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Auditory scene analysis (ASA) refers to the process (es) of parsing the complex acoustic

input into auditory perceptual objects representing either physical sources or temporal

sound patterns, such as melodies, which contributed to the sound waves reaching the

ears. A number of new computational models accounting for some of the perceptual

phenomena of ASA have been published recently. Here we provide a theoretically

motivated review of these computational models, aiming to relate their guiding principles

to the central issues of the theoretical framework of ASA. Specifically, we ask how they

achieve the grouping and separation of sound elements and whether they implement

some form of competition between alternative interpretations of the sound input. We

consider the extent to which they include predictive processes, as important current

theories suggest that perception is inherently predictive, and also how they have been

evaluated. We conclude that current computational models of ASA are fragmentary in

the sense that rather than providing general competing interpretations of ASA, they focus

on assessing the utility of specific processes (or algorithms) for finding the causes of the

complex acoustic signal. This leaves open the possibility for integrating complementary

aspects of the models into a more comprehensive theory of ASA.

Keywords: auditory scene analysis, computational model, auditory object representation, predictive processing,

auditory streaming, bi-/multi-stable perception

INTRODUCTION

In most situations, we receive sounds from an unknown number of different sources. The task of
the auditory system is to parse the complex mixture in order to determine the likely sources of the
incoming signals. In his groundbreaking book, Bregman (1990) termed this process auditory scene
analysis (ASA). Although the incoming acoustic information does not fully specify the sources (at
least not for the general case, when both the listener and the sources may move; Stoffregen and
Bardy, 2001), everyday experience tells us that we can reliably decompose auditory scenes. That is,
under natural circumstances, our auditory perception is rarely chaotic or misleading. However, the
neural mechanisms by which the human (and animal) brain achieves this feat are largely unknown.
In the past three decades, several theories have been postulated for explaining the processing of
complex auditory scenes and the perceptual phenomena deemed to exemplify some crucial aspect
of it. Many of these theories have been implemented in the form of computational models. Our aim
here is to provide a theoretically motivated overview of recent models.

The most recent review discussing computational models of ASA was published in 2006 (Wang
and Brown, 2006) (for a previous review, see Cooke and Ellis, 2001). Since then, some important
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new ideas have permeated the field (e.g., predictive processing
and temporal coherence) and also some of the earlier models
have been updated and extended. Therefore, we focus on the
new theoretical developments and refer readers interested in the
earlier models to the previous reviews (Cooke and Ellis, 2001;
Wang and Brown, 2006). Some detailed reviews of ASA are
available to the reader (Carlyon, 2004; Haykin and Chen, 2005;
Snyder and Alain, 2007; Ciocca, 2008; Denham and Winkler,
2015) and we do not wish to reiterate them. Therefore, we will
only introduce the most important phenomena, terms, and the
main theoretical approaches providing basis for our review.

Main Theoretical Approaches and Issues
Bregman (1990) broke down ASA into two stages. In the first
stage, incoming sounds are grouped in parallel by various
heuristic algorithms, which are assumed to implement the Gestalt
principles of perception (Köhler, 1947) (for a review specific to
the auditory modality, see Denham and Winkler, 2015). These
groupings then compete with each other in a second stage, with
the winner emerging in perception. The outcome is a coherent
succession of sounds, termed an auditory stream, which can
be attended and manipulated by cognitive operations. Bregman
(1990) distinguished auditory streams from perceptual objects,
as a stream can combine contributions from several sound
sources (e.g., the melody played by an orchestra). However,
more recent definitions of auditory perceptual objects (Kubovy
and Van Valkenburg, 2001; Griffiths and Warren, 2004; Winkler
et al., 2009) include both representations of sound sources and
sound patterns (such as a melody), because both can be used in
mental operations. Auditory perceptual objects represent parts
of the acoustic input that can be segregated from other objects.
They describe the object by the perceptual features extracted
from the input and are invariant with respect to irrelevant
acoustic differences. They allow information from an object to
be linked across time and possibly across modalities (such as
between the speaker’s lip movements and the speech sounds,
whose congruence improves the intelligibility of speech in noise,
while their incongruence may produce the McGurk effect; Erber,
1975; McGurk and MacDonald, 1976; Helfer and Freyman,
2005). Finally, object representations may generate predictions
for upcoming sounds generated by the same source (Winkler
et al., 2009). In this review, we regard auditory streams as
perceptual objects. While theoretical clarity would require us to
term candidate groupings as proto-objects (which can become
the objects of auditory perception by winning the competition),
for the sake of easier reading, we shall use the term object
throughout, referring to proto-objects only when distinguishing
between the two meanings.

Much of the experimental work on ASA has focused on
Bregman’s first stage (for summaries, see Bregman, 1990;
Moore and Gockel, 2002, 2012; Carlyon, 2004; Ciocca,
2008). Bregman (1990) distinguished spectral/concurrent
and temporal/sequential grouping processes. The former
are responsible for grouping together elements of the
incoming sounds present at the same time (Alain et al.,
2002; Ciocca, 2008), using cues, such as harmonicity. The
latter link together sounds separated in time to form temporal

sequences. Grouping is assumed to be biased by the old +

new heuristic: continuation of previously discovered groups
are preferred over the emergence of new ones, leaving the
sound elements that cannot be accounted for by the current
representation(s) to initiate the formation of new objects
(Bregman, 1990). However, when, as is typical, multiple
continuous non-stationary sounds are mixed together (e.g.,
Teki et al., 2011), the two kinds of grouping processes cannot
be easily separated. Shamma et al. (2011, 2013) suggested that
grouping occurs on the basis of temporal coherence between
featural (e.g., spectral) constituents of the complex acoustic
input. That is, similarly to the Gestalt principle of “common
fate,” those parts of the input that recur together belong together.
According to temporal coherence theory, a single process
binds together both concurrent and temporally separate sound
elements.

Bregman’s second processing stage, the competition between
objects, has received far less treatment. In most models, it is
only implicitly assumed (e.g., Snyder and Alain, 2007) or it
is not present at all (Shamma et al., 2011, 2013). There is,
however, some experimental evidence supporting the existence
of multiple processing phases in auditory stream segregation
(Winkler et al., 2005; Snyder et al., 2006). Further, the existence
of bi- and multi-stable auditory perceptual phenomena (i.e.,
when perception of the same stimulus switches back and forth
between two ormore interpretations, respectively; Schwartz et al.,
2012) suggests that alternative descriptions of the auditory scene
may be simultaneously represented in the human brain. (For
generality, we will use the term multi-stability throughout the
review).

Bregman (1990) intended his description of auditory scene
analysis as a theoretical framework. As a consequence, some
of the processes are underspecified. One question is whether
competition occurs between objects or between coalitions of
objects (termed perceptual organizations). For a discussion of this
issue, see (Winkler et al., 2012). Another question is whether
competition is continuous or only occurs when a new object
is formed. Traditional descriptions of ASA assumed that for
unchanging stimulation, after a period of evidence gathering,
the dominant (perceived) object is established once and for
all. Thus there is no need for competition to continue until
the stimulation changes. However, results from experiments
using multi-stable stimulus configurations (Roberts et al., 2002;
Denham and Winkler, 2006; Denham et al., 2013; Pressnitzer
and Hupé, 2006; Schadwinkel and Gutschalk, 2011) suggest that
competition between the alternatives is continuous even for
unchanging stimuli.

One can also ask what fuels the competition between objects.
The initial activationmay be derived from the grouping processes
(i.e., some measure of how easily the elements of an object could
be linked). However, theories assuming continuous competition
must also consider further effects on object strength (e.g.,
competition itself is typically modeled by mutually inhibitory
interactions; Leopold and Logothetis, 1999). Several recent
theories emphasize the predictive nature of perception (Gregory,
1980; Friston, 2005; Bar, 2007). If objects were represented as
generative models they could be tested against the actual input,
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which would provide a continuous evaluation of their validity
and a source of activation, as well as the possibility to eliminate
outdated representations.

