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SUMMARY

Balance of cortical excitation and inhibition (EI) is
thought to be disrupted in several neuropsychiatric
conditions, yet it is not clear how it is maintained
in the healthy human brain. When EI balance is
disturbed during learning and memory in animal
models, it can be restabilized via formation of inhibi-
tory replicas of newly formed excitatory connections.
Herewe assess evidence for such selective inhibitory
rebalancing in humans. Using fMRI repetition sup-
pression we measure newly formed cortical associa-
tions in the human brain. We show that expression
of these associations reduces over time despite
persistence in behavior, consistent with inhibitory
rebalancing. To test this, we modulated excitation/
inhibition balance with transcranial direct current
stimulation (tDCS). Using ultra-high-field (7T) MRI
and spectroscopy, we show that reducing GABA al-
lows cortical associations to be re-expressed. This
suggests that in humans associative memories are
stored in balanced excitatory-inhibitory ensembles
that lie dormant unless latent inhibitory connections
are unmasked.

INTRODUCTION

Local circuit level descriptions hold substantial promise for

providing deep insights into neural function in health and dis-

ease. In contrast to the precise descriptions with which such

mechanisms can be understood in animal experimentation,

their effect on human cognition and psychiatric disorders can

currently only be speculated about (Yizhar et al., 2011). This

forces the assumption that neural mechanisms employed during

simple tasks in animal models are directly parallel to those

that support higher cognitive tasks of relevance to human life.

It therefore remains a major challenge for contemporary neuro-

science to develop noninvasive techniques that allow for inves-

tigation of neural circuit activity in humans. Here we designed

an experiment for which we had strong predictions about the

neural circuit level mechanism from data previously observed
in animal models. We then asked whether we could use these

circuit mechanisms to predict the precise macroscopic signals

measured from the human brain.

The particular neural circuit mechanism observed in animal

models and of particular interest for both cognitive function and

dysfunction concerned the maintenance of detailed cortical bal-

ance. Synaptic input received by cortical neurons is balanced

such that excitatory and inhibitory (EI) currents are precisely

matched and stable firing preserved (Wehr and Zador, 2003;

Okun and Lampl, 2008; Haider et al., 2006; Froemke et al.,

2007; Xue et al., 2014; Shu et al., 2003). Both experimental

and theoretical work suggests that this EI balance is critical

for cortical processing, ensuring appropriate feature selectivity,

gain control, temporal precision, and noise reduction of neuronal

signaling (Wehr and Zador, 2003; Haider and McCormick, 2009;

Isaacson and Scanziani, 2011). Failure to maintain cortical EI

balance, via increased activity in excitatory neurons or reduction

in inhibitory neurons, is hypothesized to give rise to the social and

cognitive deficits observed in autism and schizophrenia (Lewis

et al., 2005; Rubenstein andMerzenich, 2003; Yizhar et al., 2011).

Despite its importance, EI balance is disrupted during new

learning, a process in which information is stored bymodification

of excitatory synaptic strengths (Hebb, 1949; Nabavi et al., 2014;

Song and Abbott, 2001; Song et al., 2000). Experimental work

in rodents and theoretical models now suggest that plasticity

at inhibitory synapses may play an important role in restoring

EI balance by allowing for inhibitory connections to precisely

mirror their excitatory counterparts (D’amour and Froemke,

2015; Froemke et al., 2007; Vogels et al., 2011; Xue et al.,

2014). Although detailed synaptic processes cannot be directly

accessed in humans, here we sought to use these experimental

and theoretical observations to predict the consequences of

cortical rebalancing in the human cortex. We reasoned it should

be possible to observe the macroscopic consequences of these

microcircuit processes by combining approaches that index the

similarity between subvoxel neuronal activity patterns using fMRI

with techniques that manipulate and measure local cortical

gamma-aminobutyric acid (GABA) concentration.

We hypothesized that when stimuli are paired together,

their neuronal activity patterns should exhibit representational

overlap at the subvoxel level, a consequence of the increase in

strength of mediating excitatory connections. Furthermore, it

should only be possible to observe this representational overlap

during periods of EI imbalance, when excitatory connections
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that link the different stimulus representations dominate. Such EI

imbalance has been reported immediately after learning, prior to

inhibitory rebalancing (Froemke et al., 2007). We also reasoned

that if cortical associative memories are maintained but reba-

lanced via inhibitory plasticity, it should be possible to induce a

second period of EI imbalance to re-expose cortical memories.

In line with previous investigations in both rodent motor cortex

and songbird premotor cortex (Jacobs and Donoghue, 1991;

Vallentin et al., 2016), we predicted that this second period of

EI imbalance could be induced by downregulating the concen-

tration of cortical GABA. This should lead to an increase in the

representational overlap that underlies associative memories,

in proportion to the induced change in GABA. Therefore, if asso-

ciative memories are stored in balanced excitatory-inhibitory

ensembles in the human cortex, cortical memories should lie

dormant unless latent inhibitory connections are unmasked.

To test this prediction in the human brain, we first developed

an index for the representational overlap between different sub-

voxel neural representations using fMRI repetition suppression.

Using this index to provide a macroscopic signature of associa-

tive memories, we assessed representational overlap between

paired stimuli immediately after learning. To assess the conse-

quences of cortical rebalancing we then used fMRI repetition

suppression to track changes in representational overlap over

time, before combining this approach with anodal transcranial

direct current stimulation (tDCS), a technique known to bring

about a local reduction in cortical GABA (Kim et al., 2014; Stagg

et al., 2009, 2011). Using MR spectroscopy, we measured the

accompanying change in GABA concentration in the region of

cortex to which tDCS was applied.

We show that associated stimuli exhibit fMRI repetition

suppression in cortex immediately after learning. The magnitude

of this cross-stimulus suppression correlates with memory

performance measured behaviorally, suggesting that it reflects

expression of cortical memory. This cortical memory expres-

sion reduces over time and is absent the following day. Cortical

memory can however be re-exposed by reduction in local GABA

concentrations, induced using tDCS. The extent to which the

memory is re-expressed occurs in proportion to the induced

GABA reduction. By embedding memories in a spiking network

model of memory formation (Vogels and Abbott, 2009; Vogels

et al., 2011) and replicating each experimental step in silico,

we show that these data are consistent with the balancing of

memories via inhibitory synaptic plasticity in cortex.

RESULTS

Measuring AssociativeMemories using fMRI Adaptation
To measure associative memories in the human cortex we

needed to index neural representations that support the asso-

ciated stimuli. With fMRI it is possible to use techniques that

provide a measure of subvoxel neural representations. Here

we used fMRI adaptation, a technique that relies on the fact

that neurons show a relative suppression in their activity in

response to repetition of a stimulus to which they are sensitive

(Miller et al., 1991; Sawamura et al., 2006). While typically used

to access the information content of a cell assembly via repeti-

tion of a single stimulus or stimulus feature (Grill-Spector et al.,
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2006; Krekelberg et al., 2006; Malach, 2012), more recently

fMRI adaptation has been used to successfully index the repre-

sentational similarity of two cell assemblies that each represent

different stimuli (Barron et al., 2013). We hypothesized that

we could use fMRI adaptation here to measure representa-

tional similarity of associated stimuli by contrasting the BOLD

response to consecutive presentation of two associated stimuli

against consecutive presentation of two unrelated stimuli (Fig-

ure 1A; Experimental Procedures).

We designed a series of pilot experiments to test this pre-

diction and sought to identify a pair of stimuli which, when asso-

ciated, gave adaptation in a brain region that could be later

manipulated by extracranial stimulation inside the MRI scanner.

We reasoned that cross-stimulus adaptation should be detect-

able in a cortical region predicted by the stimulus feature relevant

for the association. For example, in recent data cross-stimulus

adaptation between two associated imagined food reward was

identified in the putative imagination network (Barron et al.,

2013; Schacter et al., 2012). In three different low-N pilot exper-

iments, participants learned to associate pairs of abstract visual

stimuli using a behavioral training task (A was paired with B,

and C with D) (Figure 1B). Stimuli were paired according to

three different properties, each designed to engage a different

cortical region (see Experimental Procedures). Immediately after

learning, cross-stimulus fMRI adaptation between associated

stimuli was assessed while participants performed an incidental

‘‘oddball’’ detection task, a task used to ensure that participants

maintained attention to stimuli without being aware of adaptation

measurements (Figure 1C; Experimental Procedures). Notably,

we controlled for potential confounds introduced by expectation

suppression (Summerfield et al., 2008) by ensuring that each

pair of stimuli was presented equally often in a fully random-

ized order. To control for attentional effects, the BOLD response

to consecutive presentation of two associated stimuli was then

contrasted against consecutive presentation of two unrelated

stimuli. To protect against concerns of multiple comparisons,

we assessed cross-stimulus adaptation for each association

by an independent regions of interest (ROI) analysis (Poldrack,

2007) (see Table S1 and Supplemental Experimental Procedures

available online).

When the defining features for the association were shape and

color (Figure 1D), significant adaptation between paired stimuli

was observed in regions of occipital and temporal cortex (Fig-

ures 1E and 1F, t8 = 1.96, p = 0.043; cf. Table S1 for ROI speci-

fication), consistent with visual areas supporting the relevant

features of this simple stimulus association. When participants

associated abstract shapes in a rotationally invariant manner

(Figure 1G), fMRI adaptation was observed within an anterior

region of lateral occipital cortex (LOC), previously shown to

represent rotational invariant features (Kourtzi et al., 2003) (Fig-

ures 1H and 1I, t7 = 2.41, p = 0.024; cf. Table S1 for ROI specifi-

cation).When participants associated the same gray abstract

shapes with an expected food reward, stimulus-reward pairs

gave adaptation in lateral orbitofrontal cortex, a region known

to respond to stimuli that predict specific reward (Klein-Flügge

et al., 2013; Rudebeck and Murray, 2011) (Figure 1J; see Table

S1 for ROI specification). Although the result from each of these

pilot studies should not be considered in isolation due to the low
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Figure 1. Indexing Cortical Associations in the Human Brain using

Cross-stimulus Adaptation Immediately after Learning
(A) Left: stimuli are associatively paired: A-B and C-D. Middle and right: due

to repetition suppression, the predicted BOLD response to activation of

associated but different stimuli, A followed by B, was reduced relative to

consecutive unrelated stimuli, A followed by C.

(B) Before entering the scanner, participants learned to associate pairs of

stimuli using a three-alternative forced-choice task. On each trial, in response

to a test shape, the participant had to select the associated stimulus from

the full set.

(C) During scanning, two stimuli were presented in short succession on each

trial.
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number of subjects, the adaptation effect was reproducible

across all four different studies (Table S1). Critically, these pilot

studies provided a set of stimuli that could be used in combina-

tion with tDCS in a larger formal test below. In agreement with

recent findings (Barron et al., 2013), these new results suggest

that cross-stimulus adaptation can provide a measure of the

representational similarity of paired stimuli, within the cortical

region supporting features of the learned association.

