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SUMMARY

The ability to group stimuli into perceptual categories
is essential for efficient interaction with the envi-
ronment. Discrete dynamics that emerge in brain
networks are believed to be the neuronal correlate
of category formation. Observations of such dy-
namics have recently been made; however, it is still
unresolved if they actually match perceptual cate-
gories. Using in vivo two-photon calcium imaging
in the auditory cortex of mice, we show that local
network activity evoked by sounds is constrained
to few response modes. Transitions between
response modes are characterized by an abrupt
switch, indicating attractor-like, discrete dynamics.
Moreover, we show that local cortical responses
quantitatively predict discrimination performance
and spontaneous categorization of sounds in
behaving mice. Our results therefore demonstrate
that local nonlinear dynamics in the auditory cortex
generate spontaneous sound categories which can
be selected for behavioral or perceptual decisions.

INTRODUCTION

Much of the work on the auditory cortex (AC) has been focused

on the analysis of single neuron receptive fields—testing the idea

that cortical neurons function as an array of linear filters that

decompose sounds in a similar way to the spectrograms used

for graphical sound representation. However, recent studies

have accumulated evidence that single neurons do not behave

as true linear filters (Christianson et al., 2008; David et al.,

2009; Machens et al., 2004). Specifically, measures of the linear

response characteristics of single neurons to sound (e.g., tuning

curve, spectrotemporal receptive field) show that neuronal

responses depend on the intensity, the sequence (Christianson

et al., 2011; Ulanovsky et al., 2004), and the context of the tested

sound (Eggermont, 2011; Nelken et al., 1999; Rabinowitz et al.,

2011) as well as on the state of the animal (Atiani et al., 2009).

Starting from the theoretical work of J. Hopfield on attractors

in recurrent neuronal networks (Hopfield, 1982), modeling

studies suggested that cortical-like network architectures are

prone to generate highly nonlinear population dynamics (Amit

and Brunel, 1997; Maass et al., 2007; Mongillo et al., 2008;

Wang, 2008). This highly nonlinear population dynamic could
explain the shortcomings of the linear filter model as recently

suggested in a model of the AC (Loebel et al., 2007). Importantly,

the all-or-none properties of nonlinear population dynamics

could serve as a basis for encoding the perceptual categories,

or objects, which are essential for efficient and robust interaction

with the environment (Miller et al., 2003; Russ et al., 2007; Seger

andMiller, 2010). This idea is supported by recent experiments in

the rat hippocampus and the zebrafish olfactory bulb reporting

abrupt transitions in the neuronal representation of continuously

changing olfactory stimuli or spatial environments (Niessing and

Friedrich, 2010; Wills et al., 2005). Nonetheless, it remains

unclear how far these discrete network dynamics actually reflect

perceptual categories since the experimental designs did not

involve any perceptual judgment of the stimuli. Here, we investi-

gated whether nonlinear representations of sounds exist in the

mouse auditory cortex at the network level and whether they

could form a basis for sound categorization, which has been

proposed to be a major function of the AC (Nelken et al., 2003;

Ohl et al., 2001; Russ et al., 2007).

RESULTS

Temporally Deconvolved Calcium Imaging
in the Mouse Auditory Cortex
To monitor network activity in the auditory cortex of the mouse

with single cell resolution, we used two-photon calcium imaging,

a technique which gives the possibility to simultaneously record

the activity of a large number of neurons in vivo (Garaschuk et al.,

2006). We injected isoflurane anaesthetized mice (1%) with the

calcium-sensitive dye Oregon Green Bapta 1 AM (OGB1) in the

region functionally identified as the AC using intrinsic imaging

recordings (Figures 1A and 1B; Kalatsky et al., 2005). Neurons

labeled with OGB1 were imaged using two-photon microscopy

in single focal planes at a depth of �150–300 mm below the pia

in cortical layers II/III (Figure 1C). The typical field of view was

a 200 mm square, in which calcium signals from 46–99 individual

neurons were recorded using line scans (Figures 1C and 1D). To

estimate the neuronal firing rate based on OGB1 fluorescence

measurements, we performed loose-patch recordings of indi-

vidual OGB1 loaded neurons in vivo. The electrically recorded

neuron was simultaneously imaged together with its neighbors

using our typical line scan settings (Figures 1E and 1F). Consis-

tently with a previous report (Yaksi and Friedrich, 2006), we

observe that the temporal deconvolution of the raw calcium

signals using an exponential kernel matched the time course of

the neuron’s instantaneous firing rate (Figures 1G–1H, and see

Figure S1 available online). An estimate of the absolute firing
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Figure 1. Temporally Deconvolved Calcium Imaging in the Mouse Auditory Cortex