Another area in which Bregman’s theoretical framework
requires further elaboration is regarding the nature of the
memory representations underlying ASA. Two issues, possibly
two forms of memory, can be considered: one allowing discrete
sounds to be linked and another representing the resulting
temporal sound pattern. Results from studies of stimulus-specific
adaptation (SSA) suggest that the upper bound of the first effect
is ca. 2 s (Ulanovsky et al., 2003, 2004). Unlike this shorter-
term effect, the memory encoding the pattern that defines a
sound object may be brought into consciousness and/or enter
various mental operations over much longer time periods.
Based on experimental results of auditory deviance detection,
Winkler (2007) suggested that sound sequences are represented
by the characteristic relationships between adjacent sounds
(transitional probabilities; cf. Mittag et al., 2016). Transitional
probabilities are conducive of predictive processing, because
they allow the system to predict the most likely continuation
of a sequence. Shamma et al. (2011, 2013) temporal-coherence
based explanation does not require the assumption of different
forms of memory. Instead, temporal coherence is established
in parallel on multiple time scales and is a function solely of
the stimulus itself (for compatible experimental evidence, see
O’Sullivan et al., 2015). However, it is not easy to see, how
this system would encode longer temporal patterns, such as
melodies. The presence of separate patterns/melodies is known
to allow interleaved sound sequences to be segregated (e.g.,

Dowling, 1973; Bey and McAdams, 2002; Bendixen et al.,
2010) even in the absence of additional cues (Szalárdy et al.,
2014).

Stimulus Paradigms Used for Studying ASA
The most widely studied stimulus paradigm within the context
of ASA was introduced by van Noorden (1975): the auditory
streaming paradigm consists of a repeating tone triplet of the
form ABA- (where “A” and “B” denote two different tones and
“-” stands for an interval equaling the common duration of
“A” and “B;” Figure 1A). This stimulus can be primarily heard
either in terms of the ABA tone-triplets (producing a galloping
rhythm; termed the integrated percept; Figure 1B) or as two
separate isochronous streams: a faster paced one consisting of
the “A” tones and a slower one consisting of the “B” tones
(termed the segregated percept; Figure 1C). Other repeating
patterns (such as AB—and–A-; together termed the combined
percept; Figure 1D) can also be experienced, albeit typically with
lower incidence (Denham et al., 2014). Based on psychophysical
testing of the parameter space of frequency difference and
presentation rate, van Noorden (1975) established three regions.
In the integrated region, listeners could not hear the sequence
as segregated, whereas in the segregated region they could not
hear it as integrated. Large frequency differences between the
two tones and fast presentation rates increased the likelihood
of segregation, whereas small differences and slow stimulus
presentation rates favored integration. With parameters falling
between the integrated and the segregated regions, listeners could
voluntarily bias attention in favor of integration or segregation

FIGURE 1 | Schematic depiction of the auditory streaming paradigm (A) and its possible perceptual interpretations grouped into 3 categories (B–D).

Rectangles depict the “A” and “B” tones. Sounds perceived as part of the same stream are connected by lines in the lower panels (B–D). Darker notes

with gray background indicate the stream in the foreground (also described with symbols to the right of each of the lower panels; B–D). Reprinted with

permission from Farkas et al. (2016b).
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(termed the ambiguous region). The boundaries between the
ambiguous and the other two regions were termed the fission and
temporal coherence boundaries.

Most classical studies presented trains of 5 to 20 s duration.
The listener’s perception was tested at the end of the train.
Some more recent studies presented longer (>1min) sequences
and asked listeners to continuously report their perception.
These studies showed that perception does not settle on one
of the alternative organizations. Rather, it switches back and
forth between the alternatives even for parameters strongly
promoting one of them (perceptual multi-stability; e.g., Roberts
et al., 2002; Denham and Winkler, 2006; Pressnitzer and Hupé,
2006; Denham et al., 2013; Schadwinkel and Gutschalk, 2011).
This phenomenon is characterized by a sequence of perceptual
phases, which are intervals during which perception remains
constant. The first perceptual phase is typically longer (>10 s) and
it is more affected by stimulus parameters than the subsequent
phases (Pressnitzer and Hupé, 2006; Denham et al., 2013).
Further, in contrast to the classical notion that perception of a
new stimulus starts out by integrating all sounds into a single
coherent percept, some studies have found that segregation
can also appear as the first reported percept (Deike et al.,
2012; Denham et al., 2013). The temporal pattern of perceptual
switching appears to be similar to that observed for visual multi-
stable phenomena, such as binocular rivalry (Pressnitzer and
Hupé, 2006; Hupé and Pressnitzer, 2012; Kondo et al., 2012).
Similarities include the inevitability of switching, approximately
log-normal distribution of phase durations (Pressnitzer and
Hupé, 2006; Farkas et al., 2016b), and characteristic individual
switching patterns (Denham et al., 2014; Farkas et al., 2016b).
However, the initial observation that successive perceptual phase
durations are largely uncorrelated (Pressnitzer and Hupé, 2006)
has been recently questioned (Barniv and Nelken, 2015).

The processing of spectral/concurrent cues of ASA is most
often studied by manipulating one partial of a harmonic complex
tone. Such stimuli are usually perceived as two concurrent
sounds: a complex tone with the same pitch as the original
harmonic complex and a separate pure tone corresponding to the
manipulated partial (Moore et al., 1986; Hartmann et al., 1990;
Darwin et al., 1995; Alain et al., 2001). This is because frequency
components in harmonic relationship (integer multiples of a
common base frequency) are grouped together and perceived in
terms of a single pitch (that of the fundamental), thus allowing
them to be discriminated from tones and harmonic complexes
with different fundamental frequencies (Rasch, 1978; Duifhuis
et al., 1982). The most common manipulations are mistuning
(i.e., the frequency of the partial is increased or decreased),
and delaying or delivering a partial from a different location
than the rest (e.g., McDonald and Alain, 2005; Lipp et al.,
2010; Kocsis et al., 2014). Greater amounts of manipulation,
manipulation of the lower as opposed to the higher harmonics,
multiple manipulations of the same harmonic, and congruent
manipulation of two or more harmonics increase the likelihood
that two concurrent sounds will be perceived (McDonald and
Alain, 2005; Lipp et al., 2010; Kocsis et al., 2014).

Most everyday sound sources emit series of complex sounds
and so require the auditory system to jointly utilize concurrent

and sequential cues. The encoding of such temporal patterns
is often studied using tone clouds, which consist of a large
number of pure tones of random frequencies. Tone clouds
have been used in information masking designs measuring
the effect of auditory stream segregation on detecting tone
repetition within a protected frequency range of the cloud
(e.g., Kidd et al., 1994; Elhilali et al., 2009b; Akram et al.,
2014a). They also allow the creation of target patterns for
detection (e.g., Kumar et al., 2014; Barascud et al., 2016) as
well as variable backgrounds within which repeating target
patterns can be detected. For the latter purpose, Teki et al.
(2011) created a sound configuration consisting of a series of
tonal complexes composed of random frequencies, which were
presented without pause (Figure 2). Within a continuous part
of this stimulus, a subset of the tonal elements is repeated. The
repeated tonal complex can then be perceived as a “figure” over
the background of the randomly varying chords. Increasing the
number of repeating frequencies or the number of repetitions
increases the likelihood of segregation (Teki et al., 2011; Tóth
et al., 2016). Because the “figure” is created by manipulating
the temporal coherence of a part of the stimulus (i.e., by
repeating some tones while the rest of the tones are randomly
varied), the temporal coherence theory of ASA provides a good
explanation for figure-ground segregation in these cases (Teki
et al., 2013). Teki et al. (2016) extended their original finding
by showing that repetition of the tonal complex is detected
even when the tone cloud and, within it, the repeating complex
is interspersed with white noise segments, thus making the
figure acoustically non-continuous. Connecting non-adjacent
segments into a coherent stream has been previously observed
for temporal/sequential grouping (Bendixen et al., 2012). The
generality of this feature across different forms of auditory stream
segregation speaks to the robustness of this important auditory
function.