Cortical Associative Memories Are Silenced with Time
Cross-stimulus adaptation therefore provides an index for

cortical associative memory formation, and by implication,

reflects the macroscopic consequences of modifications in

excitatory interconnections. Having established this index, we

went on to ask whether cross-stimulus adaptation could track

subsequent predicted modifications in excitatory and inhibitory

interconnections. Following the formation of new associative

memories in anaesthetised rodents, cortical networks are

rebalanced via inhibitory plasticity, strengthening inhibitory

connections that lie between associated cell assemblies to

quench excess excitatory activity (D’amour and Froemke,

2015; Froemke et al., 2007). These inhibitory rebalancing mech-

anism appear to have a time course of hours (Froemke et al.,

2007).We therefore predicted that the consequence of inhibitory

rebalancing upon cortical associations indexed here should be

reflected in a reduction in representational similarity between

associated cell assemblies, corresponding to a reduction in

cross-stimulus adaptation (Figure 2A).
(D) Using the task shown in (B), one set of participants learned to pair colored

shapes (experiment 1), A with B and C with D.

(E) Using the stimuli shown in (D), the BOLD response to consecutive pre-

sentation of two unrelated stimuli (AC, A followed by C) was contrasted against

the BOLD response to consecutive presentation of two associated stimuli

(AB, A followed by B): ‘‘unrelated’’ minus ‘‘associated,’’ and the contrast

thresholded at p < 0.05 uncorrected for display purposes.

(F) Parameter estimates (mean ± SEM) were extracted from an orthogonal ROI

(see Table S1) in occipital and temporal cortices, for trials where stimuli were

associated (AB, A followed by B) and trials where stimuli were unrelated (AC, A

followed by C). The difference in parameter estimates for these two trial types

(AC-AB, shown on the right) gave a significant cross-stimulus adaptation effect

within this ROI (p = 0.043).

(G) A second set of participants learned to associate rotationally invariant gray

shapes (experiment 2), pairing A with B and C with D.

(H) Using the stimuli shown in (G), the BOLD response to consecutive pre-

sentation of two unrelated stimuli (AC, A followed by C) was contrasted against

the BOLD response to consecutive presentation of two associated stimuli

(AB, A followed by B): ‘‘unrelated’’ minus ‘‘associated,’’ and the contrast

thresholded at p < 0.05 uncorrected for display purposes.

(I) Parameter estimates (mean ± SEM) were extracted from an orthogonal ROI

(see Table S1) in right temporal cortex, for trials where stimuli were associated

(AB, A followed by B) and trials where stimuli were unrelated (AC, A followed by

C). The difference in parameter estimates for these two trial types (AC-AB,

shown on the right) gave a significant cross-stimulus adaptation effect within

this ROI (p = 0.024).

(J) Cross-stimulus adaptation can be observed across cortex, in the

anatomical regions that encode features specific to the associated stimuli.

Blue region: colored shape associations as shown in (E). Green region: rota-

tionally invariant stimulus associations as shown in (H).Purple region: stimuli

associated with food reward (p = 0.032 within ROI). Pink region: associated

imaginary food reward (p = 0.014 within ROI, see also Figure 4C of Barron

et al., 2013).
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A B Figure 2. Cortical Associative Memories

Are Silenced with Time

(A) Left: example stimuli that were associatively

paired: A-B and C-D. Middle and right: after

inhibitory rebalancing had occurred, cross-stim-

ulus adaptation between associated stimuli, A

followed by B, was no longer predicted in the

BOLD response as new inhibitory connections

quench excitatory coactivation. Therefore activa-

tion of associated but different stimuli, A followed

by B, was expected to be equivalent to activation

of consecutive unrelated stimuli, A followed by C.

(B) One set of participants (experiment 1) were scanned on a second occasion 24 hr after the initial scan and a significant reduction in cross-stimulus adaptation

(measured with ‘‘associated’’ minus ‘‘not’’) was observed across days (p = 0.045) (shown: mean ± SEM for each day).
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To test this prediction we performed a further pilot experiment.

We re-scanned participants from one pilot experiment (colored

shapes) on a second occasion, 24 hr after the initial session. A

significant decrease in the magnitude of fMRI adaptation be-

tween associated stimuli was observed across days (Figure 2B,

t8 = 2.37, p = 0.045; see also Figure S2A). This result is consistent

with the idea that newly formed excitatory connections are

subsequently balanced by proportional inhibitory connections

that effectively mask access to the associative overlap of under-

lying cell assemblies. However, the same negative result would

be predicted if the newly formed excitatory connections were

subsequently depressed and the association forgotten. To

disambiguate facilitation at inhibitory connections and depres-

sion at excitatory connections we adopted a more sophisticated

approach.

Predicted Consequences of Modulating GABA
If newly formed excitatory connections are subsequently

balanced by proportional inhibitory connections, it should be

possible to effectively re-expose these dormant associations

by reducing cortical inhibition. Indeed, pre-existing lateral excit-

atory connections have previously been unmasked between

motoric representations in neighboring M1 areas via pharmaco-

logical manipulation of GABA (Jacobs and Donoghue, 1991).

Applying this logic to the human brain we used a technique

known to bring about a local reduction in cortical GABA, namely

anodal tDCS. During and following cerebral direct current stimu-

lation cortical excitability is enhanced as measured by local

neuronal firing rates (Bindman et al., 1962) or remote motor

evoked potentials (Nitsche et al., 2005). This enhancement is

sustained after stimulation for minutes to hours (Bindman

et al., 1962) via a protein synthesis dependent process (Nitsche

and Paulus, 2000), contributing to its application to learning (Ja-

cobson et al., 2012) and recovery from stroke (Hummel and Co-

hen, 2006). Evidence from direct spectroscopic measurements

in vivo (Kim et al., 2014; Stagg et al., 2009, 2011) and related

electrical stimulation studies in vitro (Stelzer et al., 1987) suggest

that this increase in excitability is caused by a reduction in avail-

able GABA concentrations (Stagg and Nitsche, 2011).

Here we applied anodal tDCS to a region of cortex where

cross-stimulus adaptation was measured immediately after

learning but had since reduced with time. This led to the

following two predictions. First, a tDCS-induced reduction in

cortical GABA should selectively increase fMRI adaptation
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between associated versus unrelated stimuli, owing to stronger

excitatory connections mediating the associative cell-assem-

blies (Figure 3A). Second, this predicted re-emergence of asso-

ciative memories should be proportional to the tDCS-induced

reduction in GABA.

Manipulating GABA to Re-expose Dormant Cortical
Memories
To test these predictions we applied tDCS in conjunction with

our fMRI adaptation paradigm. In parallel, we quantified the

concentration of GABA usingmagnetic resonance spectroscopy

(MRS), a technique used in vivo to measure the relative con-

centration of target metabolites in the brain. To achieve near

simultaneity in fMRI adaptation measurements and MRS quan-

tification of GABA concentration, we used 7T MRI with its

accompanying benefits of higher signal-to-noise ratio (SNR)

and chemical shift dispersion. From our three pilot experiments,

the protocol with rotationally invariant shapes was the most

appropriate, because it produced cross-stimulus adaptation in

an accessible brain region for tDCS.

As in pilot experiments, participants first learnt to pair the

rotationally invariant shapes (Figure 3B). We then measured

cross-stimulus adaptation in two subsequent fMRI sessions

(as in Figure 1C). When participants returned 24 hr later, we com-

bined two additional fMRI sessions with the MRS and tDCS pro-

tocol (Figure 3C). The anodal tDCS electrode was placed over

the occipital-temporal location previously shown to adapt to

associated, rotationally invariant shapes (Figure 1H; mean

anodal electrode location, Figure 3D; see also Figure S1). The

cathode was placed over the contralateral supraorbital ridge.

MRS measurements were taken from a 2 3 2 3 2 cm3 voxel,

approximately centered underneath the anode (Figure S1C),

and could be rapidly acquired before, during and after tDCS

(for example spectra see Figures S1A and S1B; see Experi-

mental Procedures for further details).

As predicted, we found a significant decrease in MRS-quanti-

fied GABA concentration during tDCS compared to baseline

(‘‘baseline’’ minus ‘‘during tDCS,’’ Figure 3E, t17 = 2.81, p =

0.006). This reduction was not sustained after the subsequent

task (Figure 5A, t17 = 1.20, p = 0.123). The only other metabolite

(n = 19) to show a change in concentration at the same signifi-

cance level (p < 0.05) was glutamate, which had significantly

increased in concentration (Figure 5B, t17 = 2.22, p = 0.020),

but only at a later time point after the task.
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Figure 3. The Latent Cortical Associations

Are Uncovered in the Human Brain via Local

Modulation of GABA

(A) Following downregulation of cortical GABA,

cross-stimulus adaptation between associated

stimuli, A followed by B, was once again predicted

in the BOLD response relative to the control con-

dition A followed by C.

(B) Rotationally invariant shapes were used as

the stimuli for the associative learning task (as in

Figure 1G).

(C) The protocol used to test for evidence of

inhibitory rebalancing of cortical associations in the

human brain. Participants completed the associa-

tive learning task shown in Figure 1B, before

completing two fMRI task blocks. Returning 24 hr

later, the fMRI task was repeated in conjunction

with MRS and tDCS. The first fMRI task block was

followed by a baseline MRSmeasurement. Twenty

minutesof tDCScommenced, anda ‘‘during tDCS’’

MRS measurement simultaneously acquired. The

second fMRI task block started half way through

the tDCS session, followed by a final ‘‘post-task’’

MRS measurement. After exiting the scanner,

participants were given a surprise memory test to

check they still knew the paired associations.

(D) The mean tDCS electrode location, with

x-coordinate defined using the peak x-co-

ordinates from Figure 1H.

(E) By comparing MRS measurements acquired

before and during tDCS (shown: mean ± SEM), a

significant reduction in GABA concentration was

observed (‘‘baseline’’ stimulation minus ‘‘during’’

stimulation, p = 0.006).

(F) B1 corresponds to block 1, and B2 to block 2.

Parameter estimates were extracted to obtain a

measure of cross-stimulus adaptation for each

scanning block (mean ± SEM). As in Figure 1I,

significant cross-stimulus adaptation was

observed immediately after learning (Day1 B1,

p = 0.044), and, as in Figure 2B, there was a sig-

nificant reduction in cross-stimulus adaptation

across days (Day1 B1 minus Day2 B1, p = 0.034).

On day2, following tDCS, there was a significant

increase in cross-stimulus adaptation (Day2

B2 minus Day2 B1, p = 0.006) and the interaction

between this effect and day 1 was also significant

(day * block: [(Day2 B2 minus Day2 B1) minus

(Day1 B2 minus Day1 B1)], p = 0.010).

