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Machine-learning based approaches to speech enhancement have recently shown great promise for

improving speech intelligibility for hearing-impaired listeners. Here, the performance of three

machine-learning algorithms and one classical algorithm, Wiener filtering, was compared. Two

algorithms based on neural networks were examined, one using a previously reported feature set

and one using a feature set derived from an auditory model. The third machine-learning approach

was a dictionary-based sparse-coding algorithm. Speech intelligibility and quality scores were

obtained for participants with mild-to-moderate hearing impairments listening to sentences in

speech-shaped noise and multi-talker babble following processing with the algorithms.

Intelligibility and quality scores were significantly improved by each of the three machine-learning

approaches, but not by the classical approach. The largest improvements for both speech intelligi-

bility and quality were found by implementing a neural network using the feature set based on audi-

tory modeling. Furthermore, neural network based techniques appeared more promising than

dictionary-based, sparse coding in terms of performance and ease of implementation.
VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4977197]
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I. INTRODUCTION

Individuals with hearing impairment often have difficulty

recognizing speech in background noise. In a UK survey of

individuals fitted with a hearing aid (HA), a quarter of those

who reported never wearing their aids indicated “lack of bene-

fit in noisy situations” as their reason for not doing so

(Kochkin, 2000). Together with the finding that HA users are

more tolerant of background noise than are hearing-impaired

(HI) individuals who do not choose to use aids (Nabelek

et al., 2006), this suggests that solving the problem of back-

ground noise could allow more HI people to benefit from

HAs. One means of reducing the detrimental effect of noise

on recognizing speech is to employ speech-enhancement algo-

rithms (sometimes referred to as noise-reduction algorithms)

to improve intelligibility. Single-channel speech-enhancement

algorithms operate on the input from a single microphone and

are therefore ideally suited to being incorporated into HA

processing.

Traditional approaches to single-channel speech enhance-

ment have demonstrated only limited success. For some noise

conditions, the “auditory masked threshold noise suppression”

technique (Tsoukalas et al., 1997) increased recognition for

both HI and NH listeners (Arehart et al., 2003), whilst a

sparse-code shrinkage algorithm tested in our laboratory

improved speech intelligibility in speech-shaped noise (Sang

et al., 2014) and quality in speech-shaped and babble noise

(Sang et al., 2015) for HI listeners. Other studies reported no

benefit to word recognition for HI listeners with single-

channel enhancement algorithms, but did report an increase in

listener preference (e.g., Bentler et al., 2008; Zakis et al.,
2009; Luts et al., 2010), including increased acceptable back-

ground noise level for HI listeners (Mueller et al., 2006;

Fredelake et al., 2012). Overall, any improvements in intelli-

gibility have been small and limited to stationary noise types

(Loizou and Kim, 2011).

Recently, machine-learning approaches have shown

great promise for improving speech intelligibility both for

hearing-impaired and normal-hearing listeners (e.g., Healy

et al., 2013; Healy et al., 2015; Bolner et al., 2016) as well

as for cochlear implant users (Goehring et al., 2016). Rather

than calculating a gain function based on estimates of the

speech and noise statistics from the incoming signal—the

classical approach—machine-learning approaches incorpo-

rate prior knowledge of patterns of speech and noise to esti-

mate the optimal gain function to be applied to the incoming

signal. Gaussian mixture models have been used to improve

speech intelligibility for normal hearing listeners (Kim et al.,
2009) and for cochlear implant users (Hu and Loizou, 2010).

Healy et al. (2013) demonstrated large improvements in

speech intelligibility scores for both NH and HI listeners
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using a deep neural network (DNN) algorithm. The main

limitations to these approaches, however, were the very large

classification systems (256 mixtures/128 sub-band net-

works), and the specificity of the training set required to

achieve this level of performance. These studies used the

same noise recordings for both the training and testing stages

of the algorithm. A match between training and testing data

is likely to overestimate the performance of the algorithm in

unseen test conditions. May and Dau (2014) showed that the

use of novel noise realizations for testing yielded a substan-

tial decrease in estimation performance with a GMM-based

system, such as the one used by Kim et al. (2009). More

recently, it has been shown for both NH and HI listeners,

that DNN-based algorithms can generalize well to novel

realizations of the same noise type (Healy et al., 2015;

Bolner et al., 2016; Goehring et al., 2016) or to completely

novel types of noise (Chen et al., 2016). Chen et al. (2016)

showed that a DNN-based algorithm that used cochleagram

features similar to the first part of the AIM features in this

study can generalize to novel types of noise for a speaker-

dependent system. This was a promising result and was

based on simple spectral features indicating that further

reductions in terms of algorithm complexity may be

achieved by omitting complex feature extraction stages and

using large-scale training.

For potential application in hearing devices such as

HAs, algorithms must fulfill the requirements of low compu-

tational complexity due to the restricted capacities of HAs in

terms of memory and computational power (L€ollmann and

Vary, 2009) and low processing delay due to the perceptual

requirements of HA users (Stone and Moore, 1999). For

feedforward neural network algorithms with fully connected

layers, the number of units in the consecutive layers defines

the computational complexity of the algorithm (each unit in

a given layer is connected to each unit in the next layer via a

weight parameter). While it is unclear what the current limits

for applications in hearing devices in terms of memory and

computational complexity are, neural network (NN) algo-

rithms with millions of parameters are unlikely to be imple-

mentable on current hearing devices. This motivates a

decrease in the size and complexity of the NNs to allow for

potential real-time operation on mobile devices (Bolner

et al., 2016; Goehring et al., 2016).

Another machine-learning technique, dictionary-based

sparse coding, has been used successfully in image denoising

(Elad and Aharon, 2006), but there have been few applica-

tions to speech enhancement. This approach is attractive

from a biomimetic perspective; evidence suggests a sparse

representation of ecologically relevant features in both the

auditory (DeWeese et al., 2003; Lewicki, 2002) and visual

(Olshausen and Field, 1996) systems. Following the training

stage, in which the algorithm learns a “dictionary” of typical

speech features from many examples of clean speech seg-

ments, an estimate of the clean signal is reconstructed using

a linear combination of relatively few of these dictionary

components (i.e., the representation is “sparse”). If the noise

is sufficiently dissimilar to speech, it will not have a sparse

representation over the dictionary; a linear combination of

hundreds of dictionary elements would be required to

accurately reconstruct a segment of noise, compared with

the handful required to accurately reconstruct a speech seg-

ment. The sparse reconstruction, therefore, will preserve

more of the speech energy than the noise energy. A neural

analogy for the dictionary would be a very large set of neu-

rons, each responding to one specific speech component. If

these neurons continued to respond to these particular speech

components, even in a noisy background, this would provide

robustness to coding speech in noise, since familiar, speech-

like elements would be better represented than unfamiliar,

noise-like components. In the current study, we tested a new

dictionary based sparse-coding approach to see if it can

improve speech intelligibility.