(A) Image of the brain surface with vessel pattern. Red box corresponds to white boxes in (B) and indicates area shown in (C) imaged using two-photon

microscopy.

(B) Intrinsic imaging responses to white noise and 3 pure tones. The white squares indicate the location and extent of a calcium recording. A: anterior; P: posterior;

V: ventral; D: dorsal.

(C) Image of OGB1 stained neurons at the location shown in (A). The line scan path is superimposed.

(D) Typical calcium signals from all 63 neurons shown in (C).

(E) Two-photon microscopy image of layer 2/3 neurons stained with OGB1 (green). One neuron is loosed-patched with an electrode filled with Sulforhodamine

(red).

(F) Example of simultaneous extracellular recording (black trace) and calcium imaging (blue trace) for the cell shown in (E).

(G) Accuracy of temporal deconvolution in the neuron shown in (E). The recorded neuron was extracellularly driven by large current ejections. (Blue lines)

Raw calcium signal. (Vertical bars) Time points of electrically recorded spikes. (Gray line) Time course of ejected currents. (Black line) Instantaneous firing rate of

the neuron filtered by a Gaussian kernel (s = 100 ms). (Red line) Deconvolved calcium signal filtered by the same Gaussian kernel.

(H) (Top) Example of a different neuron simultaneously imaged and loose-cell patched during a single presentation of an 8 kHz tone. (Bottom) Raster plot for

10 repetitions of the 8 kHz tone for the same neuron. The red and black curves corresponds to the averaged firing rate and deconvolved calcium signal filtered

by a Gaussian kernel (s = 100 ms).

(I) Firing rate estimate for each recorded neuron derived from the traces shown in (D) after temporal deconvolution. Sound stimuli presented at 1 s intervals

are indicated by black vertical bars.

See also Figure S1.
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rate amplitude was obtained by linearly scaling the deconvolved

signal to fit the actual firing rate. The average scaling factor

corresponding to the change in fluorescence elicited by a single

action potential across all recordings was 1.80% ± 0.44%

(mean ± SD, n = 5).

Sounds Evoke Stochastic Local Responses
in the Auditory Cortex
Typical spontaneous and sound evoked AC activity was domi-

nated by short population events in which a large fraction of

neurons fired synchronously (Figure 1I). This observation is in

agreement with previous reports based on multisite or intracel-

lular current recordings (DeWeese and Zador, 2006; Luczak

et al., 2009; Sakata and Harris, 2009). Additionally, it is consis-

tent with the high noise correlations between neurons observed

in previous calcium imaging studies (Bandyopadhyay et al.,

2010; Rothschild et al., 2010). To evaluate qualitatively how

different sounds might generate different types of local popu-

lation events, we plotted single trial response vectors (�15–20
436 Neuron 76, 435–449, October 18, 2012 ª2012 Elsevier Inc.
trials per sound) obtained by averaging the activity for each

neuron in a 250 ms time window following sound onset. An

example of such plots for four distinct short pure tones (50 ms)

at different sound levels is shown in Figure 2A. We observed

that all studied populations had local response vectors that

were highly variable from one trial to the other for a given sound.