FIGURE 2 | Schematic illustration of a stimulus including a “figure”

component. Black dots depict random tonal elements while red ones

represent repeating ones. Chord onsets are represented as vertical lines. The x

axis shows both time and the serial position within the stimulus. The y axis

provides a qualitative representation of frequency. Figure duration (the number

of repeated tone complexes), figure coherence (number of tonal components

comprising the repeated tone complex), and the range within which the figure

can appear are marked.

Frontiers in Neuroscience | www.frontiersin.org 4 November 2016 | Volume 10 | Article 524

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Szabó et al. Computational Models of ASA

Measures of ASA
Behavioral measures of ASA can be divided into two classes:
subjective and objective measures. Subjective measures require
the listener to report their perception, while objective measures
have listeners perform a task whose difficulty depends on the
perceptual organization of the incoming sounds. As a typical
subjective measure of the auditory streaming paradigm, van
Noorden (1975) asked listeners to tell whether they heard a
galloping rhythm as this shows that the listener experienced the
tone sequence as integrated. In the same paradigm, temporal
order judgments can serve as an objectivemeasure of segregation,
because it has been found that listeners perform this task much
better when the two target sounds belong to the same stream
than when they belong to two different streams (Bregman
and Campbell, 1971). The obvious disadvantage of subjective
measures is that they cannot be directly validated. However,
Farkas et al. (2016a) showed that when the instructions are
carefully formulated and the listener’s understanding of them
is monitored by catch trials, then valid perceptual data can
be obtained from subjective reports in the auditory streaming
paradigm. The advantage of subjectivemeasures is that they allow
monitoring the listener’s perception of a sound sequence at a
far better temporal resolution than objective ones. In contrast,
objective measures only allow the listener’s perception to be
assessed at much less frequent discrete time points. Further,
requirements of the objective-measure task may cause listeners
to favor one perceptual organization over another. A common
problem of the two measurement methods is that experimenters
typically limit the percepts to be considered. Brain responses
provide an alternative to behavioral measures. Their main
advantages are that they (1) do not necessarily need the listener to
perform some task with the sounds, and (2) provide information
about the neural bases of ASA. However, they suffer from some
of the same problems that have been described above, because
they need to be validated by behavioral measures. To date brain
measures have seldom been used for validating computational
models of ASA, therefore we do not review them here (for some
of the neuroscience methods used for studying ASA, see the next
section as well as Fishman et al., 2001; Bee and Klump, 2004;
Deike et al., 2004; Gutschalk et al., 2005;Wilson et al., 2007; Alain
and Winkler, 2012; Teki et al., 2013; O’Sullivan et al., 2015; Teki
et al., 2016).

What Do We Know about the Neural Bases
of ASA?
The cochlea decomposes the signal into a set of frequency
components and establishes the tonotopic organization that is
found throughout much of the auditory system up to and
including the primary auditory cortex; for an overview of the
subcortical auditory system see Irvine (2012). However, even
at this early stage, processing is not just a passive feedforward
process. For example, cochlear intrinsic nonlinearities increase
the saliency of onsets, emphasize spectral peaks and reinforce
harmonically related components in incoming signals. Recurrent
feedback, primarily mediated via physical changes in outer hair
cell motility, provides a mechanism for adaptive gain control

and active modulation of cochlear processing (Guinan, 2006).
As the signals pass onwards from the cochlea toward the brain,
additional features are extracted and represented in overlapping
maps, largely in parallel across the tonotopic axis; such features
include onsets, offsets, periodicities, amplitude and frequency
modulations (AM, FM), and interaural time and level differences
(ITD, ILD). Together these features form the basis for the
grouping processes underlying ASA.

Subcortical processing provides cortex with time-locked
information about acoustic features detected within the incoming
mixtures of sounds, but this information is agnostic with regard
to which features belong together or the sources from which
they might originate. Cortex then, possibly through inferential
processes (Friston, 2005), groups and segregates features into
composite event and object representations; representations
which become increasingly more abstract at higher levels of the
auditory processing hierarchy (Kumar et al., 2014). Thus it is
likely that cortex is responsible for object formation. Similarly to
other sensory systems, the cortical auditory system is organized
in a hierarchical manner (Leaver and Rauschecker, 2010).
For example, a pitch processing hierarchy runs from primary
auditory cortex in Heschl’s gyrus through planum temporale,
superior temporal gyrus and planum polare (Patterson et al.,
2002). Differential activations along this pathway distinguish
sounds from silence, pitched from unpitched sounds, and
melodic patterns from repeated pitches. Further, activity along
this pathway also correlates with the emergence of categories
(e.g., voices, musical instruments) from feature combinations
(Leaver and Rauschecker, 2010). Consistent evidence comes from
magnetoencephalographic (MEG) studies of cortical responses
to events in speech mixtures (Simon, 2015): primary auditory
cortical activations with latencies around 50ms are primarily
related to feature-based representations, while those localized
to planum temporale with latencies from 100ms onwards are
related to object-based representations (see also Näätänen and
Winkler, 1999).

Evidence for cortical feature grouping has been demonstrated
by an electrophysiological study of onset and offset responses
in single neurons in primary auditory cortex (A1) (Scholl et al.,
2010). It was shown that onset transient and offset transient
inputs were driven by different synapses, suggesting that onset
and offset signals from different subcortical populations converge
onto individual A1 neurons, which then produce a composite
response. Thus these cortical cells may effectively perform the
temporal boundary grouping role proposed by Ciocca (2008).
Grouping by harmonicity also appears to depend on cortical
processing, and is associated with a cortical pitch onset response
occurring at a latency of 100–150ms (Krumbholz et al., 2003) and
a more sustained pitch response (SPR) which gradually builds up
and then remains roughly constant for the duration of the pitched
sound (Gutschalk et al., 2007). As for grouping by sequential
cues, investigations of the neural correlates of auditory streaming
have given rise to the suggestion that the build-up of streaming
can be explained by a combination of feature selectivity, forward
suppression, and multiscale adaptation (Fishman et al., 2004; Bee
and Klump, 2005; Micheyl et al., 2005). For example, Fishman
et al. (2001, 2004) found that differential suppression of the
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responses to tones differing from the best frequency of the cells
in monkey primary auditory cortex took time to develop. The
effect depended on the presence of alternating best frequency
and non-best frequency tones as well as on the presentation
rate and the frequency difference between the best frequency
and the non-best frequency tones. These findings could account
for the build-up of stream segregation (Micheyl et al., 2005).
However, the above mentioned studies mainly focused on short-
term changes in neural responses to alternating tones and did not
consider the possibility of multi-stability. Using longer sequences
that produce multi-stable perception, both transient activity in
response to perceptual switches and sustained responses that
correlate with the experienced perceptual organization have
been demonstrated (Kondo and Kashino, 2009; Schadwinkel
and Gutschalk, 2011). Sustained responses in auditory cortex
appear to encode perceived repetition rates and increase in
response to segregation. Transient responses synchronized with
perceptual switching have been found in auditory cortex (Kondo
and Kashino, 2009; Schadwinkel and Gutschalk, 2011), thalamus
(Kondo and Kashino, 2009), inferior colliculus (Schadwinkel and
Gutschalk, 2011), and intraparietal sulcus (Teki et al., 2016).
Although it is not clear how or where switching is triggered,
these studies provide evidence for a tight interaction between
cortical and subcortical processing in resolving the ASA problem.
Further, some brain imaging studies in humans found that
correlates of auditory stream segregation (2 vs. 1 object) were
evident in parietal cortex (Cusack, 2005). Thus it is likely that
the full network underlying the formation of auditory perceptual
objects extends beyond the auditory system.