(G) The change in GABA concentration before

versus during tDCS correlated with the change in

cross-stimulus adaptation from Day2 B1 to Day2

B2 (with effects due to glutamate removed, r17 =

0.486, p = 0.041).
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We then asked whether the tDCS-induced reduction in GABA

was accompanied by an increase in cross-stimulus adaptation,

reflecting the increase in expression of cortical associations

that would be predicted by unmasking previously inhibited

cortical associations. The analysis was tightly constrained by

our prior hypotheses and the experimental design: the increase

in cross-stimulus adaptation was expected directly underneath

the anodal tDCS electrode, at the mean cortical depth reported

in our pilot data (Figure 1H). Parameter estimates for our regres-

sors of interest were therefore extracted from the unbiased peak
tDCS electrode location (peak of Figure 3D) at the predicted

cortical depth. This precise prediction could only be made due

to the pilot experiments, reported in detail above.

If cortical memories are expressed only during periods when

cortical associations can be described as being free from inhibi-

tion or in EI imbalance, it should be possible to measure cross-

stimulus adaptation during block 1 on the first day (before

balancing) and block 2 on the second day (after unbalancing),

but not during block 1 on the second day (after balancing). The

critical test was therefore a two-way ANOVA (day * block).
Neuron 90, 1–13, April 6, 2016 ª2016 The Authors 5



A B C Figure 4. Memory Accuracy Predicts

Cross-stimulus Adaptation

(A) There was no significant difference between

participants’ accuracy on the associative learning

task performed on day1 and the surprise memory

test performed after scanning on day2 (p = 0.821)

(shown: mean ± SEM for each day).

(B) During periods of EI imbalance (Day1-block1

and Day2-block2), the average cross-stimulus

adaptation significantly correlated with memory

performance on the surprise memory test (r20 =

0.57, p = 0.007).

(C) During periods of EI balance (Day1-block2 and

Day2-block1), the average cross-stimulus adapta-

tion did not correlate with memory performance on

the surprise memory test (r20 = 0.016, p = 0.946).
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Notably this ANOVA has in-built controls for block and day. This

test revealed a significant interaction (Figure 3F, day * block,

F1,64 = 8.05, p = 0.010), suggesting that the expression of asso-

ciative memories was restored during tDCS application. The

directionality of this interaction was verified using post hoc

t tests, which first showed a replication of our previous findings

(Figures 1I and 2B), with significant cross-stimulus adaptation

in the first fMRI session (Figure 3F, ‘‘Day1 B1,’’ t20 = 1.80, p =

0.044; see also Figures S2F and S3G). Furthermore, we again

observed a significant decrease in cross-stimulus adaptation

by the first session of Day 2 (Figure 3F, ‘‘Day1 B1’’ > ‘‘Day2

B1,’’ t20 = 1.93, p = 0.034; see also Figure S2F), but not the sec-

ond session of Day1 (Figure 3F, ‘‘Day1 B1’’ > ‘‘Day1 B2,’’ t20 =

0.85, p = 0.797), suggesting that the cortex rebalanced after

24 hr. Critically, after application of tDCS, the cross-stimulus

adaptation returned (Figure 3F, ‘‘Day2 B2’’ > ‘‘Day2 B1,’’

t20 = 3.08, p = 0.006; see also Figures S2E–S2G), confirming

that adaptation was greater during periods of putative EI imbal-

ance (Figure 3F, Interaction [‘‘Day2 B2’’ > ‘‘Day2 B1’’] – [‘‘Day1

B2’’ > ‘‘Day1 B1’’]; t20 = 2.84, p = 0.010; see also Figures S2D

and S2F). These results demonstrate that dormant neuronal

relationships can be revealed by local reduction of GABA,

suggesting that expression of cortical associative memories is

controlled by selective inhibitory connections.

Re-exposure of Otherwise Dormant Memories Is
Predicted by the Change in GABA
To further establish the relationship between the change in

GABA concentration and re-expression of an associative mem-

ory, and to assess the specific contribution of GABA, we

measured the correlation between the fMRI adaptation effect

and the change in GABA concentration across the population.

To maximize sensitivity across the group, parameter estimates

for the adaptation effect were extracted from individual-specific

regions, defined by the individuals’ peak interaction effect (see

Supplemental Experimental Procedures). This allowed us to

identify the strongest recovery in fMRI adaptation in each indi-

vidual. The increase in cross-stimulus adaptation observed after

tDCS on day 2 significantly correlated with the change in GABA

observed during tDCS (Figure 3G, r17 = 0.486, p = 0.041, after ac-

counting for changes in glutamate, see also Figures S3A–S3C).

Importantly, there was no significant correlation between these

adaptation effects and any of the other 18metabolites measured
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with MRS, including glutamate (see Figures S3D–S3G). These

results provide further independent statistical evidence that

dormantmemories can be re-expressed in cortex by local reduc-

tions in GABA, and demonstrate that the effect is specific to

GABA among the 19 metabolites that we could measure with

spectroscopy.

The variation in GABA concentration observed across partici-

pants is similar to previous studies that compared real versus

sham tDCS (Stagg et al., 2009, 2011). By virtue of the precise

quantitative predictions made about the relationship between

fMRI adaptation and GABA concentration, it was not necessary

to include a separate sham condition here. The range of inter-

individual variation provided a more stringent framework within

which to test our hypotheses. In effect, fMRI adaptation

measured from participants with a lower change in GABA para-

metrically controlled for that measured from participants with a

higher change in GABA.

Behavior Predicts Cross-stimulus Adaptation
By unmasking previously silent cortical associations, our data

suggest that although the expression of cortical associations

reduces over time, learned associations may be stored as

balanced ensembles of excitatory and inhibitory connections

rather than subject to depression at excitatory synapses. This

is further supported by analysis of participants’ behavior during

a surprise memory test performed after the final scanning ses-

sion. Memory accuracy did not differ from performance at the

end of the pre-scan training on day 1 (accuracy on last block

day1 versus accuracy on day 2 (dark mauve in Figure 3C) (Fig-

ure 4A, t20 = 0.94, p = 0.821). Remarkably, this measure of

behavioral performance could be used to predict the neural in-

dex for the expression of cortical memories, measured using

cross-stimulus adaptation. Memory accuracy on the surprise

test correlated with the average cross-stimulus adaptation for

task sessions during putative imbalance (day1-block1, day2-

block2) (Figure 4B, r20 = 0.57, p = 0.007; see also Figures

S3H and S3I), but not with the average cross-stimulus adapta-

tion during putative periods of balance (day1-block2, day2-

block1) (Figure 4C, r20 = 0.016, p = 0.946; see also Figures

S3J and S3K). The correlation between memory accuracy

and the day * session interaction of cross-stimulus adaptation

showed a similar trend (r20 = 0.41, p = 0.069). This result sug-

gests that memory performance can be used to predict the
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Figure 5. Cortical Excitability and Changes

in GABA and Glutamate Concentration

(A) The concentration of GABA for each MRS

acquisition, averaged across the group (mean ±

SEM). As shown in Figure 3E, a significant

reduction in GABA concentration was observed

when comparing MRS measurements acquired

before and during tDCS (p = 0.006). There

was no significant difference between these

GABA concentration measurements and the

GABA concentration measured after the fMRI

task block (p = 0.114).

(B) The concentration of glutamate for each MRS

acquisition, averaged across the group (mean ±

SEM). There was no significant difference be-

tween glutamate concentration measured before

versus during tDCS (p = 0.872). However, there

was a significant increase in glutamate after the

final fMRI task block (p = 0.020).

(C) The region of interest used to assess

changes in raw BOLD following application of

tDCS. To avoid confounding our analysis with

adaptation effects this ROI was defined from the

average BOLD response to pairs of unrelated stimuli across all task blocks (see Supplemental Experimental Procedures).

(D) Parameter estimates (mean ± SEM), extracted from the ROI shown in (C), revealed a significant increase in the raw BOLD response to nonadapting stimuli

following application of tDCS (block2 – block1: p = 0.043).

(E) The increase in BOLD response, shown in (D), was predicted by the post-task increase in cortical excitability, measured using MRS (change in glutamate

concentration contrasted with change in GABA concentration using multiple regression: p = 0.024). This result is illustrated here by the positive correlation

between the change in BOLD and post-task change glutamate concentration (r17 = 0.488, p = 0.0398, with effects due to GABA removed) (left), and the negative

trend between the change in BOLD and the post-task change in GABA concentration (r17 = �0.424, p = 0.080, with effects due to glutamate removed) (right).
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magnitude of cortical cross-stimulus adaptation during periods

of reduced cortical GABA.

Cortical Excitability, and GABAergic and Glutamatergic
Spectroscopy Measurements
It is notable that the tDCS-induced GABA change led to an in-

crease in adaptation, and therefore reduced signal in trials with

paired stimuli compared to controls. Net increases of cortical

excitability might be expected to lead to a general increase in

measured BOLD signal. To test this, we extracted the BOLD

response for the control trials alone. Indeed, the response to con-

trol trials showed a small increase following tDCS (Figures 5C and

5D, Day2 block2 – block1: t20 = 1.81, p = 0.043; see Supplemental

Experimental Procedures for ROI specification).While this general

increase did not correlate with the GABA reduction observed dur-

ing tDCS (r17 =�0.117, p = 0.643, after accounting for changes in

glutamate), it was predicted by the change in spectroscopicmea-

surements over the course of the task. Notably, the change in

glutamate concentration over the final task (post-task – during-

tDCS) positively predicted the change in BOLD response (Fig-

ure 5E, multiple regression, see Supplemental Experimental

Procedures: t17 = 2.17, p = 0.022). The equivalent change in

GABA concentration negatively predicted the change in BOLD

response (Figure 5E, multiple regression, see Supplemental

Experimental Procedures: t17 = 1.81, p = 0.044). These opposite

effects of glutamate and GABA measurements lead to the esti-

mated change in cortical excitability (glutamate contrasted with

GABA) predicting the observed change in BOLD fMRI in the con-

trol trials (multiple regression, see Supplemental Experimental

Procedures: t17 = 2.13, p = 0.024), lending further credence to

the specificity of the spectroscopic measurements.
Simulation using a Neural Network Model
The selective re-expression of previously dormant cortical asso-

ciations was observed by combining a nonspecific tDCS-

induced reduction ofGABAwith representational fMRI. Individual

cortical associations could therefore be released and measured

despite the global reduction inGABA. Thesemacroscopic obser-

vations are the logical consequence of rebalancing the cortical

circuit, where balanced excitatory-inhibitory ensembles are

maintained via inhibitory plasticity. To further illustrate how these

observations can be considered the consequences of circuit

level synaptic modifications, we refined a set of previously pub-

lished neural networkmodels (Vogels et al., 2013; Vogels andAb-

bott, 2009) to incorporate the experimental protocol presented

above. In the network model, we included four cell assemblies

to represent independent and nonoverlapping representations

of the four stimuli (A:D), thatwere balancedby local inhibition (Vo-

gels et al., 2011) (Figures 6A and S4A). Each cell assembly could

be activated individually by selectively reducing the efficacy of

the relevant local interneurons. To simulate the consequences

of learning new associations, we selectively strengthened excit-

atory connections between pairs of cell assemblies (Nabavi

et al., 2014) (seeSupplemental Experimental Procedures). Imme-

diate subsequent activation of one cell assembly (e.g., red) re-

sulted in co-activation of its associated pair (e.g., green, Figures

6B and S4B). Over time, inhibitory plasticity balanced the surplus

excitation in each assembly, restoring balance to the network

(Figures 6C, 6E, and S4C). Despite strong excitatory connections

between assemblies, coactivationwas effectively silencedby the

proportionally strengthened disynaptic inhibitory connections.