This variability was due to large trial-to-trial variations in the

response of most individual neurons (Bartho et al., 2009;

Hromádka et al., 2008). Despite the variability, we were able to

observe that sound intensity and identity modulated the proba-

bility of observing a population event. Tuning to pure tones

could be seen at both the single neuron (Figures 2B–2D) and at

the population level (Figure 2A). However, prediction of the

population firing rate in response to complex sounds by a linear

model based on the observed pure tone tuning was poor (Fig-

ure S2). Therefore, local populations encode sounds in a

nonlinear fashion, as was reported for single neurons (Machens

et al., 2004). This implies that pure tone tuning alone is not

sufficient to describe sound representation in the auditory
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Figure 2. Tuning of Local Population Responses to Pure Tones

(A) Color plot of 10 single trial population responses to pure tone pips of various frequencies indicated above graph. Responses are sorted by increasing mean

population firing rate as plotted below. The color code indicates the mean firing rate of a neuron during a 250 ms time bin that starts with sound onset. In this

population similar response patterns are evoked by different pure tones of various frequencies and intensities, i.e., the activity profile across the population is

largely preserved in trials when a population response is observed.

(B and C) Examples of single cell tuning curves obtained at 2 different sound intensities for 5 different cells of the population shown in (A). Note that the vertical

scale is different in (B) and (C). Error bars: SEM.

(D) Example of a frequency response area plot of a single neuron taken from a different recording and showing the typical V-shaped frequency response areas of

AC neurons.

See also Figure S2.
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cortex. We therefore decided to use a more general framework

to investigate the coding properties of local response patterns

in single trials (Bathellier et al., 2008). In most local populations,

we made the striking observation that despite the high variability

of response patterns, the most reliable part of the pattern

seemed to be common to very different sounds such as the

different pure tones shown in Figure 2A. This suggested to us

that sound evoked responses in local auditory cortex networks

are constrained to a limited repertoire of functional patterns

superposed on high trial-to-trial stochasticity.

Local Network Responses Are Constrained
to Few Response Modes
To obtain a quantitative account of the limited repertoire of func-

tional patterns in the face of large variability, we systematically

quantified the similarity of local response patterns elicited by
large arrays of short (50–70ms) pure tones and complex sounds.

To do so, we used a similarity metric designed to obtain an

intuitive readout of single trial response separability. In short,

the similarity between two sound-evoked responses was

defined as the average of all pairwise correlations between the

single trial response patterns of the two sounds (see matrices

of single trial correlations, Figure 3A). This similarity metric was

compared to a response reliability metric, whichwas the average

of all pairwise correlations between all the single trial response

patterns of one given sound. This reliability metric gave us

a quantitative readout of the trial-to-trial variability in response

to a given sound. Using these two metrics, the idea is that if

the response patterns to two sounds have a lower similarity

than their respective reliabilities, they will likely be discriminable

on a single trial basis by an external observer. If not, the patterns

can be thought to be the same. Pairwise response similarities
Neuron 76, 435–449, October 18, 2012 ª2012 Elsevier Inc. 437
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Figure 3. Clustering of Local Population Responses Reveals a Low Number of Response Modes

(A) Construction of a similarity matrix based on the average of the correlation coefficients of all single trial combinations followed by hierarchical clustering from

population responses in a local population evoked by three different sounds.

(B) Clustered similarity matrix for responses to 73 sounds recorded from a local population. Average population firing rates in response to each sound are shown

at the bottom. Examples of the corresponding spectrogram and the spatial response pattern are shown for four sounds.

(C) Same as (B) for a population (same as shown in A) displaying two distinct response modes.

(D) Typical OGB1 calcium signals from 57 simultaneously recorded neurons in an awake passively listening animal.
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were displayed in color-coded matrix plots after ordering the

soundswith a hierarchical clustering algorithm to reveal potential

underlying structures in the space of response patterns (Figures

3B and 3C).

In line with the qualitative observations of high stochasticity

(see Figure 2A), we observed that response pattern reliability

was generally low. The largest response reliability observed in

a population was ranging from 0.62 to 0.02 in unresponsive

populations (average: 0.29 ± 0.14 SD, n = 124 local populations,

see also Figures 3B and 3C). Despite this high variability, the

observed reliability levels were clearly higher than for random-

ized data sets (Figure S3) demonstrating that specific activity

patterns in local populations were indeed present. In a given

population, the reliability values formed a continuum between

sounds evoking a rather strong response and sounds evoking

no response reflecting variations in response probability qualita-

tively observed in Figure 2A.