Here, we first assess the performance of neural networks

with greatly reduced complexity that have shown promising

results in our previous study with NH listeners (Bolner et al.,
2016) to determine whether it is still possible to obtain

improvements in speech intelligibility for HI listeners with

more practically feasible algorithms than other studies used

(e.g., Healy et al., 2015; Chen et al., 2016). We also assess

the performance of a novel machine learning algorithm

known as sparse coding, and compare it with both a classical

approach, Wiener filtering, and with DNNs. Third, we deter-

mine the performance of the DNN approach when it derives

its input from an auditory model, comparing its performance

with that of an algorithm employing the standard spectrum-

based feature vectors of previous studies. Finally, as well as

speech recognition scores, we compare the performance of

these three approaches in terms of their sound-quality rat-

ings. Each of the four algorithms was assessed in both sta-

tionary (speech-shaped) noise and multi-talker babble noise

conditions and at signal-to-noise ratios (SNRs) of 0 and

þ4 dB.

II. SPEECH ENHANCEMENT ALGORITHMS

A. Wiener filtering

Wiener filtering was one of the first noise reduction

algorithms to be developed (Lim and Oppenheim, 1979),

and has been implemented in commercial HAs. In order to

obtain the noisy speech spectrum, a short-time Fourier trans-

form (STFT) is performed. The clean speech spectrum X is

then estimated as X̂ using the following equation:

X̂k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk

1þ nk

s
Yk; (1)

where n is the a priori SNR, Y is the noisy signal magnitude

and k indexes the Fourier components. The estimate of the

clean signal (used to calculate the a priori SNR) is derived

by minimizing the difference between the clean and

enhanced complex speech spectra, taking into account the

phase spectra. The Wiener filter is the optimal estimator of

the clean speech spectrum when the speech and noise signals

are independent Gaussian processes. Scalart and Filho

(1996) reported that using an estimate of the a priori (rather

than a posteriori) SNR in (1) would give superior enhance-

ment. Their method was employed in the current study. The
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noise magnitude spectrum was estimated on a frame-by-

frame basis using the algorithm of Gerkmann and Hendriks

(2011) to estimate the a priori SNR and calculate the gain

function for each frame and frequency component.

Hu and Loizou (2007) tested a number of single-channel

speech enhancement algorithms and found that the Wiener

filtering algorithm described by Scalart and Filho (1996) was

the only algorithm that enhanced speech recognition for NH

listeners, although this improvement was evident in only one

condition (automobile noise at 5 dB SNR). Levitt et al.
(1992) found that consonant recognition in non-stationary

cafeteria babble noise was significantly increased for half of

HI listeners but significantly reduced for half of NH listeners

when a Wiener filter was applied. In that study, the gain of

the filter was calculated by assuming knowledge of the con-

sonant and noise spectra. This indicated that Wiener filtering

can be beneficial for some HI listeners if the filter gain is

approximated accurately enough. Luts et al. (2010) tested a

Wiener filter algorithm that estimated the noise and speech

spectral densities from the signal (in a different way from

that employed in the current study) but found no improve-

ments in the recognition of speech in babble noise by NH

and HI listeners. Nevertheless, listeners in that study pre-

ferred the enhanced speech over the unprocessed condition.

Wiener filtering was included in the current study to deter-

mine whether a traditional single-channel speech enhance-

ment algorithm could provide improvements in speech

intelligibility or quality in the conditions tested.

B. Neural networks

The next two algorithms to be tested also employed the

Wiener gain function to estimate the clean speech signal.

The principal difference between these algorithms and the

classical Wiener filtering algorithm described in the previous

chapter was the use of a more sophisticated approach to esti-

mate the Wiener filter gain, namely, the use of an artificial

NN algorithm.

The NN algorithm consisted of two parts: a front-end

that extracted acoustic features from the noisy input signal

and a back-end that employed a multi-layer feedforward

neural network to estimate the ideal Wiener filter gain [see

Eq. (1)] in each frequency channel. The estimated gain was

used to enhance the noise-corrupted input signal by applying

it to the noisy envelopes after the signal had been passed

through a 63 channel gammatone filter bank ranging from 50

to 8000 Hz (Patterson et al., 1987; Hohmann, 2002). A sche-

matic of the NN algorithm is shown in Fig. 1.

The first processing stage for these algorithms was to

split the input signal (fs¼ 16 kHz) into 20-ms long time-

frames with 10 ms overlap. Then, two sets of acoustic fea-

tures were extracted from the broadband signal of each input

frame: a comparison feature set (NN_COMP) similar to

those used in previous studies (Healy et al., 2013; Healy

et al., 2015) and a novel auditory-model based feature set

(NN_AIM). Both feature sets comprised several sub-features

that were concatenated per timeframe and directly fed to the

input layer of the NN. This yielded two distinct NN algo-

rithms: NN_COMP and NN_AIM.

The second processing stage was performed by the NN,

which consisted of an input layer with a number of units

determined by the dimensionality of the feature set, two hid-

den layers with 100 and 50 units using saturating linear

transfer functions and an output layer with linear activations.

The output layer had a dimensionality of 63 given by the

number of gammatone frequency channels used for calculat-

ing the target Wiener filter gain function. The output layer

activations of the NN were taken as the estimated Wiener fil-

ter gains and applied to the noisy envelopes. The NN was

trained using the resilient backpropagation algorithm

(Riedmiller and Braun, 1993) to minimize the mean squared

error between the estimated and ideal Wiener filter gain in

each gammatone frequency channel. The NN was trained in

full-batch mode over 500 epochs using weight decay regu-

larization of 0.5 to avoid overfitting. The learning rate was

set to 0.01 and weights were updated using increment and

decrement factors of 1.2 and 0.5, respectively. These hyper

parameters were chosen based on our previous study (Bolner

et al., 2016), which yielded improvements in speech percep-

tion in noise by NH listeners.

In total 80 sentences (eight lists) from the IEEE data-

base (Rothauser et al., 1969) spoken by a male talker were

mixed at 5 SNRs (�2, 0, 2, 4, and 6 dB) to amount to 400

training utterances per noise condition. The training data sets

were the same as used for the sparse coding algorithm. A

single NN was trained per noise type incorporating all five

SNR conditions. As mentioned above, the ideal Wiener filter

gain was taken as target signal to be estimated by the NN for

each training utterance in each gammatone channel. The tar-

get data were calculated using the ground-truth speech and

noise signals at the given SNR.