Our model thus qualitatively reproduced the key features of

the experimental results: immediately after learning, paired cell
Neuron 90, 1–13, April 6, 2016 ª2016 The Authors 7
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Figure 6. Neural Network Model Showing How Latent Cortical Associations Can Be Uncovered by Downregulating the Efficacy of Inhibitory

Neurons

(A–D) Four snapshots of recurrent network activity in response to stimulating one of four embedded cell assemblies. In the first row, each panel features a

schematic of the parameter conditions of the network. The assemblies are pictured as colored squares. Excitatory and inhibitory connections are drawn in orange

and gray, respectively. The second row shows the average firing rate over 1 s of every excitatory neuron in the network, assembled on a square grid. The third row

visualizes the average firing rate of all excitatory neurons in each (red, green, yellow, or blue colored) assembly, averaged over 5 trials.

(A) In the initial, balanced state, activation of the upper left (red) cell assembly leads to high firing rates in the activated neuron group, but not in other neurons

(cf. Figure S4A).

(B) After excitatory connections between associated cell-assemblies were selectively enhanced, the activation of the same assembly coactivates the associated

green cell-assembly.

(C) After disynaptic inhibition has been strengthened to balance the surplus excitation, the stimulation no longer resulted in coactivation of the associated green

cell assembly.

(D) Reducing the efficacy of all inhibitory synapses in the balanced network restored coactivation of the associated cell assembly (green) in response to driving the

red cell assembly.

(legend continued on next page)
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assemblies within the network coactivated and therefore had

overlapping representations (Figures 1, 3F, and 6B; see also Fig-

ure S5B); these paired representations were separated again

when inhibitory rebalancing occurred (Figures 2, 3F, and 6C;

see also Figure S5B). In line with previous work (Litwin-Kumar

and Doiron, 2014; Zenke et al., 2015), such separation of stable

memories could not be achieved if we instead used homeostatic

scaling to stabilize network activity in the absence of inhibitory

plasticity (Figure S5C).

Having thus embedded two hidden associative memories in

the network, we then tested if these associations could be re-

exposed via a network-wide manipulation of inhibition. We

downregulated the efficacy of all inhibitory synapses by 15%,

a percent reduction inspired by previous tDCS-induced changes

in cortical GABA concentration (Kim et al., 2014; Stagg et al.,

2009). Coactivation of the previously paired cell assemblies

was recovered when either assembly was stimulated individually

(Figures 6D and 6E; see also Figures S4D, S5, and S6), and

similar results were observed when inhibition was reduced by

approximately 8%, up to approximately 40% (Figure S6).

Notably, despite the global nature of themanipulation, the result-

ing EI imbalance led to only moderate changes in the back-

ground activity but substantially amplified the effect of excitatory

connections between associated cell assemblies. By contrast,

when the network was stabilized with homeostatic scaling of

the excitatory synapses, instead of inhibitory synaptic plasticity,

it did not show these effects. Rather it produced network wide

instabilities and assembly ‘‘latching,’’ i.e., uncontrollable serial

activation of random assemblies (Figure S5C). These modeling

results illustrate how a general reduction in network inhibition

may be sufficient to selectively expose associations between

otherwise balanced cell-assemblies, and thus qualitatively

resemble the selective unmasking of otherwise dormant cortical

memories observed in humans following application of tDCS

(Figures 3F and 3G).

DISCUSSION

We have shown that otherwise dormant associative memories

can be re-expressed in human cortex by reducing the concen-

tration of cortical GABA using anodal tDCS. This was made

possible by first establishing an index for associative memories

in the human cortex using fMRI adaptation. Immediately after

learning, adaptation between associated stimuli was observed

in proportion to memory performance measured behaviorally.

By tracking this index for associative memories across time,

we show that adaptation between associated stimuli is signifi-
(E) Complete simulation of all stages of the protocol (A) through (D) in 80 min and a

red and green cell assemblies over 2 s, and the activity of all background neur

assembly neurons when they are stimulated (solid circles) or when the other asse

firing rates of un-stimulated background neurons during stimulations. The simulat

four cell assemblies are introduced (t = 7min) the firing rate of assembly and backg

activity at 5 Hz. Red and the green cell assemblies can be individually activated, as

and the blue and yellow (data not shown) cell assemblies are introduced (t = 2

adjusted over the course of several minutes, but the associated cell assemblies

time, inhibitory plasticity refines the disynaptic inhibitory inputs to each assembly

(C). By reducing the efficacy of all inhibitory synapses, as thought to occur duri

recovered, as shown in (D).
cantly reduced after 24 hr, but can be recovered by reducing

the concentration of cortical GABA using tDCS. These results

suggest that associative memories lie dormant in human cortex

but can be selectively expressed following changes in cortical

excitability.

By combining multiple imaging techniques with brain stimula-

tion, these data provide a macroscopic readout of cortical mem-

ory formation that reflects the consequence of underlying circuit

level processes. Taking each finding in turn, it is possible to infer

the nature of these underlying circuit level processes from

related data in animal models. For example, the neural circuit

mechanisms that accompany fMRI adaptation between recently

associated stimuli may be inferred from the following two obser-

vations in animal models. First, associative learning is accom-

panied by modifications at excitatory synapses which increase

co-activation between associated cell assemblies (Nabavi

et al., 2014). Second, neuronal adaptation is observed in sin-

gle-unit recording following consecutive presentation of different

stimuli to which a neuron is sensitive (Sawamura et al., 2006).

fMRI adaptation between recently associated stimuli may there-

fore be interpreted as an index for co-activation between asso-

ciated cell-assemblies, the consequence of excitatory plasticity

that occurs during learning.

Similarly, the observed reduction in adaptation across

time, but subsequent recovery following application of tDCS

may also be interpreted using neural circuit level processes

measured in animal models. Of particular relevance is the obser-

vation that modifications at excitatory synapses are accompa-

nied by complementary changes at inhibitory synapses in rodent

auditory cortex, which rebalance cortex over a time course of

hours (D’amour and Froemke, 2015; Froemke et al., 2007).

Following memory formation, EI balance may therefore be

restored by precisely complimenting excitatory connections

with inhibitory replicas, or antimemories. This is thought to

be important in providing stable storage for multiple individual

memories since antimemories can prevent spontaneous mem-

ory activation, an effect known as latching in the modeling

literature (Linkerhand and Gros, 2013; Abeles et al., 1995; Lit-

win-Kumar and Doiron, 2014; Zenke et al., 2015). Pharmacolog-

ical manipulation of rodent motor cortex suggests that formation

of antimemories may be a common feature of cortex more

generally since relief of inhibition in this cortical region also

reveals latent intracortical excitatory connections (Jacobs and

Donoghue, 1991).

In light of these data, we infer that the observed reduction in

fMRI adaptation after 24 hr reflects the consequence of modifi-

cations at inhibitory synapses which act to restore cortical EI
ccordingly adjusted learning rate h. Solid lines show the average activity of the

ons is plotted in black. Circles show the average firing rate of red and green

mbly is stimulated (open circles), at 40 s intervals. Open black circles show the

ion begins with a naive network without assembly structure, firing at 5 Hz. After

round neurons increases, but inhibitory synaptic plasticity re-stabilizes network

shown in (A). When ‘‘associative’’ connections between the red and the green,

3.5 min), high firing rates (maximum 136 Hz) of the unstimulated network are

coactivate in response to stimulation of either assembly, as shown in (B). Over

so that coactivation between associated assemblies is reduced, as shown in

ng tDCS (t = 74 min), the coactivation between associated cell assemblies is
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balance following associative learning. Recovery of adaptation

during tDCS-induced reduction in cortical GABA demonstrates

that selective inhibitory connections are otherwise responsible

for silencing adaptation between associated stimuli. Our data

are therefore consistent with the suggestion that cortical associ-

ations are stored as balanced excitatory and inhibitory ensem-

bles which remain silent unless EI balance is disrupted.

The formation of inhibitory replicas of memories, or antimemo-

ries, via inhibitory plasticity likely complements other homeostat-

ic mechanisms such as synaptic scaling (Litwin-Kumar and

Doiron, 2014; Turrigiano and Nelson, 2004; Turrigiano et al.,

1998; Zenke et al., 2015) where, following Hebbian learning,

cortical stability can be maintained via normalization of all excit-

atory synapses in the network (Turrigiano, 2008). In network

modeling, homeostatic plasticity alone is not sufficient to explain

the phenomenon of memory embedding or, more importantly,

retrieval via GABA decrease (Zenke et al., 2015). Given these

difficulties, it seems unlikely that synaptic scaling alone could

account for the data. Furthermore it does not provide a simple

explanation for the empirical observations. For example, a differ-

ence in cross-stimulus adaptation between associated and

nonassociated cell assemblies is not maintained across time

as would be predicted by synaptic scaling. By contrast, the

explanation provided for the data by inhibitory plasticity can fully

account for the empirical observations and provides a parsimo-

nious description of the data.

Althoughwe are unable to experimentally verify this interpreta-

tion of the data, we consider our approach nonetheless impor-

tant. We have shown how a multimodal noninvasive approach

can be used to obtain macroscopic measurements of human

brain activity which reflect the consequence of neural circuit level

processes. By considering microcircuit processes previously

observed in animal and theoretical models, we used a highly

constrained experimental design to generate precise predic-

tions. From the data it was therefore possible to infer plausible

neural circuit level processes that contribute to the observed

macroscopic signal. This approach may provide a foundation

for inferring subvoxel neural mechanisms that cannot be directly

imaged in humans yet are likely to underlie neurological and

pathological disease.