Repetition is a powerful grouping and segregation cue, the
effects of which can be demonstrated even in the absence of
other cues (McDermott et al., 2011; Teki et al., 2011, 2013,
2016). Sensitivity to repetition (in the presence of a variable
background) may underlie the robustness of perception with
regard to natural variability in signals, such as speech. In
support of this idea, cortical responses to a target speaker
have been shown to be invariant with respect to irrelevant
object details (such as intensity changes) (Ding and Simon,
2014; Simon, 2015). By studying transitions between random
and patterned tone sequences it has been shown that steady-
state responses in auditory cortex, inferior frontal gyrus, and
hippocampus correlate with the predictability of the sequence
(Barascud et al., 2016; Kumar et al., 2016). That is, the sustained
response increases with increasing predictability, suggesting that
this representation is precision weighted as opposed to being a
result of adaptation or a correlate of prediction error, both of
which would suggest a response decrement (Mathys et al., 2011;
Teki et al., 2016). Offset responses to auditory objects (patterned
sequences) are compatible with the notion of predictive auditory
object representations (Andreou et al., 2015; Barascud et al.,
2016), with some caveats; offsets responses to repeating pitch
patterns require about three violations (Barascud et al., 2016),
and offset responses to repeating temporal patterns are only
elicited by isochronous sequences, whereas offset responses to
non-isochronous sequences seem to require attention (Andreou
et al., 2015). In summary, while neural signatures have been
found formost of the important perceptual effects of ASA, exactly

how separable object representations are instantiated in cortical
networks is still largely unknown.

MODELING AUDITORY SCENE ANALYSIS

Computational models of auditory scene analysis vary in their
fundamental goals; while some attempt to address the complexity
that the auditory system faces when processing realistic sounds
(such as speech; Nix and Hohmann, 2007; Elhilali and Shamma,
2008; Krishnan et al., 2014; Thakur et al., 2015) in natural
environments, others (Wang and Chang, 2008; Boes et al., 2011;
Mill et al., 2013; Barniv and Nelken, 2015; Rankin et al., 2015) are
built in order to test the potential of some algorithm to simulate
specific behavioral and/or neurophysiological experiments. For
example, Wang and Chang (2008) measure the fitness of their
model based on its ability to reproduce the fission and temporal
coherence boundaries reported by van Noorden (1975). In
general, models of this type can be evaluated by the degree
to which they can replicate behavioral or neurophysiological
data (such as the validating metric in Goswami et al., 2011).
In contrast, models built to process realistic auditory scenes are
typically evaluated using the signal to noise ratio of their output
or ameasure of similarity between the spectrograms of the output
signal and that of the original unmixed target sounds (e.g., the
speech segregation by the model of Krishnan et al., 2014). The
main issue distinguishing the two types of models is that those
dealing with realistic scenes need to include feature extraction
and binding, whereas those processing simplified inputs usually
assume pre-processing stages acting to generate the required
inputs to the model.

One can also categorize computational models based on the
modeling principles they adopt. Here we distinguish between
three broad classes of principles: (a) Bayesian inference rules, (b)
neural processing, and (c) temporal coherence. The term neural
here refers to the group of models that have been formulated
with a view toward neurocomputational processes. Although this
categorization does not follow a priori theoretical distinctions, we
found that it determines some properties of the models to such
degree that it makes sense to discuss models in these groups.
In the rest of this review we will focus on relating existing
computational models of ASA to the theoretical issues outlined
in the previous sections. As all the models we review attempt
to replicate human perception, we adopt a terminology that
equates model responses to perceptual responses. A sound event
is considered to be a discrete isolated sound with a beginning and
an end (e.g., a single tone). A perceptual event is the response to
that event within perceptual (model) awareness. A proto-object
is a candidate grouping of perceptual events, and a perceptual
object refers to a proto-object that emerges into perceptual
awareness. For simplicity, we use the generic term object to refer
to the perceptual representation that supports decisions about
the likelihood that it generated an incoming event. We adopt
the term perceptual organization to refer to the decomposition of
the sonic environment into compatible groups of objects. In this
terminology, the term stream proposed by Bregman (1990), and
used in many of the papers reviewed here, can refer to a single
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TABLE 1 | The models reviewed together with their categorizations with respect to the main issues discussed in the review.

References Competition Prediction Theoretical basis Number of objects

Barniv and Nelken, 2015 yes yes Bayesian unlimited

Nix and Hohmann, 2007 yes yes Bayesian 2

Wang and Chang, 2008 yes no Neural 2

Pichevar and Rouat, 2007 yes no Neural 2

Mill et al., 2013 yes yes Neural unlimited

Rankin et al., 2015 yes no Neural 3

Krishnan et al., 2014 no no Temporal Coherence 2

Ma, 2011 no no Temporal Coherence 2

Elhilali and Shamma, 2008 no yes Temporal Coherence 2

object in the case of integration, or to two objects in the case of
segregation.

The first issue we consider is whether themodels include some
form of competition between the representations of alternative
objects or perceptual organizations. We first discuss models that
consider more than one alternative for representing the input,
with competition between them. In essence, these models follow
the empiricist tradition (Helmholtz, 1860/1962), which assumes
that the sources (causes) of the acoustic input are underspecified
and the brain has to provide constraints for disambiguation.
We then turn to models that assume the incoming sounds
carry sufficient information for the brain to extract their causes
in a single pass–a theoretical approach akin to that of J. J.
Gibson and his followers (Gibson, 1979). Another central issue
of this review is the extent to which the models utilize predictive
processing. As mentioned in the introduction, recent theories
(e.g., Gregory, 1980; Friston, 2005; Bar, 2007) regard perception
as inherently predictive. Models predicting upcoming sounds
are in principle capable of self-validation, thus potentially offer
more robust performance. This would, of course, require that
some measure of the success of the model—measured in terms
of how well it can predict future sound events—is used to
modify its representations either by direct feedback or through
an error signal handled by higher-level processes in a hierarchical
system (as proposed by Friston, 2005). Models differ considerably
in their flexibility. Although they all aim to model ASA in
general, some models are restricted to two object or foreground-
background solutions, while others rely on a fixed pre-training
phase. The extent to which themodels are able to create, maintain
and evaluate object representations dynamically is therefore an
important distinguishing feature. Finally, most models address
some specific issues, such as replicating perceptual switching
patterns in response to multi-stable stimuli. These will also be
noted and discussed.

As mentioned in the introduction, we selected models for this
review which have been published since the last two reviews of
computational models of ASA (Cooke and Ellis, 2001; Wang and
Brown, 2006). Further, we only included models, whose focus
was on ASA. That is, we do not discuss saliency detector models
(such as De Coensel and Botteldooren, 2010; Oldoni et al., 2013)
or models using some additional “external” cue to extract sound
patterns from the background (such as Boes et al., 2011; Akram

et al., 2014b). These models may be construed as descriptions
of the effects of attention on ASA, rather than models of ASA
per se. For example, Akram et al. (2014b) model is based on a
variant of the temporal coherence model (which will be reviewed
in full) aiming to test how an external attentional cue helps to
select a single sound stream from a complex scene, whereas the
model of Boes et al. (2011) determines the direction of possible
sound sources, which could be used to direct attention, but does
not attempt to group or segregate objects. Thus we will focus
on models providing a description of how sound elements are
grouped and separated from each other based solely on the
sound input and possible prior training, where applicable. In
the following sections, first Bayesian, then neural, and finally
temporal coherence based models are discussed. The models
reviewed are listed in Table 1.

Bayesian Models
The models that use Bayesian inference all exploit predictive
mechanisms. In these models, the acoustic environment is
described by state vectors estimated from the input. Competition
is mediated through the adjustment of priors: i.e., the current
decomposition can affect the a-priori probability of other objects.
As a consequence, in these models, prediction is strongly linked
to competition. Although the role of the priors varies among
models, the a-priori probabilities always represent predictions,
even when they are based on prior training (as in the model of
Boes et al., 2011) rather than on the current state of the model (as
in Barniv and Nelken, 2015).

The models differ in the perceptual problem they address.
Barniv and Nelken (2015) aim to simulate behavioral results
obtained in auditory streaming experiments. In contrast to
previous studies (Pressnitzer and Hupé, 2006), they found
that the durations of successive perceptual phases were
correlated and argued that this correlation reflects an evidence-
accumulation process continuously operating in the background:
long perceptual phases allow alternative objects to become
stronger, which leads to a longer perceptual phase after the
perceptual switch. Their model was formulated to account for
this effect. Thus it uses a simplified tokenized input (i.e., simple
tones represented by their frequency and timing).