When we considered the similarity of responses elicited by

different sounds, we observed in the majority of local popula-

tions that all reliable responses were highly similar to each other,

as indicated by similarity values of the same level as the reliability

values (e.g., Figure 3B). In these cases, only a single cluster of

sound responses was apparent in the similarity matrix, suggest-

ing that a single type of functional response pattern, or response

mode, could be generated in these populations. Interestingly,

we also found local populations in which two (Figure 3C) or

three clusters of sound responses could be visually identified,

indicated by similarity values across the clusters that were

much lower than the reliability and intra-cluster similarity values.

We wondered if the presence of only few response patterns

may be due the network state induced by the anesthetic. To

address this issue we performed a series of experiments in

awake, passively listening mice (see Experimental Procedures).

We observed that brief sounds evoked population responses

in a burst-like manner (Figures 3D and 3E). When constructing

clustered similarity matrixes from the response vectors, we

observed only a few response modes, similar to the anaesthe-

tized mice (Figures 3F and 3G).

To quantitatively assess the number of sound clusters that

could be generated, we developed a statistical test that evalu-

ates the probability that the N first major clusters could arise

from the randomness of single trial response patterns and the

low number of individual sound repetitions rather than reflecting

true sound clusters (see Figure S3 and Supplemental Experi-

mental Procedures for details on the implementation). With this

test, we could evaluate the maximum number of clusters which

gave a statistically significant explanation of the distribution of

sound response patterns in a given population. This test was

run for 67 populations in which at least two sounds generated

response patterns with a reliability level above 0.2. In 74.6% of

these populations, the data was best explained by a single
(E) Firing rate estimate for each recorded neuron derived from the traces shown i

indicated by black vertical bars.

(F) Clustered similarity matrix for responses to 34 different short sounds recor

population firing rates in response to each sound are shown at the bottom.

(G) Same as (F) for another population displaying two distinct response modes.

See also Figure S3.
response mode, while two or three response modes were de-

tected in 20.9% and 4.5% of the respective populations (Figures

4A and 4B). The same analysis performed on the data from

awake, passively listening mice revealed a similar distribution

(Figure 4C). This analysis demonstrated that, despite the large

number of theoretical response modes that groups of several

tens of neurons could generate, local auditory cortex popula-

tions generate only a small repertoire of functionally distinct

response modes. Interestingly, a similar result was obtained

when two second long sounds were presented (Figure S4).

We then sought to determine the spatial organization of the

neurons that underlie distinct response modes. We calculated

the mean firing rate of neurons in response to the groups of

sounds associated to the different modes, which were identified

in the above analysis. Interestingly, pairs of response modes

observed in a given population corresponded to the firing of

partially overlapping subgroups of neurons (Figures 4A and

4D). To assess the similarity of tuning of neurons associated to

the same or different subgroups, we computed their signal

correlations. We found that members of the same subgroup

had significantly higher signal correlations than neuron pairs

across groups (samemode: 0.76 ± 0.07, n = 37; different modes:

0.53 ± 0.11, n = 23 modes, Wilcoxon test p = 23 10�4). Further-

more, the centroids of the neuronal subgroups corresponding to

two distinct response modes were significantly more distant to

each other than when the neurons of the local population are

spatially randomized (Figure 4E). This indicated an organization

of the modes into different spatial domains, which was also visu-

ally evident inmany examples (Figures 4A and 3C). This observa-

tion is consistent with previous estimations of the spatial layout

of neurons suggesting a patchy organization of neuronal

subgroups in the cortex (Rothschild et al., 2010).

Nonlinear Transitions between Local Response Modes
The low number of observed response modes suggests that

local activity patterns form discrete representations of sounds.

A prediction from this scenario would be that for a continuous

transition between two stimuli exciting two modes an abrupt

change in response patterns would be observed because the

population could generate no intermediate response pattern.