Indeed, failure to maintain balance in cortex has been hypoth-

esized as a substrate for pathophysiological consequences

observed in autism, epilepsy and schizophrenia (Lewis et al.,

2005; Rubenstein and Merzenich, 2003; Yizhar et al., 2011).

For example, elevating excitation in rodents introduces social

deficits (Yizhar et al., 2011), while pharmacological suppression

of inhibition rapidly leads to epileptic-like spread of synchronized

excitation to distant cortical sites (Chagnac-Amitai and Connors,

1989). Furthermore, when the balance of excitation and inhibition

is not properly maintained in a simulated neural network, the

model exhibits effects that can be related to hallucinatory and

delusional symptoms (Vogels and Abbott, 2007). Given the pro-

posed contribution of EI imbalance to this range of psychiatric

disorders, it is critical that we develop tools in humans that allow

for the underlying neural mechanisms to be uncovered.

While we have focused this investigation on the formation of

new associations in sensory regions of cortex, the question of

how balanced associative information is recalled remains perti-
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nent. Interactions between different brain regions andmodalities

of stored information may play a critical role. Here, to avoid con-

founding our measure of cross-stimulus adaptation, it was only

possible to test memory behaviorally at the very end of the

experiment, giving a measure for memory accuracy only when

the memory had arguably been released following application

of tDCS. It was therefore not possible to explore the nature of

memory recall following rebalancing. Nevertheless, we hypothe-

size that recall may involve the release from balance of stored

information. The advantage of maintaining inhibitory replicas of

memories is then readily apparent: multiple memories can be

stored stably, but each memory can be easily and selectively

recalled through disinhibition. By altering the strength of inhibi-

tion, it may therefore be possible to gate excitability of particular

cortical circuits. Indeed, recent optogenetic manipulation of ro-

dent cortex and hippocampus suggests that the cortex provides

a sufficient store for memories and hippocampus may serve as

the cortical gate (Cowansage et al., 2014). Having demonstrated

how circuit level activity may be indirectly indexed in the human

brain, we here provide an example protocol from which to start

investigating circuit level descriptions ofmemory recall and other

cognitive functions, providing a potential means to reveal the

neural computations that contribute to human cognition.

EXPERIMENTAL PROCEDURES

Participants

Fifty-three healthy volunteers participated in the study (see Table S1 for sum-

mary; experiment 1, ‘‘colored shapes’’: n = 9, mean age of 22.3, 5 females;

experiment 2, ‘‘rotationally invariant shapes (3T)’’: n = 9, mean age of 24.8,

7 females; experiment 3, ‘‘stimulus-reward’’: n = 10, mean age of 21.3, 6 fe-

males; experiment 4, ‘‘rotationally invariant shapes (7T)’’: n = 25, mean age

of 22.7, 11 females). Experiments 1–3were approved by the University College

London ethics committee (reference number 3450/002), and experiment 4was

approved by the Oxford University ethics committee (reference number MSD-

IDREC-C2-2013-20). All participants gave informed written consent.

In experiments 2 and 4, one participant was excluded due to sleepiness

during the scanning session, verified respectively using an eye tracker and

personal report. In experiment 4, an additional three participants moved

more than 5 mm during the first scanning session and were excluded from

data analyses involving fMRI measurements from this session.

Behavioral Training

Four different stimuli were presented to the participant: A, B, C, and D, with a

fully factorized randomization of stimulus allocation across participants. In

experiment 1, stimuli were colored shapes (Figure 1D). In experiments 2

and 4, stimuli were rotationally invariant gray shapes (Figures 1G and 3B),

whichwere observed in one of four possible rotations, with each rotation sepa-

rated by 90�. In experiment 3, stimuli were gray shapes and food reward (Fig-

ure 1J). The rotationally invariant gray shapes used in experiments 2 and 4

included four different shapes each of which could be observed in one of

four possible orientations.

Participants were trained to pair these stimuli (A with B, and Cwith D), using a

three-alternative forced-choice task (Figure 1B). On each trial, one of the four

stimuli was shown for 400 ms before all three remaining stimuli were presented

in randomizedpositions across the screen. Participantswere instructed to press

the button associated with the correct stimulus’ position, as quickly and accu-

rately as possible. Accurate and fast responses were rewarded with 50 pence,

with the threshold for a fast response titrated to the participants mean reaction

time. Ten percent of trials were randomly selected at the end of each task block

and the participant received the sum total reward from these trials. Participants

were required to continuewith this stimulus-item learning task until their average

reaction time per block approached 700 ms with 90% accuracy.
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fMRI Task, Data Acquisition

In all four experiments, fMRI measurements were acquired while participants

viewed a series of visual stimuli, presented via a computer monitor projected

onto a screen. The visual stimuli comprised the four stimuli used in the training

task, A, B, C, and D, except in experiment 1, where stimulus Dwas replaced by

a novel stimulus, E (see Table S1).

On each trial two stimuli were presented consecutively for 700ms each, with

an interstimulus interval of 400 ms (Figure 1C). The intertrial interval was

selected from a truncated gamma distribution (experiments 1–3) or uniform

distribution (experiment 4) with mean of 4 s. To control for potential confound-

ing effects of expectation suppression (Summerfield et al., 2008), all stimuli,

and each possible pair of stimuli, were presented equally often in a fully ran-

domized order. Participants were required to perform a task incidental to the

contrast of interest which involved identifying whether the presented stimuli

were familiar or ‘‘oddball.’’ Oddball stimuli, defined as stimuli that did not

belong to the training set A to D, were randomly inserted into 10% of trials.

Participants were not required to respond if both stimuli on a trial were familiar,

but were asked to make a fast button press response if they identified an

oddball stimulus. No feedback was given.

The number of trials per block and the number of task blocks varied across

experiments (experiment 1: 3 3 25 min task blocks per day, 224 trials per

block; experiment 2: 1 3 20 min task block, 208 trials per block; experiment

3: 2 3 20 min task block, 240 trials per block; experiment 4: 2 3 20 min task

block per day, 208 trials per block). In both experiments 1 and 4, participants

were scanned on a second occasion, 24 hr after the initial scan session.

For experiments 1–3, MRI data were acquired using a 3Tesla Trio MRI scan-

ner (Siemens) with a 32 channel receive-only coil (Siemens) at the Wellcome

Trust Centre for Neuroimaging (University College London, UK) and for exper-

iment 4 only, using a 7Tesla MagnetomMRI scanner (Siemens) with 1-channel

transmit and a 32-channel phased-array head coil (Nova Medical, USA) at the

FMRIB Centre (University of Oxford). Current 7T radio-frequency (RF) coil de-

signs suffer from B1 inhomogeneity effects which were pronounced in the right

temporal lobe. To overcome this, we positioned a single barium titanate dielec-

tric pad (4:1 ratio of BaTiO3:D2O, with a relative permittivity of around �300,

and size 110 3 110 3 5 mm3) over the right temporal lobe in all 7T scanning

sessions, causing a ‘‘hotspot’’ in the RF distribution at the expense of distal re-

gions (Brink and Webb, 2014; Teeuwisse et al., 2012). During the day 2 scan,

the tDCS electrode was situated between the dielectric pad and the head.

For 3T MRI data, an echoplanar imaging (EPI) sequence was used with a

32-channel coil to acquire 20 2.5 mm thick transverse slices with 1 mm gap,

in-plane resolution of 3 3 3 mm2, repetition time (TR) = 1.4 s, echo time

(TE) = 30 ms, flip angle = 90�, and field of view 192 mm. The partial volume

covered occipital and temporal cortices and in each session, 850–900 vol-

umes were collected (�20 min). For each participant, a T1-weighted structural

image was acquired to correct for geometric distortions and coregister the

EPIs, consisting of 176 1.0 mm axial slices, in plane resolution of 1.0 3

1.0 mm2, repetition time = 7.92 s, echo time = 2.48 ms, and field of view =

256 mm. A field map with dual echo-time images was also acquired (TE1 =

10.00 ms, TE2 = 12.46 ms, whole-brain coverage, voxel size 3 3 3 3 2 mm3).

For 7T MRI data, an echoplanar imaging (EPI) sequence was used with a

32-channel coil to acquire 24 2.5 mm thick transverse slices with 1 mm gap,

in-plane resolution of 2 3 2 mm2, repetition time (TR) = 1.4 s, echo time

(TE) = 25 ms, flip angle = 60�, and field of view 220 mm. The partial volume

covered occipital and temporal cortices and in each session, 850–900 vol-

umes were collected (�20 min). For each participant, a T1-weighted structural

image was acquired to correct for geometric distortions and coregister the

EPIs, consisting of 176 0.7 mm axial slices, in-plane resolution of 0.7 3

0.7 mm2, repetition time = 2.2 s, echo time = 2.96 ms, and field of view =

224 mm. A field map with dual echo-time images was also acquired (TE1 =

4.08 ms, TE2 = 5.1 ms, whole-brain coverage, voxel size 2 3 2 3 2 mm3).

MRS

Onday 2 of experiment 4, MRSwas acquired from 21 of the 25 participants. B0

shimming was performed in a two-step process. First, GRE-SHIM (field of

view, 384 3 384 mm2; TR = 600 ms; TE1/2 = 2.04/4.08 ms; slice thickness

4 mm; flip angle 15�; slices 64; scan time 45 s) was used to determine the

optimal first- and second-order shim currents (Shah et al., 2009). The second
step involved only fine adjustment of first-order shims using FASTMAP (Gruet-

ter and Tkác, 2000). Themodified semi-LASER sequence, previously shown to

have minimal chemical shift displacement error (CSDE), was used with TE =

36 ms, TR = 5–6 s to acquire MRS measurements in a 2 3 2 3 2 cm3 volume

of interest (VOI), positioned next to the tDCS electrode (Figure S1C) (van de

Bank et al., 2015; Oz and Tká�c, 2011).

For each MRS measurement between 96 and 128, scan averages were

collected, giving a total acquisition time of around 10 min. Three measure-

ments were acquired for each participant, before and during tDCS, and again

after the second task block (Figure 3C).