The model of Nix and Hohmann (2007) tracks sound sources
in space and segregates them from other sounds based on
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directionality. The authors used broadband sounds for training,
and trained their model on exclusively spectral information (but
not by the direction of the sound source).

Objects, Sound Organizations, and Model Dynamics
Although the term object is not explicitly used in these models,
the concept, as we have defined it, is applicable. In Barniv and
Nelken (2015) model each incoming sound event is assigned to
a class; a class is analogous to an object. A Bayesian algorithm
determines this assignment; the posterior probability of a given
event belonging to class k is a function of the conditional
likelihood of the event given that class k is the object that
generates the input, and by the a-priori probability that class k
occurs. The number of classes is not fixed in this model, and if
the class probability of an incoming event is low then a new class
is defined. When the model was tested on auditory streaming
sequences it dynamically produced a sequence of one or two class
solutions; the one class solution corresponding to integration,
and the two class solution to segregation.

In Nix and Hohmann’s (2007) model, the acoustic
environment is represented by a state-vector. Objects are
described in the state-vector by their short-term spectrum
and direction (azimuth and elevation). Thus a state vector
is the equivalent of a sound organization as defined in the
introduction. The features of an object can be extracted from the
state vector using the index value assigned to it (i.e., each value
indexes the features of one object). The goal of the algorithm
implemented by the model is to determine the state vector’s
posterior probability, i.e., the conditional probability of a given
state vector given the acoustic observations. The number of
possible objects repres–ented in the state vector, i.e., the number
of the incoming voices was pre-specified (set to two in the actual
implementation).

Prediction, Competition and Model Dynamics
The model of Barniv and Nelken (2015) implements competition
between alternative decisions on class membership by
dynamically adjusting the priors (i.e., the probability of
occurrence of each class). Upon the arrival of a new sound event
the priors corresponding to the existing classes are changed.
(In the event that the class probability of the incoming event is
small, a new class is generated with a new prior). The change
is proportional to the conditional likelihood of the sound
event given that it was produced by the class. Thus evidence
accumulation is encoded in the changing of the priors: evidence
increases for classes that are likely to have generated the input,
while the priors of the other class(es) are decreased.

In Nix and Hohmann’s (2007) model, during the training
phase, the priors and transitional probabilities of state vector
coordinates that represent the short-term spectra of the objects
are calculated, while those for the directional information are
approximated by Gaussian functions. So the model requires
prior knowledge of the sound sources to be tracked. During
simulations on new input, the goal is then to determine the
most likely state-vector distribution. For this purpose, the model
defines particles, which consist of a state vector at a given time
point and a weight. These particles represent a possible sound

environment at a given time, i.e., the spectral and directional
information of the two objects. The task is to filter out the
state vectors which are not likely to match the input. The
particle filter algorithm is realized by a Sequential Monte Carlo
(SMC) method. Each particle predicts the next state vector.
These predictions are tested against observations and the weight
associated with each particle is updated according to its predictive
value. Thus particles compete for predictive success. As the
state vector contains information on all objects, the competition
between particles can be regarded as a competition between
sound organizations.

Output and Model Evaluation
The output of Barniv and Nelken (2015) model is a time series of
discrete states describing whether the model assigns all sounds to
a single class (integrated organization) or it sorts them into two
classes (segregated organization). In the latter case, it does not say
which of the classes would appear in the foreground. The authors
compared the output of their model with human perceptual
data from the auditory streaming paradigm; both their own
data and data from Hupé et al. (2008). The model qualitatively
replicated the positive correlation between successive perceptual
phase durations found in the empirical studies.

Nix and Hohmann’s (2007) model was tested for its ability to
track and segregate one or two voices in a binaural mixture. The
authors reported that the model could segregate voice envelopes
after convergence (which took on the order of 50ms of data), and
that improvements in signal-to-noise ratio (SNR) in the region
of 2–8 dBs could be achieved for input mixtures with 0dB SNR.
Convergence was faster and more frequent when there was only
one voice to track, and when the variability of the azimuth was
low.

Neural Models
Common to models in this section is the representation of
objects by units, the properties of which are inspired by neurons
or networks of neurons. Thus the computations within these
models could in theory be performed by neuronal networks,
although none of the models claim that the networks they specify
correspond to actual networks located in the brain. The strength
of the activation of the object units determines the output of
the model. Competition between objects is implemented through
interactions (typically inhibitory) between the units. In general,
these models use tokenized input. All models of this section were
evaluated by comparing simulations to behavioral evidence.

Wang and Chang’s (2008) model represent different frequency
channels in terms of the activations of neural oscillators. While
other models, such as the one of Wrigley and Brown (2004)
implement a one-dimensional bank of oscillators, in Wang and
Chang’smodel the oscillators are organized on a two-dimensional
map, where the second dimension is time represented via
delay-lines. The dynamics of the model is determined by local
excitatory, global inhibitory connections between the oscillators.
Wang and Chang’s (2008) goal was to faithfully reproduce the
three regions (integrated, segregated, and ambiguous) found by
van Noorden (1975) for the frequency-difference/presentation-
rate parameter space in the auditory streaming paradigm, but
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does not simulate more recent findings of perceptual multi-
stability (e.g., Denham andWinkler, 2006; Pressnitzer and Hupé,
2006; Denham et al., 2013). The model uses tokenized pure tones
as input sound events, represented by the frequency and the time
of arrival of the event.

The model of Pichevar and Rouat (2007) aims to segregate
speech from environmental sounds (e.g., siren, telephone ring)
and is implemented in the form of a two-layered neural network.
The first layer consists of oscillators organized into a two-
dimensional space, with similar dynamics to the model of Wang
and Chang (2008). Although the dynamics are similar, as they
are governed by local excitation and global inhibition, binding
in this model is based instead on temporal correlations between
frequency channels, which is a principle widely exploited by
temporal coherence models (reviewed in the next section).

Mill et al. (2013) explicitly used the concepts of proto-
objects and objects described earlier; however, for simplicity
we will only use the term object here. Objects are represented
in the model as linked events. Each object, once formed, is
represented by a coupled excitatory and inhibitory population of
neurons that interact with other object representations through
network connections that determine the dynamic behavior of
the model and simulate the emergence of dominant perceptual
organizations and switching between them through competition
between objects. Note that the objects in this model represent
candidates for perception that may not necessarily emerge into
perceptual awareness. The model was formulated to capture the
dynamics of perceptual multi-stability observed in the auditory
streaming paradigm. Similar to Barniv and Nelken (2015), it does
not assume a fixed number of objects, and construction of new
object representations as well as competition between existing
objects occurs continuously, with the dominant (perceived)
object(s) stochastically changing even for an unchanging pattern
of stimulation, as found in human experiments (e.g., Denham
et al., 2013). The model employs predictive mechanisms in
two ways: firstly to validate the representations of candidate
objects extracted from the incoming sequence of sounds (object
representations incorrectly predicting upcoming sounds are
pruned) and secondly to instigate competition between objects
(objects predicting the same sound event mutually inhibit each
other). This model uses simplified tokenized input, similar to the
model of Wang and Chang (2008) (i.e., simple tones represented
by their frequency and timing parameters).

Similarly to the model of Mill et al. (2013), Rankin et al.
(2015) aimed to model perceptual multi-stability in the auditory
streaming paradigm (see Stimulus Paradigms Used for Studying
ASA). However, they only modeled the dynamics of perceptual
switching between the integrated and the segregated sound
organization following the build-up phase (i.e., only the more
stationary part of the listener’s perception of the ABA- sequence–
see Denham et al., 2013), while the Mill et al. (2013) also modeled
the build-up process. That is, the possible perceptual objects are
fixed in this model, whereas they are discovered on-line in Mill
et al.’s (2013) model. The implementation is based on an assumed
tonotopic space with three neural units receiving input from
primary auditory cortex (A1). The three neural units correspond
to the frequencies of the A and B tones and to the center

frequency [(A + B)/2; marked by AB], and they represent three
proto-objects (repeating A and B tones and the ABA tone pattern,
respectively). Competition between these units is implemented
without predictive processes. The model accepts tokenized ABA-
input (as it was heavily specified for model these triplets) and it
was validated on behavioral results.