One of the goals of the current study was to assess the

performance of more real-time feasible NNs for speech

enhancement. Kim et al. (2009) and Healy et al. (2013) used

sub-band classifiers that employed two GMMs or NNs

for each frequency channel, yielding large classification

FIG. 1. Schematic of processing for

the neural network algorithms.
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systems. Healy et al. (2014) and Healy et al. (2015), and

Bolner et al. (2016) used a broadband approach that

employed a single NN to estimate the target gains for all fre-

quency channels collectively. This approach yielded a large

decrease in NN parameters and computational complexity (a

43-fold increase in processing speed was reported by Healy

et al., 2014). The memory requirements and the number of

calculations performed by the NN per timeframe are deter-

mined by the number of NN parameters, consisting of the

weight and bias values of the units in the hidden and output

layers. In this study, the auditory-model based NN com-

prised 39 800 parameters, which is a 100-fold or 500-fold

decrease in parameters compared with Healy et al. (2015) or

Chen et al. (2016), respectively. Another aspect of real-time

processing is the algorithmic processing delay, which is lim-

ited to a few milliseconds by the perceptual requirements of

users of hearing aids (Stone and Moore, 1999). As reported

by Healy et al. (2015), the inclusion of future timeframes

has to be avoided for real-time processing applications such

as HAs. In contrast to 2 future frames in Healy et al. (2015)

and 11 future frames in Chen et al. (2016), the current study

used no future frames for the processing to assess a more

real-time feasible approach.

1. Comparison feature set

The comparison feature set NN_COMP was generated

based on the same set of features used in Healy et al. (2013)

and Healy et al. (2014; “complementary features”). To gen-

erate the feature set, the amplitude modulation spectrum

(AMS; Tchorz and Kollmeier, 2003), relative-spectral trans-

form and perceptual linear prediction coefficients (RASTA-

PLP; Hermansky and Morgan, 1994), and mel-frequency

cepstral coefficients (MFCC) were extracted from each 20-

ms long timeframe of the noisy speech mixture (broadband

features were computed as described in Healy et al., 2014).

The concatenated features had a dimensionality of 445 per

timeframe (AMS [25� 15] þ RASTA-PLP [3� 13]

þ MFCC[31]). NN_COMP was extracted from the current

timeframe and concatenated with delta (differences between

features in consecutive frames) and delta-delta features for

RASTA-PLP only (as described in Healy et al., 2014).

2. Auditory feature set

The proposed feature set NN_AIM was extracted using

the auditory image model (AIM; Patterson et al., 1995;

Bleeck et al., 2004). AIM is a time-domain functional model

of auditory processing. It generates a stream of two-

dimensional sound representations, referred to as “auditory

images,” for an acoustic input signal. AIM produces a more

stable representation for periodic parts of the input sound,

such as for vowels and voiced sounds in speech and tones in

music signals, than for non-periodic sounds. The model con-

sists of a cascade of processing stages that simulate periph-

eral auditory processing, such as pre-cochlear processing,

basilar membrane motion (BMM) and the transduction pro-

cess in the cochlea. Further stages of AIM are intended to

model more central auditory processing stages, such as neu-

ral activity patterns in the auditory nerve and cochlear

nucleus and temporal integration and source size normaliza-

tion in higher auditory processing stages (finally yielding the

size-shape transformed auditory image; SSI). The SSI output

of AIM is based on the size covariant processing of the audi-

tory system (Smith et al., 2005; von Kriegstein et al., 2007)

and produces the same pattern for vowels spoken by speak-

ers with different glottal pulse rates or vocal tract lengths.

The processing of AIM has been reported to improve the

SNR of voiced speech and to yield improved performance in

automatic speech recognition experiments (Irino and

Patterson, 2002; Monaghan et al., 2008; M€uller and Mertins,

2012).

The NN_AIM feature set combined the output of two

processing stages of AIM: the BMM and SSI. The two fea-

tures were concatenated to obtain a dimensionality of each

feature vector of 315, consisting of 63 BMM features and

252 SSI features. The BMM features were obtained by cal-

culating the logarithm of the envelope power of a linear

gammatone filterbank with 63 frequency channels

(Hohmann, 2002) and represented predominantly spectral

information of the current timeframe. The SSI features were

obtained by calculating a two-dimensional discrete cosine

transform (DCT) of the SSI output of AIM. The DCT was

performed for de-correlation and a reduction of the dimen-

sionality of the SSI. Before the DCT was performed, each

SSI channel was downsampled to 400 Hz to reduce the tem-

poral resolution of the data. After performing the DCT using

the downsampled signal, only the 2nd to 22nd coefficients

were used for the NN_AIM feature set. The first coefficient

was omitted since it is related to the overall energy of the

SSI and more susceptible to noise degradation and the higher

order coefficients above the 22nd were found to be numeri-

cally close to zero. The SSI represented both spectral and

temporal information of the current timeframe in form of

enhanced periodicity information and increased SNR for

voiced components of speech signals. The NN_AIM feature

set was extracted using only the current timeframe.

3. Objective measures

Two “objective measures”—computationally derived

scores intended to predict how well humans will recognize a

given sample of noisy or enhanced speech—were used to

optimize the performance of the NN and sparse coding algo-

rithms: the Short Time Objective Intelligibility (STOI; Taal

et al., 2011) and the Normalized Covariance Metric (NCM;

Holube and Kollmeier, 1996). Additionally, for the NN algo-

rithms, hit–false alarms (HIT-FA) and false alarm (FA) rates

were determined and used for optimization (Kim et al.,
2009). These measures required the estimated gain function

to be converted into a binary mask. The hit rate was defined

as the percentage of speech-dominated time-frequency bins

correctly classified by the binary mask, and the false-alarm

rate was defined as the percentage of noise-dominated time-

frequency bins incorrectly classified as speech-dominated.

During optimization of the algorithms, their performance

was assessed using objective measure scores from two sen-

tence lists that were not part of the training set or test set (the

set used for the human testing). After testing with the human
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listeners had taken place objective measures were also

applied to the sentences in the test set to determine the corre-

lation between these measures and the human performance

(see Sec. IV D).

C. Sparse coding

The fourth algorithm was a novel speech enhancement

algorithm based on dictionary-based sparse coding (Elad and

Aharon, 2006). This algorithm was also a machine-learning

algorithm but involved a different approach from the NN

based algorithms. Rather than estimating a gain function to

be applied to the noisy signal (as with the other algorithms

tested here), an estimate of the clean filter bank outputs was

produced directly.

The algorithm requires a “dictionary” of typical ele-

ments of speech, known as “atoms.” This dictionary is

learned from many frames of clean speech during the train-

ing stage. The dictionary is typically over-complete, i.e.,

the number of atoms in the dictionary is greater than the

length of the atoms. Any speech signal can then be approxi-

mated by a linear combination of just a few atoms from the

dictionary, i.e., it is a “sparse” representation. Because sta-

tionary noise is unstructured, and therefore cannot be pre-

dicted, it cannot be sparsely represented. Therefore, for

noisy speech, the speech signal can more easily be approxi-

mated in the form of a sparse code than can the noise, lead-

ing to de-noising.

For a noisy speech frame, y, consisting of noise n, and

clean speech x:

y ¼ xþ n: (2)

It is assumed that the clean speech can be represented as

x ¼ Da; (3)

where the matrix D is a dictionary and a is a sparse coeffi-

cient vector (i.e., most entries are zero). The estimate of the

clean speech is then given by

x̂ ¼ Dâ; (4)

where

â ¼ min
a
kak0; (5)

such that

ky� Dâk2
2 < e : (6)

The zero norm of a, kak0, is the number of non-zero ele-

ments in a and e is the desired error, which is chosen to be

approximately equal to the estimated noise power.