Alternatively, the low number of response modes could merely

reflect biases or gaps in the set of tested sounds. To determine

if abrupt changes in response patterns could be observed, we

first identified local populations in anaesthetized mice showing

at least two response modes using a broad set of different

sounds (Figure 5A). We selected two basis sounds that were

falling in either response mode and constructed linear mixtures

from them. Next, we retested the same population with the

new set of stimuli to map the transition acrossmodes with higher

resolution. When the mixture ratio was varied continuously, we

observed abrupt transitions in the population activity patterns
n (D) after temporal deconvolution. Sound stimuli presented at 1 s intervals are

ded from a local population in an awake passively listening animal. Average

Neuron 76, 435–449, October 18, 2012 ª2012 Elsevier Inc. 439
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Figure 4. Spatial Distribution of Neurons in Different Response Modes

(A) Examples from five populations (Pop.1, ..., Pop.5) with two to three modes are shown. In these plots, the firing rate is color coded and displayed at the actual

2D location of each neuron to represent the spatial activity pattern. For each neuron, the mean firing rate is computed between 0 and 250 ms after sound onset

and averaged across all trials of the sounds falling into a specific mode.

(B) Distribution of the number of detected response modes in all analyzed local populations from anaesthetized mice. Numbers above bars: # of populations.

(C) Same analysis as in (B) performed on data obtained from awake passively listening mice (n = 5).

(D) Cumulative probability plot of the fraction ofmode-specific neurons for all pairs of simultaneously recorded responsemodes (red line). Amode-specific neuron

is defined as having significantly different activity levels in each of the modes (p < 0.01: Wilcoxon test, comparing the two pooled groups of responses to sounds

belonging to each mode). The black line gives the result of the same analysis for populations in which single trials are randomly assigned to a mode (shuffled

response).

(E) Cumulative probability distribution of distances between the ‘‘centers of mass’’ of all pairs of response modes observed in the same population (red curve). If

the spatial positions of the neurons are shuffled to build more evenly distributed patterns smaller distances are observed (solid black line).

See also Figure S4.
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that are visible in both the raw activity plots and the similarity

matrices (Figures 5B, 5C, and S5). In addition to the abrupt

switch in the structure of the activity patterns, we often observed

a decrease in the reliability of one of the response mode close to

the actual transition (Figures 5B and 5C). It is noteworthy, that

this decrease in reliability can give the impression of a smooth

mode transition without a change of the underlying pattern as

such. Importantly, in none of the experiments we observed the

emergence of a new activity pattern after retesting with a new

stimulus set, corroborating the finding of a strong constraint on

response modes that are allowed in the network.

To further verify the abrupt change in response pattern we

wanted to more carefully assess whether at any point in the

linear mixtures both modes might be simultaneously present.

Toward this end, we performed the following analysis: we

computed the optimal linear decomposition R
!

=
P2

i = 1aim
!

i + r!
over the template patterns m!1 and m!2 of the two modes for

each single trial response pattern R
!

of the sound mixtures.

The templates were computed as the average response pattern

to each of the two basis sounds, excluding responses to the

mixtures. The decomposition was obtained using a standard

least square linear fitting algorithm (Moore-Penrose pseudoin-

verse method) minimizing the norm of the residual pattern r!.

In this framework, the coefficients a1 and a2 represent the

strength of the contribution of each mode in a given single trial

response pattern. When we plotted a1 against a2 for every single
440 Neuron 76, 435–449, October 18, 2012 ª2012 Elsevier Inc.
trial response pattern of a given local population (Figure 5D) or for

all local populations tested (n = 9; Figure 5E), it became clearly

apparent that the twomodes did not coexist along the transition.

This was indicated by the fact that we did not observe high coef-

ficients for both modes in the very large majority of response

patterns. We also observed that the average coefficients a1

and a2 were never both much larger than zero for any given

sound mixture (Figures 5D–5F). Instead, a clear transition was

observed at a certain mixture ratio where the value of at least

one of the two coefficients dropped abruptly while the other

increased (Figure 5F). To quantify the abruptness of the transition

the values of a1 and a2 for different mixture ratios where fitted

with a sigmoidal function from which we derived the slope at

the transition. In all populations tested with linear mixtures of

sounds, we observed highly nonlinear transitions, indicated by

a maximum slope much larger than 1 for at least one of the

modes (n = 9; Figure 5G). When fitting slopes to the average

coefficients, it should be kept in mind that a possible modulation

of the reliability to elicit a given response patterns with changing

mixture ratios can lead to a smoothing of the curve despite the

fact that the switch in the structure of the pattern as such is

abrupt.