Objects, Sound Organizations and Network

Dynamics
In Wang and Chang’s (2008) model objects are represented
by synchronized oscillators. The oscillators are arranged into
a two dimensional network with the dimensions of frequency
and time (relative to the present). All units have local excitatory
connections, and a global inhibitor receives excitation from all
oscillators and in turn inhibits all units. The strength of activation
of an oscillator thus depends on the external input, excitation
from local connections (with lateral coupling modulated by tone
repetition rate), and global inhibition (modulated by additive
Gaussian noise). Each object is represented by a synchronized
assembly of oscillators; different objects are represented by
desynchronized assemblies. An oscillator is enabled only if
it gets external simulation. If all the enabled oscillators are
synchronized, the output state is integrated. The output state
is segregated if all enabled oscillators of the same frequency
are synchronized and oscillators of different frequencies are
desynchronized. Therefore, the dynamics of the model can be
interpreted as a competition between these two states, i.e.,
competition occurs between sound-organizations rather than
objects. The main contributing factors to the competition are
the randomness of the global inhibitor and lateral excitation.
The width of the frequency dimension of the Gaussian function
that describes lateral excitation decreases with increasing
tone repetition rates. This biases the competition toward the
segregated state with higher tone repetition rates and vice versa.
Further, the range of variance of the global inhibitor increases
with lower tone repetition rates, which widens the ambiguous
range for slower sequences. This means that the model is
parameterized in a way that it leads to the target experimental
results.

In the model of Pichevar and Rouat (2007) the pre-processing
stage organizes the oscillators into a two dimensional space (the
first layer of the model). The first dimension is frequency. The
second dimension is based on the assumption that the subcortical
part of the auditory system extracts feature representations from
the output of the cochlea. Therefore, a feature extracted for
each cochlear channel is utilized as the second dimension. Two
features were implemented in the model: amplitude modulation
(yielding an “AMtopic” map) and averaged spectral energy
(leading to a “spectrotopic” map), however, only one of these
features was used at a time, chosen by the experimenter. Activity
across the two-dimensional map of oscillators is governed by
local excitatory and a global inhibitory dynamics. The activity
of an oscillator (similarly to the oscillators in the model
of Wang and Chang, 2008) depends on the external input,
on the coupling between oscillators, on the amplitude of an
intrinsic Gaussian noise, and on a global inhibitor. The weight
between two oscillators (and hence their coupling) depends
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on the featural proximity of their external inputs: the weight
is higher when the inputs are more similar. In the second
layer, the binding between oscillators is determined. Each unit
in this layer corresponds to one of the cochlear channels in
the first layer. Therefore, the representation is one dimensional
in this layer. Objects are represented on this second layer as
synchronized units. The activation of a given unit depends
on the temporal correlations between the frequency channels
within the given cochlear channel. In the output of this layer
the neurons belonging to the same object will be synchronized,
and neurons from different objects will be desynchronized.
Synchronization dynamically follows the temporal correlations
within the frequency dimension. Global inhibition (a function
of network activity) causes synchronized units from different
objects to desynchronize. Competition between objects is thus
determined by the dynamics of the second layer, which is
governed by changes in temporal correlation and by global
inhibition. The output of the model is a binary mask for each
object, which indicates which channels are assigned to each
object. In the actual implementation the number of objects
(i.e., the number of masks) is pre-defined and set to be two,
but can, in principle, be extended in order to segregate more
objects.

Mill et al.’s (2013) model aims to simulate the perceptual
dynamics of auditory stream segregation with a focus on multi-
stable perception. Therefore, unlike the previous models, objects
in this model are cyclically repeating patterns of discrete sound
events. The first stage of the model continuously searches
for repeating patterns embedded in the sequence, and forms
representations that are evaluated according to their prediction
of upcoming sounds in the sequence. Pattern links form
probabilistically on the basis of event similarity; patterns made
up of similar sounds are more likely to be discovered than
those formed by dissimilar ones. Patterns do not necessarily
include all sounds in sequence, and the stochastic link formation
process allows the model to discover multiple interleaved
embedded patterns within the sequence. Once a recurrent
pattern is found it is considered to represent a candidate
object. Object representations are implemented in the form
of coupled excitatory and an inhibitory neural populations.
In the second (competition) stage, the strength (activation) of
object representations are affected by: (1) the rate of successful
predictions they make, (2) the rate at which they are rediscovered
(patterns discovery is a continuous process, the easier it is to
discover a pattern, the stronger it is considered to be, effectively a
representation of likelihood), (3) adaptation, self-excitation, and
noise (these ensure stochastic switching between objects even
without changes in the stimulation), and (4) inhibition from
other objects if and when they predict the same sound event. The
resulting activations in themodel are bi-modally distributed, with
objects having high or low states. The assumption is that at any
moment in time, the object (s) with high state (s) are those that
appear in perception. In contrast to the previous models in this
section there is no global inhibitor, competition between object
representations is mediated locally. Competition between objects
that attempt to predict the same events leads to the emergence of
compatible sets of objects, and the suppression of incompatible

ones. Thus the model simulates the emergence of perceptual
organizations without explicitly defining what they should be.

In Rankin et al.’s (2015) model, activation (neuron firing
rate) of the three neural units represents the strength of the
corresponding proto-object within the competition. The input
fromA1 is fed to all three units of themodel, with tonotopy-based
weights (high weight for the tone corresponding to the unit’s
best frequency, low for the opposite tone, and equal intermediate
weight for the AB unit from both tones). Similarly to the model
of Mill et al. (2013), each unit’s activation depends on adaptation,
self-excitation, and intrinsic noise. These ensure stochastic
switching between integrated and segregated percepts even
without change in the stimulation. Competition is implemented
as inhibitory interactions between the three units. Inhibitory
interactions are modeled in two different ways, yielding two
different model variants. The first variant implements local—
and lateral inhibition. Each of the three units produces instant
local (self) inhibition as well as lateral inhibition to the other two
units. The amount of lateral inhibition depends on the assumed
tonotopic distance between the interacting units, decreasing with
increasing frequency difference between A and B. In the second
variant, global inhibition is implemented: the local and the lateral
inhibitory factors are set to be constant. Adaptation in this case
is implemented also as a slow decay of self-excitation. Model
parameters were calibrated to match the behavioral data.

Output and Model Evaluation
Similar to the model of Barniv and Nelken (2015), the model of
Wang and Chang (2008) has two possible outcomes: the output
state is either integrated or segregated. Simulations exploring
the effects of the main stimulus parameters of the auditory
streaming paradigm (frequency difference and presentation rate)
were reported to faithfully reproduce the three regions described
by van Noorden (1975).

The output of the model of Pichevar and Rouat (2007)
is the mask that can be used to reconstruct the original
target sound. The model was tested for speech separation from
intruding sounds (speech, pure tone, siren, telephone ring, and
white noise). The authors compared their results to earlier
computational ASA models as well as more general sound
segregating models and reported that their model outperformed
or was comparable to the models they considered.

The output of Mill et al.’s (2013) model is a time series
representing the dominant object(s) at each point in time.
For long auditory streaming sequences, human perception
spontaneously fluctuates between the integrated and the
sound segregated organizations. Simulations were reported
to qualitatively reproduce the effects of stimulus parameters
(frequency difference and presentation rate) on the proportions
and phase durations of the different percepts, the difference
between the duration of the first and subsequent perceptual
phases (Pressnitzer and Hupé, 2006; Denham et al., 2013), the
build-up of streaming, as well as the temporal dynamics of
multi-stable perception observed in human data.