The signals were processed with the same sampling

rate, frame length and using the same gammatone filter as in

the NN algorithm except that 30 channels were used rather

than 63 channels. Increasing the number of channels for the

sparse-coding algorithm to 63 did not improve performance

(as assessed using the objective measures described in Sec.

II B 3) but greatly increased processing time. Each channel

of the filter output was normalized to have a root mean

square (RMS) amplitude of 1. In the training stage, the dic-

tionary was trained on eight sentence lists from the same

speaker and corpus as used in the testing stage. The K-

singular value decomposition (KSVD) algorithm (Aharon

et al., 2006) was used to train a dictionary for each channel.

The Orthogonal Matching Pursuit (OMP) algorithm (Pati

et al., 1993) was modified so that the selection of atoms was

optimized across all frequency channels. The first stage of

the original OMP finds the atom from the dictionary that

gives the highest correlation with the noisy signal. Rather

than selecting atoms independently for each frequency chan-

nel and dictionary, the atom that gave the highest correlation

over each frequency channel and dictionary was selected.

The corresponding atom from each dictionary was chosen

for the other frequency channels. This was intended to cap-

ture across frequency correlations in the speech. Five atoms

per frame were chosen as the optimal number for training

the dictionary during pilot tests.

For the testing stage the average noise power in each

channel was estimated using the approach of Gerkmann and

Hendriks (2011) and used to define the desired error in each

channel (e). In the denoising stage the least angle regression

algorithm (LARS) algorithm (Efron et al., 2004) was used

rather than OMP because it was found to give superior per-

formance in terms of both objective measures. For each

frame, atoms were selected until the sum over channels of

the RMS difference between the noisy and sparse signals

was less than the sum of the desired errors for each channel.

A separate approach was used for the babble noise, as

proposed by Sigg et al. (2012) because in this case the noise

and speech are more similar and so the representation of the

noise might also be sparse over the speech dictionary.

Therefore, in the training stage, in addition to the speech dic-

tionary, a noise dictionary was trained using an example of

the babble noise (distinct from the noise segment used in

testing). As for the speech dictionary, the KSVD with modi-

fied OMP was used to train the noise dictionary. To reduce

the similarity of the noise and speech dictionaries (and thus

the probability of speech components being misclassified as

noise), any atom with a correlation greater than 0.95 was

removed from the noise dictionary. In the testing stage the

noise and speech dictionaries were concatenated and the

LARS algorithm was used to find a fit to the noisy speech.

Atoms selected from the noisy dictionary were discarded,

and only atoms from the speech dictionary were used to

reconstruct the signal. The values of the free parameters

were optimized using objective measure scores from a sen-

tence list not used in the training or testing sets.

A similar approach proposed by Sigg et al. (2012) oper-

ated instead on the STFT domain. Rather than using the

reconstructed speech signal directly (as in the current study)

Sigg et al. used it to estimate the speech and noise magnitude

to calculate the Wiener filter gain [see Eq. (1)] which was

then applied to the original noisy speech. An objective mea-

sure of speech quality (the cepstral distance) showed

improvement for their approach relative to multiband spec-

tral subtraction (Kamath and Loizou, 2002) and a vector
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quantization based approach, but tests with human listeners

were not performed.

III. METHODS

Seventeen native speakers of British English (seven

female, median age 65 years, IQR 13 years) with mild to

moderate sensorineural hearing loss were recruited.

Volunteers were recruited using advertisements at the

University of Southampton and the Southampton local com-

munity, such as churches and libraries. A screening process

was performed and participants were excluded from the

study if they failed the screening. As part of the screening,

otoscopy and tympanometry were performed to check for

normal ear-canal anatomy and normal middle ear function.

A questionnaire was given to exclude any recent ear surgery,

otalgia, tinnitus and hyperacusis and pure tone audiometry

was performed. Participants with unilateral or conductive

hearing loss were excluded. All participants were experi-

enced hearing aid users (>1 year use). The audiograms of

each of the participants are shown in Fig. 2. The mean pure

tone average (PTA) measured at 0.5, 1, and 2 kHz was

31.4 dB hearing level (HL).

Speech recognition in each condition was assessed as

the percentage of keywords identified correctly in IEEE

(Rothauser et al., 1969) sentences spoken by a British male

speaker. Two types of noise were tested: speech-shaped

noise (SSN) and multi-talker babble noise. In the SSN condi-

tions, a noise generated to have the same long-term average

spectrum as the IEEE sentences was used. For the babble

noise conditions, the noise was constructed by mixing differ-

ent sentences from eight speakers (four male and four

female) taken from the TIMIT corpus (Garofolo et al.,
1993). Both the SSN and the babble noise were 26 s in dura-

tion, 18 s of which was used to train the algorithms and the

remaining 8 s of which was used in the testing stage. A

FIG. 2. Audiogram of ear tested for

each participant and the median audio-

gram over all ears tested.
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segment of noise was selected at random from the test noise

and added to the sentences at SNRs of 0, and þ4 dB. Fixed

SNRs were used rather than using an adaptive procedure to

find the speech reception threshold (SRT; the SNR for which

the speech recognition score is 50%), because the goal was

to better compare the performance of the algorithms at a

specified SNR. Two sentence lists, each comprising ten sen-

tences, were used for each condition. A different, and ran-

dom, order of conditions was used for each participant, and a

Latin square was employed so that the same list would be

used in the same condition as seldom as possible.

Participants practised the procedure with a different sentence

list from the ones tested, with an SNR of þ10 dB and no

speech enhancement applied.

Custom MATLAB software was used to process and

present the stimuli. Pre-processed sentences were loaded

using a laptop computer and presented to the participant,

who was seated in a quiet room in the clinic, through an

RME Babyface soundcard over headphones (HD 380 Pro,

Sennheiser, Wedemark, Germany). A finite impulse response

headphone filter was designed in MATLAB so that the head-

phones produced a flat frequency response at the ear refer-

ence point (measured using a Br€uel & Kjær type 4153

artificial ear with the standard cone YJ0304 above the

adapter plate for circumaural headphones, type DB 0843).

The spectrum and overall sound level were measured using a

Br€uel & Kjær type 2250 sound level meter. The stimuli were

presented monaurally to the participant’s better ear, which

was the left ear for nine of the participants. In order to com-

pensate partially for each participant’s hearing loss, a linear

hearing-loss dependent gain was applied at each audiometric

frequency according to the NAL-R prescription formula

(Byrne and Dillon, 1986). There was one experimental ses-

sion lasting approximately 2 hours. Participants were able to

have rest breaks if they felt fatigued.

