely. The

implications of these findings are discussed further below.

A. Does the bubbles procedure simply track
modulation energy?

The results of the bubbles procedure were found to be

related to patterns of modulation energy in the stimulus. To

some degree this would be expected, i.e., we would not

expect the procedure to identify the upper right corner of the

MPS where there is a relative absence of modulation energy.

As such, it is important to ask whether the bubbles procedure

adds information beyond simple examination of the MPS.

Indeed, direct comparison of the bubbles CImgs for UC and

2� speech [Figs. 10(C), 10(D)] yields a remarkably similar

pattern to direct comparison of the MPS for 2� speech

[Figs. 10(A) and 10(B)]. However, a close examination of

Fig. 10 shows that the results of the bubbles procedure

clearly deviated from the patterns predicted by differences in

stimulus energy, particularly at high temporal (>20 Hz) and

spectral (>3 cyc/kHz) modulation rates. For instance, the

“pitch region” of the MPS, which occurs at combinations of

high spectral and low temporal modulation rates (see Sec.

II A 2 b), contained significant modulation energy that varied

in power between UC and 2� speech (Figs. 3 and 10), yet

this region was not identified by the bubbles procedure for

either UC or 2� [Figs. 8, 10(C) and 10(D)]. Moreover, the

band-pass TMTFs observed for both UC and 2� (Fig. 9) did

not obey the 1/f trend visible along the temporal modulation

axis of the MPS [Figs. 3(A) and 3(B), x axis].

One possibility is that the bubbles procedure tracked

modulation energy in a transformed representational space.

Specifically, it has been proposed that acoustic signals are

modified in the ascending auditory pathway prior to extrac-

tion and representation of modulation energy at higher levels

(Bacon and Grantham, 1989; Dau et al., 1997; Chi et al.,
1999; Joris et al., 2004; McDermott and Simoncelli, 2011).

In the context of the current study, this implies that the MPS,

which is not faithful to peripheral auditory processing, was

not an appropriate representation of modulation energy. This

may explain why bubbles CImgs deviated from patterns of

modulation energy observed on the MPS. To explore this

possibility, we determined the predicted cortical response to

bubbles stimuli using a computational model of the auditory

system (Chi et al., 1999; Shamma, 2001; Chi et al., 2005).

The model, implemented via a freely available MATLAB tool-

box (Neural Systems Laboratory, 2001), proceeds through

several peripheral stages including cochlear filtering (con-

stant Q filters, 24 per octave, five-octave range), a hair cell

stage, and a lateral inhibitory network. Peripheral processing

yields an “auditory spectrogram” that is subsequently proc-

essed through a cortical stage in which the spectrogram is

decomposed by “cortical neurons” with spectrotemporal

receptive fields tuned to particular ripple patterns (i.e., by a

spectrotemporal modulation filterbank). The spectrotemporal

decomposition is performed within peripheral frequency

channels and across time, yielding a complex-valued 4-D

representation with the following dimensions: time (s), chan-

nel (Hz), temporal modulation rate (Hz), and spectral modu-

lation rate (cyc/oct).

For each participant in our study, we obtained the pre-

dicted cortical representation (corticogram) of the 402 bubbles

sentences heard by that participant, along with a corticogram

of the unprocessed version of each sentence. For each cortico-

gram, the magnitude was averaged across time and channel to

obtain a real-valued 2-D representation (11� 22 pixels). This

2-D representation showed “neural” energy across a range of

temporal (1–32 Hz, half-octave steps, positive and negative

axes) and spectral (0.25–8 cyc/oct, half-octave steps) modula-

tion rates similar to those represented in the MPS. The goal

was to evaluate, for each item, the effect of bubbles filtering

on the corticogram. This was achieved by directly comparing

the 2-D corticogram of each individual bubbles sentence to a

clean speech template, which was the average 2-D corticogram

of the unprocessed sentences. The difference between these

corticograms was quantified via a modified version of the

spectrotemporal modulation index (STMI; Elhilali et al., 2003;

Grant et al., 2008)

STMI ¼ 1� kT N � Tð Þk
kT2k ; (2)

where T is the clean speech template, N is the corticogram of

the bubbles stimulus, and jj jj is the 2-norm. The STMI takes

values from 0 to 1 with values closer to 0 indicating a greater

disruption of the “neural” modulation energy pattern.