Metabolites were quantified using LCModel (see Supplemental Experi-

mental Procedures; see also Figures S1A and S1B) (Provencher 1993,

2001). Relative to baseline concentrations, the change in GABA (Figures 3E

and 5A), glutamate (Figure 5B), and other metabolite concentrations was esti-

mated both during tDCS and post-task using a two-tailed paired t test where

the direction of the effect was unknown and a one-tailed paired t test in

instances where the direction of the effect was predicted from previous data

(i.e., for GABA).

tDCS

On day 2 of experiment 4, a DC-Stimulator (Eldith) delivered a 1 mA current to

the brain while the participants were inside the 7T MRI scanner. To allow for

tDCS to be delivered inside the 7T scanner, two 5 3 7 cm MRI compatible

electrodes (Easycap) were fitted with 5 kOhm resisters to minimize the risk

of heating or eddy current induction. Using high-chloride EEG electrode gel

(Easycap) as a conducting paste, the anodal electrode was placed on the

scalp above the region of right temporal cortex previously identified as encod-

ing the association between paired shapes (Figure 3D), approximately at the

10–20 T6 node location. The cathodal electrode was placed over the contra-

lateral supraorbital ridge. A cod-liver oil capsule was taped to the center of

the anodal electrode tomake the electrodeMR-visible and allow for its location

to be mapped onto the anatomical brain surface (Figure S1C). The impedance

of tDCS was checked prior to the participant entering the scanner and again

once the participant was lying inside the bore of the magnet with extension

leads connected to the stimulator. tDCS involved a 10 s ramp up of the current,

which was then held at 1 mA current for a total of 20 min, before being ramped

down over 10 s. tDCS commenced after the first MRS measurement acquisi-

tion (baseline), 10 min prior to the start of the second fMRI task session (see

Figure 3C).

Postscan Behavioral Task

On day 2 of experiment 4, immediately after participants exited the scanner

they were given a surprisememory test (see Figure 3C). This involved the three

alternative forced choice design used in the behavioral training, but in the

absence of feedback (mean number of trials, 22.7).

fMRI Data Analysis

All MRI datasets were preprocessed using SPM (http://www.fil.ion.ucl.ac.uk/

spm/). Imageswere corrected for signal bias, realigned to the first volume, cor-

rected for distortion using field maps, normalized to a standard EPI template

and smoothed using an 8 mm full-width at half maximum Gaussian kernel.

For each participant and for each scanning block, fMRI data was analyzed in

an event-related manner using a general linear model (GLM) in SPM. Explan-

atory variables used a delta function to indicate the onset of a trial and were

then convolved with the hemodynamic response function. Explanatory vari-

ables were included for trials with associated stimuli (e.g., A followed by B,

or C followed by D), unrelated stimuli (e.g., A followed by C or B followed

by D), and repeated stimuli (e.g., A followed by A). In experiment 1, an addi-

tional explanatory variable was included to account for trials with stimulus E.

In experiment 2, the ‘‘unrelated’’ explanatory variable was divided in two

(i.e., C and D trials divided) to allow for an orthogonal test of cross-stimulus

adaptation. In all experiments, an additional six scan-to-scan motion parame-

ters produced during realignment were included in the GLM as additional

nuisance explanatory variables to account for motion-related artifacts.

To measure cross-stimulus adaptation the contrast of interest involved

comparing the BOLD response to associated stimuli with that of unrelated

stimuli (‘‘unrelated’’ minus ‘‘associated’’). Notably, this contrast controlled
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for attention-dependent differences in expectation suppression across

sessions (Larsson and Smith, 2012). The contrast images of all participants

were entered into a second-level random effects analysis. To test for cross-

stimulus adaptation in an unbiased fashion, parameter estimates obtained

from the GLM were extracted from an independent ROI (see Supplemental

Experimental Procedures for ROI definitions), and contrasted using a two-

tailed t test where the direction of the effect was unknown, and a one-tailed

t test in instances where the direction of the effect was predicted from previous

data. Two-tailed paired t tests were used to assess differences across

sessions.

Network Modeling

See Supplemental Information for experimental procedures concerning the

network modeling.
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Supplemental Figure S1 

 
Figure S1 (related to Figure 3) | MRS spectra, MRS voxel location and behavioural analyses  
A-B Example MRS spectra for a single participant after 10mins acquisition. In black is the LCModel fit. In red 
is the GABA spectra estimated by LCModel. The three peaks contributing to the GABA spectra are indicated 
with stars. A MRS spectra at baseline, before tDCS. B MRS spectra during tDCS, where the signal intensity of 
the GABA peaks is reduced relative to baseline shown in A. C Average tDCS electrode location (orange) and 
average MRS voxel location (blue). D Percentage of trials with the correct behavioural response made during 
the fMRI task (mean ± SEM). There was near significant improvement in performance from day 1 to day 2 
(Day1 B1 vs Day2 B1, p=0.054).  
 
 
 
 
 
 
 



 

Supplemental Figure S2 
 

 
 
 
Figure S2 (related to Figures 2 and 3) | Cross-stimulus adaptation: decomposition of data analyses  
A One set of pilot participants were scanned on a second occasion, 24 hours after the initial scan, and showed 
significant decrease in cross-stimulus adaptation (‘AC’ – ‘AB’) on day 2 compared to day 1 (Fig. 2B). 
Decomposing this effect here, the BOLD response to consecutive presentation of two un-associated stimuli 
(‘AC’) and to consecutive presentation of two associated stimuli (‘AB’) can be seen for both days (mean ± 
SEM). B Consistent with the relationship between GABA and cross-stimulus adaptation (‘AC’/‘AD’ – ‘AB’) 
shown in Fig. 3G, the change in GABA concentration before vs. during tDCS showed a correlational trend with 
the change in the BOLD response to consecutive presentation of two associated stimuli (‘AB’) from Day2 (D2) 
Block1 (B1) to Block2 (B2) (change in GABA vs. drop in ‘AB’: r17= -0.379, p=0.121). C Consistent with the 
relationship between GABA and cross-stimulus adaptation (‘AC’/‘AD’ – ‘AB’) shown in Fig. 3G, the change 
in GABA concentration before vs. during tDCS did not show correlation with the change in BOLD response to 
consecutive presentation of two un-associated stimuli (‘AC’/‘AD’) from Day2 (D2) Block1 (B1) to Block2 (B2) 
(change in GABA vs. drop in ‘AC’/‘AD’: r17= -0.032, p=0.898). D As shown in Fig. 3F, an anterior region of 
the lateral occipital complex showed significant interaction between the cross-stimulus adaptation effect 
measured across blocks and days, within the ROI defined from the mean tDCS electrode location (Fig. 3D). 
This interaction effect is observed here on a whole brain map, thresholded at P <0.01 uncorrected to aid 
visualisation. E As shown in Fig. 3F, an anterior region of the lateral occipital complex showed a significant 



 

increase in cross-stimulus adaptation following application of tDCS (day2, block2-block1), within the ROI 
defined from the mean tDCS electrode location (Fig. 3D). This increase in cross-stimulus adaptation is observed 
here on a whole brain map, thresholded at P <0.01 uncorrected to aid visualisation.  F To complement the 
analysis shown in Fig. 3F, the BOLD response to paired stimuli (‘AB’) in experiment 4 is shown here as a 
percentage proportion of the BOLD response to unpaired stimuli (‘AC’/‘AD’) (mean ± SEM).  As shown in Fig. 
3F, there was significantly greater adaptation in Block1-Day1 compared to Block1-Day2 (t20=1.46, p=0.040), a 
significant increase in adaptation from Block1-Day2 to Block2-Day2 following application of tDCS (t20=2.53, 
p=0.005), and a significant interaction in adaptation across blocks and days (t20=2.44, p=0.006). This shows that 
the significant change in cross-stimulus adaptation reported in Fig. 3F cannot be attributed to basic changes in 
cortical excitability. G This panel complements Fig. 3F by showing separate parameter estimates for the 
response to paired stimuli (‘AB’) and unpaired stimuli (‘AC’/‘AD’) for each block across both days in 
experiment 4 (mean ± SEM). These plots show that there was significant adaptation in Day1-Block1 (t20=1.79, 
p=0.044) and Day2-Block2 (t20=1.97, p=0.032), and a significant decrease in the BOLD response to paired 
stimuli from block1 to block2 on day2 (t20=1.96, p=0.032). This again suggests that cross-stimulus adaptation 
effects reported in Fig. 3F cannot be attributed to basic changes in cortical excitability. Notably, however, in 
this decomposition of the data differences in attention-dependent expectation suppression across blocks are not 
controlled for.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Supplemental Figure S3 
 

 
Figure S3 (related to Figures 3 and 4) | Relationships between cross-stimulus adaptation and the change 
in metabolite concentrations with tDCS, and between cross-stimulus adaptation and memory accuracy 
Panels A – G complement Fig. 3G, H – I complement Fig. 4B and J – K complement Fig. 4C. A The change 
in GABA concentration before vs. the average concentration during tDCS and post task showed near significant 
correlation with the change in cross-stimulus adaptation from Day2 Block 1 to Day2 Block 2 (with effects due 
to glutamate removed, r17=0.456, p=0.057). B The change in GABA concentration before vs. during tDCS 
showed near significant correlation with the interaction in cross-stimulus adaptation between Day2 and Day1 
(with effects due to glutamate removed, r15=0.430, p=0.096). C The change in GABA concentration before vs. 
the average concentration during tDCS and post task showed significant correlation with the interaction in cross-
stimulus adaptation between Day2 and Day1 (with effects due to glutamate removed, r15=0.588, p=0.017). D 
The change in glutamate concentration before vs. during tDCS did not show correlation with the change in 
cross-stimulus adaptation from Day2 Block 1 to Day2 Block 2 (with effects due to GABA removed, r17=-0.053, 
p=0.836). E The change in glutamate concentration before vs. during tDCS did not show correlation with the 
interaction in cross-stimulus adaptation between Day2 and Day1 (with effects due to GABA removed, r15=-
0.079, p=0.773). F The change in glutamate concentration before vs. the average concentration during tDCS 
and post task did not show correlation with the change in cross-stimulus adaptation from Day2 Block 1 to Day2 
Block 2 (with effects due to GABA removed, r17=-0.107, p=0.673). G The change in glutamate concentration 
before vs. the average concentration during tDCS and post task did not correlate with the interaction in cross-
stimulus adaptation between Day2 and Day1 (with effects due to GABA removed, r15=-0.279, p=0.296). H 
While we observed a positive relationship between memory accuracy and cross-stimulus adaptation in Fig. 4B, 
memory accuracy did not show a significant negative correlation with the BOLD response to consecutive 



 

presentation of two associated stimuli (‘AB’) during periods of EI imbalance (Day1 Block1 and Day2 Block2) 
(r20=-0.196, p=0.395). I Consistent with Fig. 4C, memory accuracy did not show correlation with the BOLD 
response to consecutive presentation of two associated stimuli (‘AB’) during periods of EI balance (Day1 
Block2 and Day2 Block1) (r20= -0.091, p=0.694). J Memory accuracy did not show a significant correlation 
with the BOLD response to consecutive presentation of two unrelated stimuli (‘AC’ / ‘AD’) during periods of 
EI imbalance (Day1 Block1 and Day2 Block2) (r20= -0.012, p=0.958). K Memory accuracy did not show a 
significant correlation with the BOLD response to consecutive presentation of two unrelated stimuli (‘AC’ / 
‘AD’) during periods of EI balance (Day1 Block2 and Day2 Block1) (r20= -0.083, p=0.720). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Supplemental Figure S4 

 

Figure S4 (related to Figure 6) | Additional network model data 
Each panel A – D provides additional information for the identically named panels of Fig. 6.  The first row 
shows, in solid lines, the same average firing rates of the excitatory neurons averaged over 5 trials as in the 
penultimate row of Fig. 6. Additionally, the dotted lines show the firing rates of the local inhibitory neurons. 
The second row shows the average firing rate over all excitatory and local inhibitory neurons for each assembly, 
and for the background neurons (bg) over the 1s duration of a stimulus trial. The third row shows the 
distributions of coefficient of variation (C.V.) of interspike intervals (I.S.I.) of all neurons in the red and green 
assemblies, as well as all non-assembly neurons, shown in red, green and black, respectively. The fourth row 
shows the distributions of strengths of local inhibitory synapses originating from local inhibitory neurons in the 
green assembly, and from non-assembly local inhibitory neurons, shown in green and grey respectively. The 
arrows note the average value of each distribution. A In the initial, balanced state, the upper left (red) cell 
assembly is activated by a targeted decrease of inhibitory activity in the assembly. B When excitatory 
connections between associated cell-assemblies were selectively enhanced, the activation of the same assembly 
co-activates the associated green cell-assembly. C After inhibitory plasticity balanced the surplus excitation, 
stimulation results in only brief co-activation of the associated green cell assembly before inhibitory activity 
silences the paired assembly. D Reducing the efficacy of all inhibitory synapses in the balanced network, 
restored co-activation of the associated cell assembly (green) in response to driving the red cell assembly.  