Although the number of proto-objects in Rankin et al.’s
(2015) model is three, the model has only two possible outputs:
integrated or segregated. That is, similarly to Barniv and Nelken’s
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(2015) model, the output of this model represents the perceived
sound organization (in contrast to the auditory object appearing
in the foreground; as in Mill et al., 2013). Perception is classified
as integrated if the activity of the AB unit is greater than the
average of the A and B units. Themodel was evaluated in terms of
its ability to simulate the distribution of typical phase durations,
the proportion of each percept with regard to changes in the
frequency difference, and the temporal coherence and fission
boundaries. Performance of the two variants differed although
both reported to qualitatively simulate the target data: the global
inhibition variant provided better quantitative performance in
the percept-proportion comparisons, whereas in the comparison
with van Noorden’s temporal coherence and fission boundaries,
the local inhibition variant provided better quantitative results.

Temporal Coherence Models
Models in this group are based on the notion that acoustic
features of the sounds emitted by the same source recur
together and thus grouping by temporal coherence will bind
them together in veridical auditory object representations. As
a consequence, there is seen to be no need to build alternative
interpretations or to implement competition between them. In
temporal coherence models, feature extraction is followed simply
by grouping and clustering. The outcome is assumed to appear
in perception with possible modulation by selective attention.
The aim is to simulate the segregation of complex sounds using
computations that can be plausibly implemented by cortical
mechanisms. There are a number of models in this category; here
we choose three exemplars that illustrate the key issues.

The model of Krishnan et al. (2014) is one of the latest
computational models to exploit the idea of temporal coherence.
The model takes as input an assumed ‘cortical representation’
of a complex auditory scene, computed by a pre-processing
stage, and clusters the features that are temporally coherent.
In this representation the features of the incoming sounds are
represented in a multidimensional feature space derived from
the spectrogram of the input sound. This representation is used
in all of the models in this section, although the dimensions
used can vary among them. The neuromorphic model of Thakur
et al. (2015) is a computationally simplified version of Krishnan
et al.’s (2014) model aiming only to segregate foreground and
background, but in real-time. It introduces a formulation of
selective attention, which works as an a-priori defined mask on
the stimulus representation, selecting a subset of the coincidence
matrices for computation.

Elhilali and Shamma’s (2008) model is similar to those above.
However, in this model clustering is based on the prediction of
the next input, which is used to assign incoming sound events to
one of the objects (in this case the number of objects is hardwired,
and not learnt by the model). Because prediction is based on
an autoregressive moving average (ARMA) model which is a
stochastic process with additive noise, stochasticity can lead to
the same stimulus generating different outputs.

The model of Ma (2011) also uses a similar feature
representation and segregates sounds based on correlations
between features. The principal difference lies in the features that
are used and the way in which the representations are validated.

The model is tested on tokenized inputs as well as on a speaker
separation task.

Objects, Sound Organizations, and Model Dynamics
The inputs to Krishnan et al.’s (2014) model are the four-
dimensional feature-representation explained above, together
with a similarly organized two-dimensional pitch representation.
These two input streams are initially analyzed in parallel and
then later merged. The dimensions of the four dimensional
feature-representation function are: time (in discrete steps),
frequency, scale (defined in term of frequency component
spacing, measured in cycles per octave), and rate (defined as
temporal spacing, measured in cycles per second or Hz). The
dimensions of the pitch representation are time (in steps identical
to the other representation) and pitch. For grouping the features
that are temporally coherent, coincidence matrices are calculated
in a pairwise manner between the time sequences at each point
on the frequency-scale plane and on the pitch axis using a sliding
temporal window of ∼30 to 500ms duration. Coincidence is
represented as a correlation matrix that evolves through time,
and it is calculated separately for each rate between each of the
frequency-scale channels and pitch channels. These coincidence
matrices are then used to determine which of the channels are
temporally coherent, i.e., strongly correlated across modulation
rates. The calculated coincidence matrices are linked together
into a large matrix in which the columns correspond to the pair-
wise correlations between the frequency-scale and pitch channels,
separately for each modulation rate at each time step.

The columns of this enlarged correlation matrix provide
the input to a nonlinear principal component analysis (nPCA)
stage, which is responsible for the feature grouping. The nPCA
method serves as a mapping from multidimensional data to
lower dimensions with minimal loss of information (Kramer,
1991). It is implemented in the form of a feed-forward auto-
associative network with a hidden layer containing two units.
The number of hidden units defines the number of objects
that can be extracted, and is a static parameter of the model.
The hidden layer behaves as a bottleneck that compresses the
incoming information which is then mapped to an output layer,
the same size as the input layer in order to reconstruct the input
with minimal loss of information. The assumption here is that
the units in the hidden layer represent significant features in the
data. The two hidden units can therefore be interpreted as object
representations. The outputs of this analysis are two “masks,”
which contain a representation of each object at each time-step.
They can be used to reconstruct the segregated sound sources
from the multidimensional representation of the input.

In contrast with the nonlinear principal component analysis,
when linear principle component analysis (PCA) is implemented
(e.g., in the model of Elhilali et al., 2009a, not reviewed separately,
as it is similar to Krishnan et al.’s (2014) model except for the
type of PCA used), instead of the nonlinear version used here,
the degree of freedom is lower. This is because PCA only finds
objects that are anti-correlated, which is not necessarily the case
in practice. In this model, the rank of the correlation matrix and
the size of the eigenvalues determine the number of objects (i.e.,
it is assumed that objects with substantially lower eigenvalues
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than the rest are probably modeling noise). The model’s outputs
are the eigenvalues of the correlation matrix. Having two high
eigenvalues (with ratio close to one) is taken as a sign of a
segregated organization whereas one high eigenvalue reflects the
integrated organization.

The model of Ma (2011) is also based on the temporal
coherence principle. The input representation includes
frequency, scale, pitch, and location features. The location
feature is calculated by cross-correlating the spectrograms of
the right left channels (the input here is a stereo sound). After
feature extraction, grouping is done similarly to the Krishnan
et al. (2014) model described above. The output is a set of masks
that correspond to the detected objects, the number of which
is a parameter of the model. Two types of mask formations
are implemented. The first type is based on attentional signals,
similarly to those in the model of Thakur et al. (2015). The other
type uses supervised prior training on mask classification, i.e.,
to classify the target—and non-target masks. For this a support
vector machine is implemented which categorizes the data into
two clusters. Training is performed on mixed utterances and
used in order to set up a segregating hyperplane in which the
dimensions correspond to those in the input representation.
Once it is calibrated, the support vector machine gives back the
label of the mask (target or non-target) and the distance to the
hyperplane.

The input representation in the earlier model of Elhilali and
Shamma (2008) is similar to that of Krishnan et al. (2014).
However, in this case it includes: time, frequency, pitch and scale,
and excludes the rate feature. The model assumes that there
are two clusters (∼objects) or sound sources. The task in the
grouping stage is therefore to assign the input at each time step
to one of the two clusters. The output of the grouping stage
is a 5 dimensional function with the same dimensions as the
input, supplemented with rate which is derived from the input
representation using multi-rate wavelet decomposition. The
difference between this and the model of Krishnan et al. (2014)
is that here the temporal dynamics are exploited in the grouping
stage, while Krishnan et al. (2014) takes them into account in
the feature extraction stage. Model-based predictions are used
to determine the classification. Predictions are implemented
through a stochastic latent variable (separately for each object
with added noise). This variable represents the internal state
of the given object as it evolves in time. The latent variable’s
current state is recursively estimated, using only the previous
state of the object, and the most recent input-output decision.
It is then used for predicting the upcoming input. The temporal
coherence principle is exploited during the estimation of the next
predicted output because locally smooth evolution is assumed for
the feature representations. The estimation of the next output
from each object leads to a prediction of its expected next input.
This calculation is done using a first-order ARMA difference
equation essentially describing stochastic connections between
the input, output, and latent variable. At each step, the input
is assigned to the object that provides the closest prediction.
This clustering loop continuously operates on the incoming
sound stream. However, the convergence of the algorithm is not
discussed in this study.