An abrupt switch in response patterns could result from a fast

loss of efficiency to evoke the response pattern by the respective

component of the mixture. Alternatively, the switch could result

from a competition of the two response patterns. In the first
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(A) Example of a clustered similarity matrix of a population showing two distinct response modes (Ex.1).

(B) Similarity matrix of the same population re-tested with progressive linear mixtures of the two sounds indicated in (A).

(C) Single trial population responses corresponding to the matrices shown in (B) and (C).

(D) Plot of single trial coefficients of the two-mode decomposition for Ex. 1.

(E) Density plot of the single trial coefficients of the two-mode decomposition for the transitions observed in 9 different populations. The color code represents the

occurrence probability of a certain combination of the coefficients a1 and a2 over all observed transitions. The graph shows that when one mode is strong (high a)

the other is suppressed (low a).

(F) Average coefficients of the two-mode decomposition for each mixture along the transition shown in (B). Gray line indicates sigmoidal fit to the data.

(G) Maximal slope of sigmoidal fits (see F) corresponding to the two modes for nine local populations tested. All populations show nonlinear transitions of

responses as indicated by slopes much higher than 1.

(H) Single-trial population responses and similarity matrices for different mixtures of two sounds which excited two distinct modes (middle). For this example,

the individual components of the mixture were also played independently. The corresponding responses and similarity matrices are shown above and below

those of the mixtures. Note that the top-left and middle-left responses as well as the bottom-right and middle-right responses are the same (i.e., sound 1 or 2

played alone).

See also Figure S5.
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scenario, the efficacy to elicit a response pattern would be

independent of the presence of the second component, whereas

in the second scenario the switch would be defined by the

specific ratio of the two components making up the mixture.

To test this hypothesis, we again identified local populations

generating two response modes (n = 5, in 2 mice) and selected

two basis sounds exciting each of the modes. We synthesized

mixtures of the two basis sounds with seven equally spaced

mixture ratios and the individual mixture components in isolation

(i.e., one of the basis sounds faded to silence). We compared

the patterns of response to the isolated components and to
the mixtures and computed the corresponding clustered simi-

larity matrices (Figures 5H and S5). The sound level at which

the transition occurred depended on the specific sound and

the local population. Importantly, in all cases we found sound

levels where both components of the mixture in isolation elicited

a reliable response. However, when both components are pre-

sented at the same time one of the two response modes

appeared to be dominant and only one of the patterns was

excited (Figure 5H). Hence, instead of an additive response,

the local network falls in a highly nonlinear manner in either

one of the two response modes. This indicates that the choice
Neuron 76, 435–449, October 18, 2012 ª2012 Elsevier Inc. 441
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(A) Average intrinsic signal response to white noise across 12 mice after realignment of the response maps according to the center of A1 tonotopic gradient (see

Supplemental Experimental Procedures). The white squares indicate all recording locations in these 12 mice, showing a dense coverage of the primary auditory

fields (A1 and AAF). Black dots indicate recording sites from local populations displaying more than one response mode. The black line sketches approximate

boundaries between A1 (top left), AAF (top right), and A2 (bottom).

(B) Spectrograms of the sounds ordered according to the similarity of the global population vector (see D). S1, S2, and S3 are the complex sounds used in the

discrimination behavior (see Figure 7).

(C) Examples of similarity matrices for the set of sounds shown in (B) from nine different local populations are shown. On the top row, the order of the sounds in the

matrix is constant and corresponds to the order of spectrograms shown in (B). On the bottom row, the same matrices are shown, however, the sounds are

arranged according to the output of the hierarchical clustering algorithm to show the number of response modes.