Noisy sentences were generated by setting the level of

the clean speech to 65 dB sound pressure level (SPL) and

adding noise scaled to give an SNR of 0 or þ4 dB. Before

amplification was applied, the level of the stimulus (the

speech and noise mixture) was approximately 68 dB SPL in

the unenhanced 0 dB SNR condition and 66 dB SPL in the

þ4 dB SNR condition. These noisy sentences were proc-

essed by each of the four enhancement algorithms and the

corresponding enhanced sentences stored. Because the maxi-

mum gain that can be applied in enhancement is unity,

enhancement will generally result in attenuation of the

speech energy as well as the noise. This may reduce the

audibility of the speech and render speech enhancement less

effective. So that the level of the speech was unchanged

between the enhanced and unenhanced conditions, “shadow-

filtering” was used as described in Fredelake et al. (2012) for

the Wiener filter and Neural Network conditions: the attenu-

ation applied to the speech signal was determined by multi-

plying the clean speech by the same gain function that was

applied to the noisy speech and measuring the corresponding

reduction in RMS level relative to the original speech. In the

case of the sparse-coding algorithm, there was no gain func-

tion applied, so instead the reconstructed signal was set to

65 dB SPL, the level of the clean speech.

The experimenter scored each sentence list and condition

using a graphical user interface (GUI) without knowledge of

which condition was being presented. After each sentence

was presented, the participant was asked to repeat what they

had heard as accurately as possible. Using the scoring GUI,

the experimenter recorded how many of the keywords the par-

ticipant had identified correctly. After each sentence list, the

participant was asked to rate the perceived quality of the

speech (“How would you rate the quality of the speech?”). A

paper sheet was provided on which the participant indicated

the rating on a scale from 0 to 7 (with labels at 0, “bad”; 4,

“fair”; and 7, “excellent”). For finer resolution, there were ten

subdivisions for each of its seven values.The data are avail-

able at http://dx.doi.org/10.5258/SOTON/D0020.

IV. RESULTS

A. Speech intelligibility

Speech intelligibility in speech shaped and multi-talker

babble noise at SNRs of 0 and þ4 dB was determined for

four speech enhancement algorithms and compared with the

corresponding unenhanced conditions. Figure 3 shows the

group-mean percentage of key words correctly recognized in

FIG. 3. (Color online) Group-mean percentage of key words correctly rec-

ognised for each algorithm in the speech-shaped noise (upper panel) and

babble noise (lower panel) conditions. Error bars show standard errors of the

mean. Asterisks indicate conditions for which the enhanced scores were sig-

nificantly different from the unenhanced condition.
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each of the four noise conditions. Across all algorithms, per-

formance improved with increasing SNR, and performance

was always lower in babble noise than in SSN. In SSN, per-

formance did not differ greatly across algorithm conditions,

with the exception of the NN_AIM algorithm at 0 dB SNR.

In babble noise, all of the algorithms, other than Wiener fil-

tering, improved performance at least at one SNR, compared

with the unprocessed condition. In the SSN conditions, there

were significant main effects of algorithm, as determined by

a repeated measures two way analysis of variance (ANOVA)

[F(4, 64)¼ 5.89, p< 0.001], and SNR [F(1, 16)¼ 126.88,

p< 0.001], but no significant interaction between the two

[F(4, 64)¼ 2.22, p¼ 0.077]. Bonferroni-corrected planned

comparisons were performed between the unprocessed and

enhanced conditions at each SNR. The only significant

improvement in speech recognition for SSN was at 0 dB

SNR for the NN_AIM algorithm [F(1, 16)¼ 17.20,

p¼ 0.003], with a mean gain in intelligibility of 13 percent-

age points. In the babble noise conditions, there were signifi-

cant main effects of algorithm [F(4, 64)¼ 17.10, p< 0.001]

and SNR [F(1, 16)¼ 323.85, p< 0.001]. The Greenhouse-

Geisser correction was applied when testing the interaction

between SNR and algorithm because the assumption of sphe-

ricity was violated in this case. The interaction was not signifi-

cant [F(36.27, 2.27)¼ 0.84, p¼ 0.45]. Bonferroni-corrected

planned comparisons were performed between the unpro-

cessed and enhanced conditions at each SNR. The sparse-

coding algorithm led to a significant improvement in speech

recognition at 0 dB SNR [F(1, 16)¼ 17.37, p¼ 0.003], as did

the NN_COMP [F(1, 16)¼ 47.56, p< 0.001], and NN_AIM

[F(1, 16)¼ 114.32, p< 0.001]. Mean gains in intelligibility of

9, 11, and 14 percentage points were obtained for the sparse

coding, NN_COMP and NN_AIM, respectively. At þ4 dB

SNR there were significant improvements in speech recogni-

tion scores for both NN_COMP [F(1, 16)¼ 11.95, p¼ 0.013],

and NN_AIM [F(1, 16)¼ 18.64, p¼ 0.002]. Mean gains in

intelligibility of 11 and 16 percentage points were obtained

for the NN_COMP and NN_AIM, respectively.

B. Speech quality

Speech-quality ratings were also determined for each

algorithm in each noise condition and for both 0 and þ4 dB

SNR, and are plotted in Fig. 4. The data were not normally

distributed in the majority of conditions, so box and whisker

plots are shown and non-parametric statistics were used. As

for speech intelligibility, speech quality improved at the

higher SNR, and the algorithms elicited greater improve-

ments in babble noise compared with SSN. Wiener filtering

was ineffectual in improving speech quality. A non-

parametric Friedman’s ANOVA indicated a significant effect

of algorithm for the SSN at þ4 dB [v2(4)¼ 12.27, p¼ 0.016]

and the babble noise at 0 [v2(4)¼ 22.01, p< 0.001] and

þ4 dB SNR [v2(4)¼ 24.31, p< 0.001]. Bonferroni-corrected

planned comparisons were performed between the unpro-

cessed and enhanced conditions at each SNR. The paired-

samples sign test was used as the distributions were not all

symmetric about the median. In the SSN conditions there

was significant improvement in quality ratings for NN_AIM

[p¼ 0.017] at þ4 dB SNR, with a gain of 0.81 in quality rat-

ing. In the babble conditions there were significant improve-

ments at 0 dB SNR for sparse coding [p¼ 0.0021],

NN_COMP [p¼ 0.017] and NN_AIM [p¼ 0.0073], with

improvements of 0.44 0.51 and 0.66, respectively. At þ4 dB

SNR there were significant improvements for NN_COMP

[p< 0.001], and NN_AIM [p¼ 0.0011] of 0.98 and 0.85,

respectively.

C. Correlation between speech intelligibility and
quality

Overall, there was a moderately high correlation

(r¼ 0.605, p< 0.001) between intelligibility and quality

scores, pooled over all noise conditions and algorithms. This

would be expected since intelligibility and quality are both

influenced in a similar way by SNR and noise type.