If the bubbles procedure tracks neural modulation

energy rather than stimulus modulation energy, then values

of the STMI should accurately predict the effects of bubbles

filtering on intelligibility. In fact, when we repeated the

model validation procedure described in Sec. II A 4 c using

the STMI as the decision variable,3 agreement was as good

as or better than the agreement achieved by a decision vari-

able derived from bubbles CImgs (Table I). Figure 13 plots
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values of the STMI (right axis, dashed) binned by number of

keywords correct and averaged across items and participants

for the UC [panel (A)] and 2� [panel (B)] groups. The same

relation is plotted for the bubbles-based decision variable

(left axis, solid). On average, the STMI strongly overlaps the

bubbles-based decision variable. This appears to support the

conclusion that the bubbles procedure tracked the neural

representation of modulation energy.

To further verify the relationship between the STMI and

the bubbles procedure, we re-ran the bubbles classification

analysis (Sec. II A 4 a) using responses predicted by the

STMI (0–5 keywords correct) as the dependent variable.

Surprisingly, CImgs generated on this basis deviated signifi-

cantly from the original CImgs (supplementary2 Fig. 3). The

STMI-based CImg “hot spots” were weighted toward the ori-

gin, and there was less evidence of a rightward shift for the

2� CImg (i.e., the STMI was less sensitive to the doubling

of modulation rates induced by time compression). Thus,

while the STMI and bubbles-based decision variable were

similar on average—with lower average values of each mea-

sure for low intelligibility items and higher average values

of each measure for high intelligibility items—the two mea-

sures differed in important ways. The average correlation

between the measures was 0.66 6 0.01 SEM for UC and

0.61 6 0.02 SEM for 2� (all p< 0.001), which indicates that

although the STMI and bubbles-based decision variable

tended to be high on average for high intelligibility items,

the items producing the highest STMI values were not neces-

sarily the same items that produced the highest values of the

bubbles-based decision variable. In short, the STMI tended

to be largest when spectrotemporal modulations near the

origin of the MPS were preserved and smallest when these

modulations were filtered out. On the other hand, the bubbles

procedure primarily emphasized modulations around 4–6 Hz

(roughly the syllable rate; Arai and Greenberg, 1997). This

suggests the STMI is weighted more toward stimulus energy,

while the bubbles procedure tracks linguistically relevant

information in the stimulus. The ability of both measures to

predict intelligibility suggests that intelligibility depends on

the integrity of modulations carrying both stimulus energy

and linguistically relevant information.

B. Perception fails to fully track the changes induced
by time compression

One of the key findings of the current study was that,

while time compression induced a doubling of the modula-

tion rates present in the stimulus, the hot spot of the 2�
CImg was shifted upward by only one-third octave in the

temporal modulation domain relative to the UC CImg. Thus,

if the syllable rate in UC speech was �4 Hz, then informa-

tion at the syllable rate in 2� speech (�8 Hz) contributed

relatively less to intelligibility or was represented less effi-

ciently. Perhaps this accounts for the reduction in perfor-

mance observed in the current study for 2� speech relative

to UC speech. Specifically, although 2� speech is typically

highly intelligible when presented in favorable listening con-

ditions (Versfeld and Dreschler, 2002), in the current study

TABLE I. Comparison of model validation performance using the bubbles-derived decision variable versus the STMI. Percent agreement between predicted

and true responses displayed at left, binned by true number of keywords correct (as in Fig. 11). Kendall’s tau computed between predicted and true responses

displayed at right. Table entries reflect the group mean with standard error of the mean in parentheses below. UC ¼ uncompressed speech group, 2� ¼ time-

compressed speech group, ORIG ¼ model performance determined using the bubbles-based decision variable to generate predicted responses, STMI ¼ model

performance determined using the STMI to generate predicted responses.

Percent agreement

Number of keywords correct

0 1 2 3 4 5 Kendall’s s

UC-ORIG 66.2 (2.0) 12.5 (1.9) 10.4 (1.9) 13.2 (2.2) 18.3 (2.0) 61.8 (2.0) 0.53 (0.01)

UC-STMI 75.6 (2.2) 15.6 (2.9) 15.3 (2.6) 19.1 (2.3) 18.7 (1.8) 65.3 (2.8) 0.63 (0.02)

2�-ORIG 59.4 (1.6) 13.6 (1.8) 15.4 (1.3) 14.4 (1.5) 20.3 (3.4) 45.6 (2.7) 0.45 (0.01)

2�-STMI 67.0 (1.6) 18.5 (1.9) 14.7 (1.0) 14.3 (1.9) 20.1 (2.6) 44.3 (2.4) 0.48 (0.02)

FIG. 13. (Color online) (A) Mean values of the bubbles-based decision vari-

able (solid, left axis) and STMI (dashed, right axis) for the UC group.