 

 

 

 



 

Supplemental Figure S5 

 



 

Figure S5 (related to Figure 6) | Performance comparison of the network with an alternative model 
using homeostatic scaling to rebalance the network.  
Each row A – C shows the average firing rates (upper panel) and coefficient of variation of interspike intervals 
(C.V.(I.S.I.), lower panels) of the complete simulation of all stages of the protocol Fig. 6A-D in 80 minutes, 
with accordingly adjusted learning rate η . Solid lines show the average firing rate / C.V.(I.S.I.) of the red and 
green cell assemblies over 2 seconds, and the activity / C.V.(I.S.I.) of all background neurons is plotted in black 
in the upper and lower panels respectively. Circles show the average firing rate / C.V.(I.S.I.) of red and green 
assembly neurons when they are stimulated (solid circles) or when the other assembly is stimulated (open 
circles), at 40s intervals. Open black circles show the firing rates / C.V.(I.S.I.) of un-stimulated background 
neurons during stimulations. The simulation begins with a naïve network without assembly structure, firing at 
5 Hz. At t = 7 mins, four cell assemblies are introduced by strengthening all excitatory weights within the 
assembly. At t = 23.5 minutes, ‘associative’ excitatory synapses between the red and green, and the blue and 
yellow (not shown) cell assemblies are introduced. At t = 74 minutes, all inhibitory synapses within the network 
are reduced in strength by 15%. A The effect of synaptic changes as described above on firing rate and 
C.V.(I.S.I.), without any compensatory mechanism. Network activity more destabilizes with each consecutive 
manipulation. B Firing rate and C.V.(I.S.I.) for the same protocol when inhibitory synaptic plasticity is active. 
Network activity is stable and assemblies can be individually activated after inhibitory synaptic plasticity 
reaches steady state. C Firing rate and C.V.(I.S.I.) for the same protocol when homeostatic, activity dependent 
plasticity of excitatory synapses is active. Network activity is stable, but associated assemblies can henceforth 
never individually activated again. 
 
 
 
 
 
 
 
 



 

Supplemental Figure S6 

Figure S6 (related to Figure 6) | Network response to different levels of simulated GABAergic reduction 
during recall of a cell assembly  
A Snapshots of all network neurons’ average activity during recall over 1 second, plotted on a 144x144 raster. 
Inhibitory synaptic efficacy was reduced by 5%, 15%, 50%, and 90% from left to right.  B The network was 
initially in the balanced state, as shown in Fig. 6C, before the efficacy of inhibitory connections was 
incrementally reduced from 0% to 100%. During this incremental reduction in inhibition, the average population 
activity over 20 x 500ms recall episodes of the red cell assembly was assessed. The average response of each 
cell assembly is shown separately (red, green, blue and yellow) along with the average response of the 
background assembly (black). Reliable co-activation of the associated cell assemblies (green co-activation in 
response to recall of red) can be observed when the percent reduction in efficacy of inhibitory connections falls 
within the approximate range 10%-40%. Further reduction (>~40%) causes spontaneous recall of un-associated 
memories (yellow and blue cell assemblies), before the entire network transitions into a chaotic state (>~60% 
reduction). Dashed lines indicate reduction levels in the 4 snapshots shown in A. C Average coefficient of 
variation of the inter spike intervals during the same recall episodes, grouped as in B. 
 
 

 

 

 

 

 

 



 

Supplemental Tables S1-S2: 

 Table S1 (related to Figures 1-3) | Measuring cortical associations in humans using cross-stimulus 
adaptation 
Experimental and analytical details for the five different experiments used to measure cortical associations via 
cross-stimulus adaptation. 

 

 

 

 

 
Table S2 (related to Figures 3 and 5) | MR Spectral quality table.  
Data averaged across participants to allow for comparison across the three MRS measurements. The table shows 
the following: Signal to noise ratio (SNR) ± standard deviation (SD), Full width at half maximum (FWHM) 
±SD, and Cramer Rao Lower Bounds (CRLB) ±SD for GABA and glutamate.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Supplemental Experimental Procedures 
 
MRS- LCModel metabolite quantification 
 
Metabolites were quantified using LCModel (for example spectra: Fig. S1A, S1B) (Provencher, 1993, 2001). 
The model spectra of alanine (Ala), aspartate (Asp), ascorbate/vitamin C (Asc), glycerophosphocholine (GPC), 
phosphocholine (PCho), creatine (Cr), phosphocreatine (PCr), GABA, glucose (Glc), glutamine (Gln), 
glutamate (Glu), glutathione (GSH), myo-inositol (myo-Ins), Lactate, N-acetylaspartate (NAA), N-
acetylaspartylglutamate (NAAG), phosphoethanolamine (PE), scyllo-inositol (scyllo-Ins) and taurine (Tau) 
were generated based on previously reported chemical shifts and coupling constants by VeSPA Project 
(Versatile Simulation, Pulses and Analysis) (Govindaraju et al., 2000; Soher et al., 2011; Tkac et al., 2008). 
 
The unsuppressed water signal acquired from the VOI was used to remove residual eddy current effects and to 
reconstruct the phased array spectra (Natt et al., 2005). Single scan spectra summed from 32 channels were 
corrected for frequency and phase variations induced by subject motion, and then summed.  LCModel analysis 
was performed on all spectra within the chemical shift range 0.5 to 4.2 ppm (Provencher, 1993). Reliable 
LCModel fits were achieved in 18 of the 21 participants and metabolite concentration obtained relative to the 
unsuppressed water spectrum acquired from the same VOI. The full width at half maximum (FWHM) and SNR 
determined by LCModel were not different across conditions (Table S2). Only metabolites quantified with 
Cramér–Rao lower bound (CRLB) ≤ 50% were included in the final neurochemical profile, which in this 
instance corresponded to all measured metabolites (Bednařík et al., 2015).  Given the consistency in SNR and 
FWHM across all conditions, higher CRLBs observed during tDCS stimulation (Table S2) can be attributed to 
the reduction in GABA signal in the voxel during tDCS stimulation (Emir et al., 2012).  
 
 
fMRI data analysis- ROI specification 
 
To assess cross-stimulus adaptation in experiments 1 and 2 (Fig. 1F, 1I, 1J, 2B), ROIs were defined using an 
orthogonal contrast to the contrast of interest (see Table S1). This orthogonal contrast was first thresholded to 
give clusters. We then searched across each hemisphere to find the voxel with the highest t-value. The cluster 
which contained this voxel was then selected as the ROI. For early visual responses (Fig. 1F, 2B), we found one 
cluster in each hemisphere, giving bilateral ROIs. For the LOC response (Fig. 1I) we only searched in the right 
hemisphere since subsequent application of tDCS could only be applied to one hemisphere (experiment 4) and 
LOC notably shows a right lateralized response to object matching (Large et al., 2007). To assess cross-stimulus 
adaptation in experiment 3 (lOFC in Fig. 1J), an independent ROI was taken from a previous publication (see 
Table S1) (Klein-Flügge et al., 2013). To assess cross-stimulus adaptation in experiment 4 (Fig. 3F), an unbiased 
ROI was defined from the peak location of the tDCS electrode, with the x-coordinate defined using the average 
of three peaks from pilot experiment 2 (Fig. 3D). In each case, a measure of cross-stimulus adaptation was 
obtained by comparing the parameter estimates for ‘unrelated’ and ‘associated’ conditions. 
 
In experiment 4, the relationship between cross-stimulus adaptation and the change in GABA concentration 
(Fig. 3G), and the relationship between cross-stimulus adaptation and memory performance (Fig. 4B, 4C), were 
assessed using individual specific ROIs, defined from the peak interaction effect (Fig. 3F). For each individual, 
a cluster was first selected by thresholding the interaction contrast at p<0.01 uncorrected and taking the cluster 
closest to the average tDCS electrode location (Fig. 3D). The peak voxel of this cluster was then selected for 
the ROI, and smoothed using a 5-mm full-width at half maximum Gaussian kernel to give a 4-voxel diameter 
sphere. Parameter estimates were then extracted from these individual-specific ROIs and used to perform 
correlations with memory performance (Fig. 4B and 4C), and partial correlations between changes in cross-
stimulus adaptation and GABA concentration following tDCS, with effects due to glutamate removed (Fig. 3G; 
see also Fig. S3A-C). Similarly, partial correlations between changes in cross-stimulus adaptation (or raw 
BOLD) and glutamate concentration following tDCS were calculated, after effects due to GABA were removed 
(Fig. S3D-G).  
 
To assess changes in the raw BOLD response (Fig. 5D, 5E) and avoid confounding the analysis with adaptation 
effects, parameter estimates were extracted from an ROI defined from the average BOLD response to pairs of 
unrelated stimuli (‘A’ followed by ‘C’ etc.) across all task blocks (Fig. 5C).  This ROI was defined in the same 
way as early visual ROIs used in experiment 1 and 2 above, by taking bilateral clusters which had the highest t-
value in each hemisphere of the thresholded orthogonal contrast. This ROI corresponded to the brain region that 
maximally responded to task stimuli in a functionally non-selective manner. Within this brain region, the raw 
BOLD response to pairs of unrelated, non-adapting, stimuli (‘A’ followed by ‘C’ etc.) was assessed before and 



 

after application of tDCS using a paired t test.  The relationship between this change in BOLD response and the 
change in metabolite concentration was considered using multiple regression. The change in concentration of 
GABA and glutamate were included as explanatory variables. A set of contrasts were used to assess the main 
effect of each metabolite and the interaction between metabolites.  
 