However, it is also possible that the quality ratings were

biased by the fact that they were elicited following the intel-

ligibility task. Participants may have been inclined to give

high quality ratings in those conditions for which they found

FIG. 4. (Color online) Box-and-whisker plots of speech quality ratings for

each algorithm in the speech-shaped noise (upper panel) and babble noise

(lower panel) conditions. Whiskers indicate the range (1.5 times the inter-

quartile range). Asterisks indicate conditions for which the enhanced scores

were significantly different from the unenhanced condition.
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the intelligibility test less challenging. A partial correlation

controlling for the effects of algorithm, SNR, noise type and

participant was calculated by fitting a linear mixed model,

including these factors, separately for quality rating and intel-

ligibility. The correlation between the residuals of the two

models was then calculated. A significant (p< 0.001) partial

correlation between quality and intelligibility was found with

an r value of 0.273. This indicates that there was a small influ-

ence of intelligibility on the quality ratings given by the par-

ticipants, accounting for �7% of the variance.

D. Objective measures

In each of the four noise conditions NCM and STOI

scores were calculated from all the sentences used in testing

for the four algorithms and the unenhanced signals.

Descriptive statistics for each condition are reported in

Table I. Figure 5 shows the objective measures scores plotted

as a function of the final intelligibility scores obtained from

the participants in the 20 conditions tested. In the SSN condi-

tions, correlations between speech recognition scores and the

objective measures were high, with r2 values of 0.91 for both

NCM and STOI. Correlations were lower in the babble noise

conditions, with r2 values of 0.70 and 0.83 for NCM and

STOI, respectively. These results confirm that both NCM and

STOI are effective for predicting the intelligibility of senten-

ces for HI listeners for stationary noise and to a lesser extent

also for non-stationary noise. For the two neural-network

algorithms HIT-FA scores were also calculated and are shown

in Table II (see Sec. V A 1 for discussion).

V. DISCUSSION

We assessed the performance of four speech enhance-

ment algorithms in improving speech intelligibility and

speech quality in two types of interfering noise, speech-

shaped noise (i.e., noise with the same long-term spectrum

as speech) and eight-talker babble noise. Algorithms based

on sparse coding or neural networks improved performance

compared with the unprocessed signal, most notably in bab-

ble noise and for the lower of the two SNRs (0 dB) we

explored. Wiener filtering—commonly applied in hearing

technologies—had no effect on speech intelligibility and

speech quality compared with the unprocessed signal. This

suggests that machine-learning algorithms, particularly those

based on neuro-mimetic principles, can improve speech-in-

noise performance in challenging listening conditions with

fluctuating background noise.

Improvement in speech intelligibility was modest in the

SSN conditions, with only significant improvement apparent

for NN_AIM at 0 dB SNR, for which an improvement of 13

percentage points was evident. Subjective listening indicated

that the absence of any improvement in the 0-dB condition

may be due to the introduction of fluctuating distortions in

the signal, counteracting the beneficial effect of noise

TABLE I. For the Neural Network based algorithms HIT-FA and FA scores

were calculated for both noise types and SNR conditions. To calculate the

HIT-FA scores, the ratio masks (estimated and ideal) were converted to

binary masks by applying a local SNR criterion of �5 dB.

% HIT-FA (% FA)

SSN Babble

0 dB þ4 dB 0 dB þ4 dB

NN_COMP 72 (8) 75 (7) 64 (18) 65 (17)

NN_AIM 76 (7) 79 (7) 67 (18) 67 (18)

FIG. 5. (Color online) Average values of the objective measures NCM and

STOI plotted as a function of the mean intelligibility scores obtained from

the participants in each of the ten conditions (five algorithm conditions, two

SNRs) for each noise type.

TABLE II. Mean values of NCM and STOI for the sentences used in each condition. Standard deviation are shown in brackets.

NCM STOI

SSN Babble SSN Babble

0 dB þ4 dB 0 dB þ4 dB 0 dB þ4 dB 0 dB þ4 dB

UN 0.74(0.04) 0.87(0.03) 0.42(0.05) 0.59(0.05) 0.77(0.04) 0.86(0.03) 0.73(0.05) 0.82(0.04)

Wiener 0.77(0.04) 0.88(0.03) 0.43(0.05) 0.59(0.05) 0.79(0.04) 0.87(0.03) 0.70(0.05) 0.80(0.05)

SC 0.81(0.03) 0.91(0.03) 0.47(0.05) 0.61(0.04) 0.81(0.04) 0.89(0.03) 0.72(0.05) 0.80(0.04)

NN_COMP 0.81(0.03) 0.89(0.03) 0.64(0.05) 0.76(0.04) 0.82(0.03) 0.89(0.02) 0.79(0.04) 0.86(0.03)

NN_AIM 0.82(0.03) 0.91(0.03) 0.65(0.05) 0.77(0.04) 0.83(0.03) 0.89(0.02) 0.79(0.04) 0.86(0.03)
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reduction. Interestingly, greater improvements were seen in

babble noise conditions, where algorithms typically perform

worse than in stationary noise conditions. In this case, signif-

icant improvements were seen for all three machine-learning

algorithms at 0 dB SNR and for both neural-network-based

algorithms at þ4 dB SNR. A similar pattern of results was

seen for the speech quality ratings, but this may have been

partially due to there being a confounding effect of intelligi-

bility (see Sec. IV C).

Figure 6 shows the group-mean improvement provided

by each algorithm for each of the conditions tested, plotted

in terms of gain in speech quality as a function of gain in

speech intelligibility. Promisingly, almost all algorithms eli-

cited improvements in both quality and intelligibility (albeit

not significantly in many cases), although, again, this may be

partially due to the confounding effect of intelligibility.

Exceptions to this are the Wiener filter at þ4 dB SNR for

both noises, for which there was a reduction in speech intel-

ligibility despite a small increase in speech quality ratings.

A. NN based algorithms

1. Comparison with other studies

In the current study, improvements in speech intelligi-

bility of 14 and 16 percentage points were found for the

NN_AIM in babble, at 0 dB SNR and þ4 dB SNR, respec-

tively. These results can be compared with Healy et al.
(2015) who found improvements of 44.4 and 27.8 percentage

points and with Chen et al. (2016) who reported 27 and 11.6

percentage points in babble noise at 0 dB SNR and þ5 dB

SNR, respectively. Note that participants in the current study

had milder hearing losses, with a mean PTA of 31.4 dB com-

pared with 50.5 dB in Healy et al. (2015) and 42.2 dB in

Chen et al. (2016). This means that algorithm performance

cannot be completely equated and that the lower improve-

ment in SI found in the current study at 0 dB SNR may partly

be explained by the milder hearing losses of the participants.

However, compared to the current study, improvements

were still greater for the NH listeners tested by Healy et al.
(2015) with an increase of 21 percentage points in the babble

condition at �2 dB SNR.

The decrease in performance was predicted by lower

HIT-FA scores found for the algorithm in this study in com-

parison with the HIT-FA scores reported by Healy et al.
(2015). This indicates a lower estimation quality of the

masks in this study, especially concerning the removal of

background noise (indicated by higher FA rates). However,

the use of ratio masking instead of binary masking makes

predictions based on HIT-FA rates less applicable. A better

objective comparison of the algorithm performance may be

the improvements in terms of STOI scores over the unen-

hanced condition. The algorithms used in this study achieved

smaller improvements in STOI scores than the ones reported

by Healy et al. (2015) and Chen et al. (2016), consistent

with the difference in speech intelligibility improvements by

the participants.