Values are binned by number of keywords correctly identified (i.e., perfor-

mance, x axis). (B) Plot organized as in (A), but for the 2� group. For all

plots, error bars reflect 61 SEM.
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performance was generally worse for the 2� group as evi-

denced by the fact that less degradation of the signal was

required to drive performance to the 50% correct threshold

for 2� relative to UC (Sec. II B 1; confirmed by the STMI

analysis in Sec. III A). Despite tremendous redundancy in

the signal, evidenced by the large degree of overlap between

UC and 2� CImgs (Fig. 8; see also Sec. III C), linguistically

relevant information in a narrow range of spectrotemporal

modulations appears to be crucial for intelligibility under

challenging listening conditions. In order to optimize intelli-

gibility, this range—characterized in the temporal modula-

tion domain by modulations around the peak of the TMTF—

should have doubled for 2� speech relative to UC speech.

Why was this not case?

One possibility is that participants failed to fully adapt to

2� speech. This possibility seems somewhat unlikely given

previous research on the effects of perceptual learning with

time-compressed speech. Specifically, previous research sug-

gests that perceptual learning reaches an asymptote after

exposure to approximately 20 time-compressed sentences

(Dupoux and Green, 1997; Peelle and Wingfield, 2005;

Adank and Janse, 2009). Participants in the 2� group of the

current study received 50 trials of exposure to clear (unfil-

tered) 2� speech prior to starting the experiment. However,

this does not completely discount a role for perceptual learn-

ing or the lack thereof. All users of spoken language have

necessarily been exposed to speech across a range of speak-

ing rates, but centered on normal conversational rates. Thus,

we are expertly trained to listen for information at the tempo-

ral modulation rates characteristic of normal-rate speech.

It may take a tremendous amount of exposure to time-

compressed speech, far beyond what is reasonable for a labo-

ratory study, to offset the effects of this natural training.

Although the auditory system is flexible enough to perceive

2� speech accurately, it may not be flexible enough to opti-

mally allocate attention to the most informative modulations

in the 2� signal. Alternatively, one could say, the auditory

system is optimally tuned to the most informative modula-

tions in normal-rate speech, which is far more likely to be

encountered in the natural world.

Another possibility is that there are neural limitations on

the encoding of fast temporal modulation rates in speech. A

landmark study by Ahissar et al. (2001) showed that intelli-

gibility of time-compressed speech is correlated with the

degree of phase-locking to the speech envelope in neural

ensembles of the auditory cortex. Reductions in phase-

locking were observed exactly when the signal was com-

pressed beyond 2�. Subsequent work has emphasized the

role of endogenous cortical rhythms, especially in the theta

(�4–8 Hz) range, in tracking the speech envelope, including

further demonstration of the link between such tracking and

intelligibility (Giraud et al., 2007; Luo and Poeppel, 2007;

Ghitza and Greenberg, 2009; Giraud and Poeppel, 2012;

Peelle and Davis, 2012; Peelle et al., 2013). Failure to

observe a full octave shift of the bubbles hot spot for 2�
speech in the current study may be due to the fact that the

envelope of 2� speech could not be reliably tracked by

listeners’ auditory cortical neurons. In contrast to this con-

clusion, data from ECoG recordings in human participants

demonstrate that envelopes of time-compressed speech can

be tracked in the high gamma activity (70–250 Hz) of neuro-

nal populations in core fields of the auditory cortex, even at

very high compression rates (e.g., 5�) that render speech

completely unintelligible (Nourski et al., 2009). Moreover,

high temporal modulation rates can be effectively encoded

in the firing rate of auditory cortical neurons in the absence

of phase locking (Joris et al., 2004; Bendor and Wang, 2008;

Pasley et al., 2012). Thus, failure to observe a full octave

shift in the 2� experiment cannot be attributed to a complete

failure to represent high temporal modulation rates in the

auditory cortex. Furthermore, these high temporal modula-

tion rates were shown to contribute significantly to intelligi-

bility in our follow-up experiment (Sec. II B 5), suggesting

that such rates were not only represented at a high level of

the nervous system (e.g., in cortex) but were also function-

ally relevant. Nonetheless, it remains possible that theta-rate

neural oscillations contribute relatively more to intelligibility

than other mechanisms for encoding speech (Giraud et al.,
2007; Giraud and Poeppel, 2012). Such relative weighting of

encoding mechanisms could be reflected in bubbles CImgs,

potentially “locking” CImg hot spots to temporal modulation

rates around 4–8 Hz.