(D) Clustered similarity matrix for the same 15 sounds but constructedwith the concatenated population vectors of 74 local populations recorded in 14mice (total

of 4,734 neurons). The order of the sounds in this matrix, which results from the clustering of global cortical responses, is as shown in (B). This implies that the

sounds which are next to each other in (B) should be similarly perceived according to our global read-out of auditory cortex activity.

(E) Fraction of tested sound pairs (1,770 pairs from 60 sounds) that can be discriminated based on linear classification (SVM) of single-trial response vectors from

single local populations with more than 90% success rate (n = 74, white). Same analysis is performed with concatenated full response vectors of the pooled 74

local populations (black), or with the concatenated mode decompositions of the pooled local populations (gray). Mode decomposition gives similar performance

despite strongly reduced dimensionality.

See also Figure S6.
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of onemode or the other is a winner-take-all decision, whichmay

result from competitive interactions between neuronal

populations.

Efficient Sound Encoding with Discrete
Representations
Our observations show that local populations of the auditory

cortex are constrained to few response modes which encode

a small number of sound categories enclosing several sounds.

This implies that local populations are highly limited in their

capacity to discriminate a large number of sounds. Yet at the

level of the organism, sound discrimination does not show

such constraints. How this apparent paradox could be resolved

became evident when we probed various local populations

within and across mice in several primary auditory fields (Fig-

ure 6A). In each case, the different local populations categorized

different sets of sounds, suggesting that different local popula-

tions provide complementary information to unambiguously

encode a large number of sounds. To quantitatively assess this

observation, we plotted response similarity matrices for a selec-

tion of 15 clearly distinct sounds (excluding mixtures and
442 Neuron 76, 435–449, October 18, 2012 ª2012 Elsevier Inc.
different sound levels; Figure 6B), in which the sound order is

fixed (i.e., no clustering was performed; Figure 6C, top). In these

plots, the sounds giving rise to a reliable response or being

grouped in different modes differ from one population to the

next. Thus, different populations are discriminating different

sets of sounds. When we built the same similarity matrix for

a global AC population using concatenated single-trial popula-

tion vectors from 74 local populations recorded in 14 anaesthe-

tized mice (total of 4,734 neurons), most of the 15 selected

sounds have a higher reliability (diagonal) than their similarity to

other sounds (Figure 6D). This indicates that each of the indi-

vidual sounds can be better discriminated by the global popula-

tion combining information from multiple local populations.

To precisely quantify general sound discrimination efficiency

by local and global populations, we computed the fraction of

all possible sound pairs (1,770 pairs from a set of 60 sounds

including mixtures and different sound levels) that could be

correctly distinguished by a linear support vector machine

(SVM) classifier on the basis of single trial population vectors

(Shawe-Taylor and Cristianini, 2000). Only 5.7% ± 6.7%

(mean ± SD) of sound pairs could be discriminated with greater
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than 90% success rate within local populations (Figure 6E).

However, up to 87.3% of the sound pairs could be discriminated

by the combined activity of our representative sample of AC local

populations (74 local populations, total of 4,734 neurons; Fig-

ure 6E). Thus, the lack of discrimination at the level of local pop-

ulations can be overcome by the complementary information

provided by the combined activity of the AC. Interestingly,

almost identical discrimination efficiency (86.2%; Figure 6E)

could be achieved if the dimension of each local population

vector R
!

was reduced to the number of detected and statisti-

cally validated response modes n (1 to 3). This drastic dimen-

sionality reduction was achieved by computing the optimal

linear decomposition of R
!

over mode templates m
!

i (1 to 3) built

as the average of all single-trial population vectors belonging to

a given mode as presented above. Note that this method was

superior to more standard dimensionality reduction methods

such as principal component analysis (Figure S6). This analysis

proves that a functional description of the global population

activity based solely on the local response modes is sufficient

to form a complete representation without loss of information

about sounds.