One difference between the current approach and that of

other studies was the size of the neural networks and the

training dataset employed. The networks in the current study

had two hidden layers with 100 and 50 units (similar to the

NNs used by Bolner et al., 2016), whereas Healy et al.
(2015) used four hidden layers of 1024 units each, and Chen

et al. (2016) used five hidden layers of 2048 units each. This

results in a 100-fold or 500-fold increase in the number of

parameters of the networks used in Healy et al. (2015) and

Chen et al. (2016), respectively, and explains partly the per-

formance advantage of the networks used in those studies

over the current study. An increase in the size of the training

FIG. 6. (Color online) Group-mean

improvement in speech quality versus

improvement in speech intelligibility

for the four algorithms in each noise

condition.
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dataset allowed the training of larger networks and reduced

the risk of overfitting the training data.

Another difference between the algorithm used in this

study and previous algorithms is the causality of the process-

ing. The current study uses only the current and past frames

as input signals, since this would be the case in real-time

implementations. Other studies used a window of 5 (Healy

et al., 2013; Healy et al., 2014; Healy et al., 2015) or 23

(Chen et al., 2016) consecutive frames centered at the cur-

rent frame. In real-time implementations, the inclusion of

future frames should be avoided, since this would introduce

large processing delays (i.e., >20–30 ms), which most likely

would not be tolerated by users of hearing aids (Stone and

Moore, 1999).

The findings of this study support the results of Healy

et al. (2013), Healy et al. (2014), Healy et al. (2015), and

Chen et al. (2016), and demonstrate that significant (albeit

more modest) improvements in speech intelligibility and

quality can be provided by scaled-down neural network

approaches that operate in a causal way.

2. Comparison of feature sets

In addition to assessing the speech enhancement perfor-

mance of neural networks with lower complexity, a further

goal of the study was to determine whether using feature

vectors derived from an auditory model would improve

speech enhancement relative to standard feature vectors.

Two sets of feature vectors were assessed using the same

model architecture: a set derived from an auditory model,

“NN_AIM,” and a standard feature vector set for compari-

son, “NN_COMP.”

Although no significant difference was found between

intelligibility scores or quality ratings for the two sets of fea-

ture vectors, the AIM features gave the highest scores in

both dimensions in almost all conditions (see Fig. 6). Indeed

it was the only algorithm tested that generated an improve-

ment in the stationary noise conditions. This better perfor-

mance overall suggests that the auditory model based

features are to be preferred in terms of optimizing speech

quality and intelligibility. Recently, Chen et al. (2016) have

shown that a DNN-based algorithm, that used cochleagram

features similar to the first part of the AIM features in this

study, can generalize to novel types of noise when using the

same target speaker. This is a promising result and motivates

further investigation of auditory inspired features. For use in

real-time mobile devices other considerations must be taken

into account, primarily the amount of computational power

required to perform the algorithms, and the ability to gener-

ate the features in real-time. Although the generation of AIM

features requires considerably more computational complex-

ity than standard spectral features or cochleagram features,

they can be generated in real time by a modern PC without

the use of non-causal information.

A further potential benefit of using AIM feature vectors,

not assessed by the current study, is their ability to general-

ize to different talkers. In the current study, and in previous

studies employing neural networks based speech-

enhancement techniques (e.g., Healy et al., 2013; Healy

et al., 2014; Healy et al., 2015; Bolner et al., 2016), net-

works were trained and tested on the same talkers. It was

recently shown by Goehring et al. (2016) that a speaker-

independent but noise-specific algorithm for application in

cochlear implants improved speech understanding in two out

of three noises for CI listeners, but performance was

decreased relative to a speaker-dependent algorithm that

used a priori information about the target speaker. Although

a noise reduction system optimized for a particular talker has

practical applications, widespread adoption of NN-based

speech enhancement will require generalization to novel

talkers and novel listening-situations. Unlike traditional fea-

ture vectors, such as MFCCs (Monaghan et al., 2008), the

AIM features are robust to changes in speaker-size as well as

pitch, and so provide a better prospect for good performance

with novel speakers.

3. Speech quality ratings

It is important for its general acceptance in hearing devi-

ces that an algorithm provides good speech quality

(Kochkin, 2000). The results indicate that neural networks

produced significant improvements in speech quality in all

conditions for which the speech intelligibility was also sig-

nificantly improved, although, as discussed above (see Sec.

IV C) there was found to be a small influence of intelligibil-

ity on the quality ratings that may account for some of the

improvement seen in intelligibility. One factor in the good

quality ratings seen here may be the use of the Wiener filter

gain, which has been shown to produce better speech quality

than the binary mask (Madhu et al., 2013) which is often

used for neural network speech enhancement. However,

speech quality scores in all conditions were similar or higher

than those for traditional Wiener filtering. Since the gain

function used by the neural network approaches used is iden-

tical to that used in WF, this indicates that the greater accu-

racy of speech and noise estimates provided by the neural

network is crucial to the quality of the enhanced speech.

These speech quality results support the promise of neural

networks as a good candidate for speech enhancement for

hearing aids. Recently, Williamson et al. (2016) have shown

that further increases of speech quality can be achieved in

comparison with the conventional IRM by estimation of

complex ratio masks.

B. Dictionary-based sparse-coding algorithm

An additional goal of this study was to assess the perfor-

mance of a novel dictionary-based, sparse-coding algorithm.

Overall, the performance of the sparse-coding algorithm was

similar to that of the NN_COMP algorithm except in babble

noise at þ4 dB SNR.

A disadvantage of the dictionary-based sparse-coding

approach is the relative computational complexity of the de-

noising stage. In the neural network approach, after the net-

work is trained, its application in the de-noising stage is

straightforward, with the same non-linear formula being

applied for each frame to determine the gain. In the case of

sparse coding, however, the de-noising stage still requires a

sparse approximation to the noisy signal to be found, which
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is more challenging to optimize. This makes dictionary-

based sparse coding a less plausible candidate for a real-time

noise-reduction algorithm. In contrast, image de-noising typ-

ically takes place offline and so is better suited to a sparse-

coding approach. Nevertheless, it remains feasible that the

brain employs mechanisms analogous to sparse coding for

de-noising speech.

C. Effects of audibility

Although the use of the NAL-R gain formula in this

study was intended to compensate partially for the hearing

loss of the participants, it does not provide equal audibility

for all listeners. Since the effect of sensation level on speech

quality judgments is not well understood, difference in audi-

bility may have influenced individual differences in speech

quality ratings. Therefore, the speech intelligibility index

(SII; ANSI, 1997) was calculated for each participant and

condition as a measure of the audibility of the speech. SII

values are shown in Table III. In the case of the enhanced

conditions, the SII was calculated based on the spectra of the

speech and noise after the application of the enhancement

gain function and shadow filtering. The sparse coding proc-

essing did not make use of a gain function, but in order to

calculate the SII a gain function was calculated based on the

difference in level between the original and enhanced signals

in 10-ms frames and one-third octave bands.