C. Bubbles CImgs do not fully characterize intelligible
speech

A final important point of discussion concerns the extent

to which the bubbles classification procedure can be used to

characterize intelligible speech. The model validation results

(Sec. II B 4) demonstrate straightforwardly that bubbles

CImgs do not fully capture the variation in intelligibility pre-

sent in the data. Namely, model predicted responses were

only partially correlated with true responses (s¼ 0.53 for

UC and s¼ 0. 45 for 2�). This means that remaining varia-

tion in intelligibility could be captured by one of two factors:

(1) the contribution of spectrotemporal modulations outside

the bubbles hot spot or (2) the contribution of other cues

such as temporal fine structure (Lorenzi et al., 2006; Moore,

2008; Sheft et al., 2008; Hopkins and Moore, 2009; Shamma

and Lorenzi, 2013). We will only address (1) at further

length.

The bubbles procedure may be insensitive to certain

infrequent spectrotemporal features of speech. The bubbles

procedure is essentially a multiple regression designed to

identify MPS pixels that predict intelligibility. For a pixel to

be assigned a large regression weight it must be reliably

informative—that is, the information conveyed by that pixel

must contribute to intelligibility, and the information must be

reliably present across many sentences. Pixels that only occa-

sionally convey useful information are likely to be under-

weighted. In the current study we observed that CImgs

reliably identified low spectral and temporal modulation rates

corresponding roughly to sentence components containing

vowel formants (see also Elliott and Theunissen, 2009). More

finely resolved spectral components such as those composing

the pitch contour also contribute to intelligibility (van Santen

et al., 2008), but this contribution may be more pronounced
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for some sentences than others, which would effectively

reduce the weight on the pitch region.

It is important to remember, then, that MPS pixels

shown to be maximally informative according to the bubbles

procedure do not uniquely convey intelligible speech. This

can be confirmed by a simple demo. If the most informative

pixels [the maximal region of the bubbles CImg visible as

the brightest pixels in Fig. 8(B)] are completely filtered out

from the signal, speech remains intelligible (supplementary2

audio 7–9). We may have expected that removal of maxi-

mally informative pixels would have some effect on intelli-

gibility, but the demo clearly demonstrates this is not the

case. Rather, there is considerable redundancy in the encod-

ing of intelligible information such that spectrotemporal

modulations linked relatively less strongly to performance in

the current study [less-bright/orange pixels in Fig. 8(B)])

sufficiently encode a fully intelligible signal. As such, we

must take caution in remembering that the bubbles procedure

emphasizes the most informative regions of the MPS given

the set parameters of the experiment. This point was driven

home by our follow-up experiment, which showed that

regions of the MPS that failed to reach significance in the

original UC experiment emerged as significant when the

original hot spot was severely attenuated on each trial (i.e.,

when the spectrotemporal modulations previously labeled as

most informative were prevented from contributing to varia-

tion in intelligibility).

IV. SUMMARY

We adapted the image classification procedure known

as “bubbles” to the auditory domain in order to efficiently

classify the spectrotemporal modulations that convey intelli-

gible speech information. This was achieved by randomly

filtering out components of the MPS and relating variation in

the filter patterns to variation in performance (keyword iden-

tification). The procedure identified a particular region of the

MPS that contributed significantly to intelligibility. The

region was confined to low spectral (<2 cyc/kHz) and tem-

poral (<10 Hz) modulation rates, demonstrating a low-pass

shape in the spectral modulation domain and a band-pass

shape in the temporal modulation domain. We validated this

result by using individual-participant classification images to

predict performance on independent datasets. We also found

that classification results were highly reliable across partici-

pants. Critically, the reliability of the bubbles procedure sug-

gests that a robust classification can be achieved in far fewer

trials than the number used here. A rapid version of the bub-

ble procedure would be ideal to detect individual differences

in populations where such differences are more likely to be

observed, such as in hearing-impaired populations. When

the procedure was repeated using 2�-time-compressed

speech, the classified region shifted upward by only one-

third octave in the temporal modulation domain. This result

was shown to have significant implications in terms of

understanding the perceptual and/or neural limitations that

can ultimately lead to a breakdown in information process-

ing for time-compressed speech. Intelligibility was also

shown to depend substantially on both the spectrotemporal

modulations that carry significant modulation energy and the

spectrotemporal modulations that carry linguistically rele-

vant information. Finally, we showed, as expected, that the

bubbles procedure is inherently limited in that the classifica-

tion results were tied to the stimulus parameters and task

associated with the current experimental design.
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