 
Network Modelling 
 
For the network modelling we combined two previous studies and followed their methods closely (Vogels and 
Abbott, 2009; Vogels et al., 2011). We used standard leaky integrate-and-fire (LIF) neurons that were 
characterized by a time constant, 20=τ  ms, and a resting membrane potential, =restV  -60 mV. Whenever the 
membrane voltage crossed a spiking threshold of -50 mV, an action potential was generated and the membrane 
voltage set back to the resting potential, where it remained clamped for a 5 ms refractory period. To set the scale 
for currents and conductances in the model, we used a membrane resistance of 100 MΩ (gleak = 10 nS). 
 
Synapses onto each neuron were modelled as conductances, so the sub-threshold membrane voltage obeyed  

  
 Reversal potentials were exE  = 0 mV and inhE  = -80 mV. The synaptic conductances  exg , inhg  were 

expressed in units of the resting membrane conductance. When the neuron received a presynaptic action 
potential, the appropriate postsynaptic variable was increased, exexex ggg Δ+→  for an excitatory spike, and 

local
inhinhinh ggg Δ+→  or global

inhinhinh ggg Δ+→  for inhibitory spikes from local or global inhibitory neurons, 

respectively. Otherwise, these parameters obey the equations  
  

 with synaptic time constants 

€ 

τ ex  = 5 ms and 

€ 

τ inh  = 10 ms. The conductance of each synapse was constructed 

such that ∆gij = gWij where g  is a constant (except where noted as postsynaptic factor gi  for simulations of 
Fig. S5C, see below). Wij could be plastic or fixed, depending on the identity of the synapse (see below). 

€ 

Ib  = 
300 pA corresponded to a constant background current used to maintain network activity. The integration time 
step for our simulations was 0.1 ms.  
 
Except for synapses within or between assemblies, all synapses from excitatory or global inhibitory neurons had 
the same strength. They were adjusted to allow asynchronous background activity within the network, i.e. the 
postsynaptic conductances were set such that with Wij =1, 8.0=exgΔ  nS. and 7.5=global

inhgΔ  nS, corresponded to 

0.5 mV EPSPs and  -1.1 mV IPSPs respectively, as obtained from spike triggered averages in the active network. 
Local inhibitory synapses were initially set to 1.5=local

inhgΔ  nS (-0.4 mV IPSPs), but their strength could be 

changed by the synaptic plasticity rule described below. Under these conditions the network was intitially 
sufficiently balanced to prevent instable network dynamics. 
 
Following Vogels et al. (2011), we implemented a synaptic plasticity rule that potentiated synapses upon 
coincident pre- and postsynaptic activity within a coincidence time window τSTDP. Additionally, sole presynaptic 
spikes led to a reduction of synaptic efficacy. For the sake of simplicity, and in accordance with the 
experimentally still ambiguous situation (Vogels et al., 2013), we utilized a symmetric spike-timing dependent 
learning rule between a presynaptic neuron j and a postsynaptic neuron i. Potentiation occurred as a function of 

f
j

f
i ttt −=Δ (in which 
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ti
f  and 

f
jt  denote the time of a pre- and postsynaptic spike respectively). Depression 

occurred for each presynaptic spike by a fixed amount α. This spike-timing dependent plasticity (STDP) rule 
was implemented for local inhibitory synapses projecting onto excitatory cells. In order to calculate the changes 
to each Wij, a synaptic memory trace xi was assigned to each neuron. xi increased with each spike xi → xi + 1 
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and otherwise decayed, following 
i

i
STDP x

dt
dx

−=τ  with time constant 
STDPτ  = 20 ms. The synaptic weight Wij 

from neuron j to neuron i was updated for every pre- or postsynaptic event such that: 
 
 Wij → Wij + η (xi − α) for presynaptic spikes at time 

€ 

t j
f  and  

 Wij → Wij + η xj for postsynaptic spikes at time 

€ 

ti
f   

 
where η is the learning rate, α = 2 × ρ0 × τSTDP the depression factor, and ρ0 a constant parameter with units 
1/time (Vogels et al., 2011). For the simulations shown here, we set η = 10−5 and α = 0.24 (ρ0 = 6 Hz). 
 
For a single set of simulations (Fig. S5C) we turned off inhibtory synaptic plasticity  (η = 0) and instead used a 
form of activity dependent (homeostatic) scaling to stabilize network activity scaling (Rossum et al., 2000). The 
mechanism adjusted all excitatory presynaptic weights of the same postsynaptic cell by changing the common 
factor gi , such that  

 
where κ =6 Hz is the desired postsynaptic activity, a is a slow-varying sensor that measures the average 
postsynaptic activity and β =10-3 is a constant that determines the effective speed of the scaling (Rossum et al., 
2000). For computational efficiency and network stability we updated the weights every 5 ms, and a could be 
integrated over as little as 5ms without general loss of stability.  
 
As in Vogels & Abbott (2009), the network we studied was composed of 20,164 LIF neurons, laid out on a 142 
x 142 grid. Neurons were either excitatory or inhibitory. The ratio of inhibitory neurons was roughly one in four, 
but the geometric organization of neurons on the grid constrained the final numbers to 15,123 excitatory cells 
and 5,041 inhibitory cells. Inhibitory neurons were divided into two groups of 3,361 and 1,680 neurons that 
differed in their connectivity pattern. All excitatory neurons and 65% of the inhibitory neurons had a random 
connectivity of 2% to the rest of the network . The 1,680 inhibitory neurons of the second group each targeted 
40% of their 500 closest neighbors and thus acted locally.  To avoid boundary effects, the network had the 
topology of a torus. Other network parameters were chosen in keeping with both general properties of cortical 
circuits and previous work (Rossum et al., 2002; Vogels and Abbott, 2005, 2009). 
  
In addition to the general architecture, we introduced specific patterns into the weight matrix by defining four 
groups of 22×23 = 506 neurons as Hebbian assemblies. We strengthened all existing excitatory connections 
between the neurons within each assembly by a factor of ten. For simplicity, only the local inhibitory to 
excitatory connections in the network were plastic. Further, we assumed that the structure of the connectivity 
matrix remained fixed after the network had been initialized. This restricted inhibitory plasticity operations to 
existing connections. Note however that the weight of an existing connection Wij could decay to zero.  
 
To simulate the display of a stimulus, the balance between the excitatory and the inhibitory signal was modified 
by decreasing the gain of the local inhibitory neurons within an assembly. In integrate-and-fire neurons such a 
gain change is equivalent to reducing the strength of all synapses onto inhibitory neurons by 75%. These values 
were chosen to allow for high firing rates in the presence of a stimulus. 
 
To characterize the global state of the network we monitored individual spike trains, the population firing rate 
(the average of firing rates across the network), and the population rate’s standard deviation σRate, as well as 
average membrane potentials, and interspike intervals (ISIs) (Vogels and Abbott, 2009). The irregular 
asynchronous network activity that is thought to mimic cortical dynamics has a roughly constant population 
firing rate with low spiking correlation values and coefficients of variation of the interspike intervals (ISI CVs) 
near 1. The ISI CV for a neuron is the ratio of the standard deviation of the ISI distribution and its mean. ISI 
CV values close to zero indicate regular spiking patterns, values near 1 indicate irregular spiking, and values 
larger than 1 indicate, in our simulations, ‘burstiness’ in the firing pattern. All simulations were programmed in 
C. 
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To produce the presented results we used the following protocol:  
 

1) We initialized the network with the above-described parameters and uniform synaptic weights, with 
the exception of neurons within the four pre-defined assemblies, which had ten-fold strengthened 
excitatory weights between neurons of the same assembly. Firing rates of both, background and 
assembly neurons were initially elevated. Inhibitory synaptic plasticity quickly established a target rate 
of 0ρ  = 6 Hz by increasing the inhibitory weights onto each neuron (Vogels et al., 2011). After the 
target rate was reached, ISP continued to adjust the weight-structure of inhibitory synapses until the 
best possible ‘detailed balance’ was reached and the network reached a state in which the spiking 
behaviour of the neurons became virtually indistinguishable from each other (Fig. 6E, Fig. S5B) 
(Hennequin et al., 2014; Vogels and Abbott, 2009).  

 
2) We could activate any assembly individually by decreasing the gain, i.e. in this case, the efficacy of all 

incoming synapses, of the local inhibitory neurons within the group (Fig. 6A) (Vogels and Abbott, 
2009). The decrease in inhibitory activity disturbed the EI balance of the chosen assembly in favour of 
excitation and inhibition and the assembly began to fire at high rates until the gain of the inhibitory cell 
population was set back to normal. We can do this either periodically as in Fig. S5 (every 40s) or 
intermittently, to avoid crosstalk between the (spike-dependent) plasticity rule and the high firing rates 
during stimulation. Such cross-talk had little effect on the phenomenon itself, but could lead to firing 
rates slightly lower than target rate 0ρ  as ISP would attempt to quench the periodically stimulated high 
firing rates. 

 
3) To simulate association between two representations, we strengthened the excitatory connections from 

one assembly to neurons of any type within the other assembly by five-fold. As a result, the firing rates 
of all involved neurons increased, but as before, ISP quenched the excess firing rates, and then 
continually re-adjusted the strengths of the relevant inhibitory synapses. When we stimulated an 
assembly via gain reduction of the appropriate inhibitory neurons as in step 2, before detailed balance 
was reached, the increased firing rates in one assembly supplied enough excitatory current to its paired 
neuron group that both assemblies fired at high rates (Fig. 6B, Fig. S5B, cf.Vogels et al., 2011). 
Additionally, there could be spontaneous self-sustained co-activation of unrelated assemblies in some 
of the trials because the net excitation initially far exceeded the inhibition, leading to transients in the 
blue and yellow curves in Fig. 6C.  After ISP had sufficiently strengthened disynaptic feed forward 
inhibition so to counteract the excess excitation (Fig. S4C), this co-activation was reduced to a brief 
activity transient before inhibitory firing silenced the response (Fig. 6C). 

 
We could re-evoke the response-coupling of two synaptically linked assemblies by subtly reducing the ambient 
tone of inhibitory activity, i.e. by reducing the efficacy of all inhibitory synapses in the network by 15%. This 
led to only moderate changes in baseline firing rates (Fig. S6). For targeted stimulation of one assembly, the 
change in inhibitory baseline efficacy produced co-activation of assembly patterns as before, because even 
moderately disadvantaged inhibition within the assemblies could not balance the additional excitatory activity 
it received from its paired neuron group (Fig. 6D, Fig. S4D, cf. Vogels and Abbott, 2007).       
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