Additionally, the SII was calculated for the enhanced

speech spectrum and the original noise spectrum, to determine

whether any benefit could have been derived by changes in

the level of the speech spectrum alone. For most processing

and noise conditions, this resulted in a small reduction in the

SII values relative to the unenhanced conditions, but there

were small increases for the Wiener filtering, NN_AIM and

NN_COMP in both SSN conditions (mean values of increases

in SSI of 0.0157, 0.0131, and 0.0121, respectively, at 0 dB

SNR and 0.00807, 0.00424, and 0.00357 at þ4 dB SNR).

Considering the magnitude of the increases in the SII resulting

TABLE III. Values of the SII calculated for each subject and condition.

Subject

0 dB SNR 4 dB SNR

UN WF SC NN_COMP NN_AIM UN WF SC NN_COMP NN_AIM

Speech shaped noise

1 0.412 0.540 0.565 0.593 0.591 0.526 0.635 0.658 0.666 0.663

2 0.427 0.562 0.578 0.607 0.605 0.547 0.644 0.660 0.667 0.664

3 0.390 0.502 0.510 0.539 0.537 0.487 0.575 0.592 0.598 0.595

4 0.448 0.598 0.639 0.667 0.666 0.583 0.708 0.737 0.746 0.742

5 0.393 0.514 0.535 0.561 0.559 0.501 0.602 0.624 0.632 0.629

6 0.388 0.502 0.518 0.548 0.545 0.486 0.585 0.607 0.616 0.613

7 0.426 0.569 0.615 0.641 0.640 0.554 0.680 0.717 0.728 0.725

8 0.401 0.523 0.539 0.568 0.566 0.508 0.607 0.630 0.638 0.634

9 0.452 0.598 0.637 0.664 0.663 0.583 0.709 0.742 0.752 0.748

10 0.408 0.529 0.545 0.574 0.572 0.515 0.614 0.635 0.644 0.640

11 0.280 0.343 0.326 0.350 0.348 0.333 0.348 0.341 0.345 0.344

12 0.411 0.543 0.569 0.597 0.595 0.529 0.637 0.659 0.667 0.664

13 0.388 0.501 0.519 0.545 0.543 0.488 0.585 0.601 0.608 0.605

14 0.377 0.484 0.497 0.524 0.521 0.472 0.560 0.576 0.583 0.579

15 0.369 0.471 0.480 0.507 0.504 0.458 0.544 0.560 0.567 0.564

16 0.393 0.508 0.526 0.553 0.551 0.496 0.592 0.611 0.618 0.614

17 0.360 0.466 0.482 0.505 0.503 0.454 0.541 0.557 0.564 0.561

Babble noise

1 0.375 0.405 0.412 0.524 0.532 0.492 0.525 0.516 0.621 0.627

2 0.375 0.406 0.417 0.531 0.544 0.502 0.536 0.526 0.615 0.624

3 0.369 0.395 0.388 0.481 0.487 0.467 0.492 0.475 0.560 0.564

4 0.375 0.405 0.426 0.566 0.575 0.509 0.544 0.552 0.676 0.684

5 0.364 0.391 0.398 0.507 0.513 0.471 0.501 0.501 0.596 0.600

6 0.359 0.385 0.380 0.480 0.489 0.461 0.485 0.472 0.564 0.571

7 0.345 0.369 0.392 0.531 0.540 0.465 0.496 0.510 0.641 0.647

8 0.371 0.399 0.399 0.503 0.510 0.480 0.509 0.499 0.592 0.597

9 0.382 0.412 0.430 0.568 0.579 0.512 0.546 0.551 0.679 0.686

10 0.372 0.402 0.410 0.515 0.521 0.488 0.516 0.509 0.604 0.608

11 0.249 0.264 0.251 0.310 0.312 0.301 0.314 0.293 0.321 0.322

12 0.372 0.403 0.406 0.522 0.532 0.491 0.524 0.516 0.616 0.624

13 0.355 0.384 0.395 0.492 0.498 0.467 0.493 0.487 0.574 0.577

14 0.352 0.378 0.379 0.472 0.478 0.451 0.475 0.466 0.547 0.550

15 0.349 0.374 0.367 0.456 0.462 0.442 0.465 0.451 0.535 0.538

16 0.359 0.387 0.393 0.490 0.498 0.471 0.497 0.485 0.573 0.579

17 0.338 0.363 0.364 0.458 0.464 0.429 0.452 0.450 0.528 0.531
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from the suppression of the noise spectrum (see Table III),

these comparatively small increases in SII due to changes to

the speech spectrum alone are unlikely to have a strong effect

on the ratings of speech quality. The greatest reduction in SII

occurred with sparse coding for the babble noise conditions

with a mean reduction in SII of �0.0859 at 0 dB SNR and

�0.0603 atþ4 dB SNR. It is possible that for these conditions

the performance of the sparse coding algorithm was adversely

affected by a lower audibility relative to the other algorithms,

although the SII of the sparse coding conditions may have

been underestimated by the application of a gain function that

was calculated retrospectively.

Overall, there was a significant correlation between SII

and quality ratings [r¼ 0.467, p< 0.001]. However, a partial

correlation between SII and quality rating, controlling for the

effects of SNR, algorithm, and noise type, was not significant.

This indicates that individual differences in audibility had no

influence on the rating of speech quality. The overall correla-

tion between SII value and intelligibility was also calculated

and found to be significant [r¼ 0.623, p< 0.001]. The partial

correlation between SII and intelligibility accounting for the

effect of SNR, algorithm, and noise type was also significant

(r¼ 0.197, p< 0.001), indicating that individual differences in

audibility accounted for a very small amount of the variance.

VI. CONCLUSIONS

Three speech-enhancement algorithms based on

machine learning and one traditional approach to the prob-

lem of speech enhancement (Wiener filtering) were assessed

in terms of speech recognition and speech quality ratings in

mild-to-moderately hearing-impaired listeners. Unseen

tokens of noise were used in the testing stage.

Significant increases in speech-recognition scores and

quality ratings were seen for all three machine-learning

approaches in at least one of the four noise conditions,

although quality ratings were found to be somewhat con-

founded by the effect of intelligibility. In contrast, the

Wiener filtering algorithm produced no significant improve-

ment in either speech recognition or quality rating in any

noise condition.

Two neural-network approaches were tested, comparing

a network using standard feature-vectors with one using a

novel set of features derived from the auditory model AIM.

Auditory-based feature vectors performed better than standard

feature vectors in terms of both speech recognition and quality

in all conditions (except quality in babble noise at þ4 dB

SNR), although none of these differences was significant.

Although sparse coding shows some improvement in

speech recognition and quality, neural networks seem prefer-

able, both because of their higher performance (even for

small networks like those used here) and because they are

more efficient in the testing stage.
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