Output and Model Evaluation
The main output of Krishnan et al.’s (2014) model takes the form
of two masks. These can be applied to the sound sequence to
resynthesize the segregated streams. The model was tested on
sequences of tones and also on two mixed speech streams. The
authors reported that the model segregated the high and low
tones in the auditory streaming paradigm in accordance with van
Noorden’s (1975) integration/segregation regions, reproduced
the bouncing effect (Steiger, 1980; Tougas and Bregman, 1985),
segregated a new tone with distinct spectral features within a
sequence of complex tones (Moore et al., 1986). The model
was also tested on 100mixtures of male-female pairs. When
supplemented by lip movement information it was reported to
improve the SNR of the selected stream by an average 6 dB.

he output of the model of Elhilali and Shamma (2008) is
a 5 dimensional representation of the perceived streams. The
spectrogram of a given object can be reconstructed by integrating
the output along the scale and rate dimensions. The model
qualitatively replicated the shape of the temporal coherence
boundary found by van Noorden (1975) in the auditory
streaming paradigm (however, there is an error in the paper,
which shows the model generates the opposite classification to
that reported by van Noorden, presumably a slip). The model
can also segregate alternating /e/ and / e/ vowels based on timbre
and pitch. It shows sensitivity to onset asynchrony and, similar
to the model of Krishnan et al. (2014), reproduced the crossing
glide effect. Segregation of speech was tested on 400 mixtures
and high resemblance was achieved between the representation
of the original and the reproduced sounds. For vocoded speech
the model output mimics the experience of hearing-impaired
listeners, as expected, i.e., when the spectral and temporal
resolution of the input was reduced the model segregated the
input sounds less effectively.

The model of Ma (2011) was tested on tokenized input as
well as on mixed speech. A simulation was performed on an
ABAB sequence. A simulation was also run on complex harmonic
sequences alternating between two fundamental frequencies.
The model was reported to simulate behavioral results, i.e., it
segregated the ABAB sequence and also the complex harmonics
as expected from experimental studies (van Noorden, 1975).
Speech sounds were also segregated, with the help of an
attentional signal, similar to the one that was used in the model of
Thakur et al. (2015). Comparisons between the two methods for
mask formation showed no significant differences between them
in this study.

SUMMARY AND FUTURE DIRECTIONS

The three groups of models capture different aspects of the
complex functions of ASA. Models based on Bayesian principles
view ASA as a process assigning each segment of the input to
one of the possible classes. The decision process ensures that
the probability that the assigned class generated the segment is
optimal, given the priors and the sound input. That is, these
models assume that ASA implements an ideal Bayesian observer.
There is evidence that perceptual decisions by human observers
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are indeed often close to those expected from an ideal observer
(Kersten et al., 2004). Thesemodels are also inherently predictive,
which allows them to continuously test their solutions against
the sound input. However, the computational implementation of
Bayesian principles is quite abstract (e.g., competition through
adjustment of the priors), and thus it is not easy to see from
these models, how they could be implemented by the human
auditory system. In turn, neural models provide a more realistic
account of competition between alternatives, and some of them
also of the representation of objects. They can also include more
detail of the type of effects influencing perception of multi-
source acoustic scenes. That is, they are easier to expand to
cover a wider set of ASA phenomena. On the other hand,
compared to Bayesian models, they have more trouble in
modeling the effects of prior knowledge, and are usually not fully
implemented in neuro-computational form. Both neural and
Bayesian models could be extended to deal with realistic input.
However, feature extraction and feature binding processes cannot
be regarded as being independent of the competition stage. That
is, establishing some features (such as location or pitch) as well as
binding them may depend on the currently dominant solution
(perceptual organization); for results supporting this notion,
see Gutschalk et al. (2005); Szalárdy et al. (2013). Therefore,
the models in these categories would all require modifications
to their two-phase structure (feature-extraction/grouping and
competition), to allow interactions between the two phases.
Temporal coherence models cut through this issue by offering
a one-step solution in which coherence in multiple features
establishes feature binding and object formation within a single
process. They also utilize a different Gestalt principle (common
fate) compared to that of most other models (similarity or
smooth continuation). Further, there is evidence that temporal
coherence is indeed extracted in the human auditory system
(O’Sullivan et al., 2015; Teki et al., 2016). However, in contrast to
neural and Bayesianmodels, existing temporal-coherencemodels
don’t offer a clear path for capturing higher-order regularities
within the sound input, which are known to help auditory stream
segregation (Dowling, 1973; Bey and McAdams, 2002; Bendixen
et al., 2010; Szalárdy et al., 2014). Further, by eliminating the
formation of representations for alternative sound organizations,
they do not account for multi-stable stimulus configurations. On
the other hand, while neither neural nor temporal coherence
models are inherently predictive, some variants of both have
prediction as an essential element (Elhilali and Shamma, 2008;
Mill et al., 2013), thus adding the benefit of continuously testing
their prediction against the actual input.

In general, the computational models reviewed above mainly
implement algorithms for testing their utility in addressing
specific aspects of ASA. This is not a reflection of the lack of
effort for providing a complete model of ASA. Rather, this is due
to the scarcity of firm evidence regarding the neural mechanisms
involved in sound segregation, or auditory perception, in general.
While some of the models are inspired by general oscillatory
mechanisms thought to operate within the brain (e.g., Pichevar
and Rouat, 2007; Wang and Chang, 2008), others are supported
by neural evidence obtained with large-scale brain imaging
methods (e.g., Ma, 2011; Krishnan et al., 2014), and yet others

are mainly based on behavioral evidence (e.g., Mill et al., 2013;
Barniv and Nelken, 2015). That is, the experimental evidence
underlying these models is patchy at best. This also leads to
quite different metrics in the measurement of their performance,
such as SNR of the segregated streams (Nix and Hohmann,
2007; Krishnan et al., 2014), correlation between the original
sound and the segregated sound feature representation (Elhilali
and Shamma, 2008), similarity to results of selected behavioral
experiments (Wang andChang, 2008;Mill et al., 2013; Barniv and
Nelken, 2015). The diversity of the measurement metrics clearly
shows that the goals of these models differ from each other and,
therefore, the performance of these models cannot be directly
compared.

In fact, these models cannot be fully regarded as competing
theories of ASA. Rather, they can be seen as covering different
sub-processes of ASA, which may even be complementary. In
essence, there are few true incompatibilities between the various
models. Thus one possible future direction of the field may be to
integrate (a subset of) these models, utilizing the strength of each
in the next generation of models of ASA. For example, the notion
of temporal coherence may be best suited to solving the feature-
binding problem and the initial formation of sound chunks.
In turn, neural models may best capture the linking of chunks
across larger time-scales, the creation of proto-objects and their
competition. Finally, Bayesian models may provide a predictive
framework that allows the utilization of previous knowledge,
and optimizes the perceptual decisions that are inherent in ASA.
Such a composite model would also better fit the variety of
Gestalt principles governing the formation of perceptual objects.
One issue that is common to almost all models reviewed here
is that whereas previous research has shown that temporal
regularity/predictability helps auditory stream segregation (e.g.,
Andreou et al., 2011; Rajendran et al., 2013; Szalárdy et al., 2014),
present models do not explicitly handle the temporal structure
of sound sequences. Thus future models should explore how
more nuanced temporal features beyond simple presentation rate
can be taken into account in modeling ASA. It is likely that a
hierarchical system will be needed to account for the findings
related to showing the effects of higher-order structure on
auditory stream segregation. Hierarchical structure and feedback
from the later parts of themodel may solve some of the paradoxes
of ASA (such as the weakness of location cues; see Bregman, 1990;
Kocsis et al., 2014). These features would allow future models to
deal with realistic auditory scenes while also being testable on
simple, theoretically important stimulus configurations.
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Szalárdy, O., Bendixen, A., Bőhm, T. M., Davies, L. A., Denham, S. L., andWinkler,
I. (2014). The effects of rhythm and melody on auditory stream segregation. J.
Acoust. Soc. Am. 135, 1392–1405. doi: 10.1121/1.4865196
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