Discrete Representations Predict Behavioral
Categorization of Sounds
To what extent do the strongly stochastic and locally discrete

representations of sounds in AC actually reflect auditory percep-

tion and categorization in the mouse? To answer this question,

we tested whether a set of our recordings covering a representa-

tive portion of the AC (74 populations, 4,734 neurons in 14 mice,

same data set as above) would allows us to quantitatively predict

perceptual categorization behavior in mice. We trained mice in

a go/no-go task to discriminate a positively reinforced target

sound and a negatively reinforced target sound (Figure 7A). We

chose three sounds and trained groups of mice to discriminate

one of all three pairwise combinations between them. The target

sounds included two sounds that our imaging results had shown

to elicit more similar patterns and a third sound that elicited

a more different pattern. If our imaging results are predictive of

behavior, we would expect that the learning rate to discriminate

similar patterns is lower that to discriminate more dissimilar

patterns. Indeed, in the go/no-go task we observed that the

sound pair that elicited the most similar global cortical activity

patterns was discriminated with much lower learning rates

than the other two pairs. This indicated a correlation between

recorded cortical representations and sound discrimination

difficulty (Figure 7B), similar to previous reports (Bizley et al.,

2010; Engineer et al., 2008).

We observed that mice trained to discriminate a pair of rein-

forced target sounds would spontaneously react in a consistent

manner to other nonreinforced off-target sounds that were

presented with a low probability in catch trials. The average

response rate to a given off-target sound serves as a report of

categorization with respect to the target sounds. This allowed

us to obtain a more detailed analysis of the perceived similarity

of a broad range of off-target sounds. We observed nonlinear

categorization behavior in response to linear mixtures of the

two target sounds as indicated by similar response probabilities

for a subset of mixtures (Figure 7C). Prediction of spontaneous
classification behavior was achieved by a linear support vector

machine (SVM) classifier (Shawe-Taylor and Cristianini, 2000)

trained to optimally discriminate the single-trial response vectors

elicited by the reinforced sounds and tested with vectors elicited

by nonreinforced sounds. We observed a good match of the

prediction based on global AC activity patterns and behavioral

categorization (Figures 7C and 7D; see full results in Figure S7).

This match was better than that obtained for alternative descrip-

tions of local population activity using either different time bins

for evaluating neuronal firing rates or sequences of time bins to

capture some of the information contained in the time course

of the response (Figure S7). Interestingly, the best prediction

quality was also achieved with the dimensionally reduced

description of local activity patterns by mode decomposition

(Figure 7E). This demonstrates that the ensemble of local

response modes forms a representation that reflects perceived

similarity of sounds. In particular, also the nonlinear features of

spontaneous categorization behavior were captured.

Discrimination and Categorization of Sounds
by Individual Local Populations
We have shown that the nonlinear dynamics of individual local

populations spontaneously builds distinct categories of sounds.

These sound categories correspond to groups of sounds that

excite each of the possible response modes. Also the group of

sounds that are unable to elicit a response in a given population

can be considered as a category. Could a single local population

forming the appropriate categories to distinguish a pair of target

sounds be directly used to solve a given discrimination task and

would it predict the spontaneous categorization of off-target

sounds? To answer this question, we computed for individual

local populations the discrimination performance to individual

target sound pairs and respective off-target sound categoriza-

tion. Most populations yielded poor discrimination and poor

predictions of sound categorizations (Figures 8A and 8B).

However, we observed a few local populations that yielded reli-

able predictions of categorization behavior for specific target

sound pairs comparable to those obtained from the global

population vectors (Figure 8A). There were at least 2 to 4 local

populations for each target sound pair for which the prediction

error was significantly lower than chance levels. The predictive

quality of off-target sound categorization by single local popula-

tions was correlated with the performance that population in

discriminating that target sound pair (Figure 8B). This indicates

that neural populations which give the most reliable information

to solve the discrimination task readily reflect in their dynamics

the behaviorally observed sound categorization (Figure 8C).

Therefore, it is conceivable that the sound categories imple-

mented by discrete local response modes form a basis of

available perceptual decisions which are selected by learning

depending on the behavioral demand.

DISCUSSION

In summary, our findings reveal a coding strategy in the AC in

which sound information is distributed globally to counterbal-

ance the limited and stochastic coding observed locally. Our

full data set is consistent with classical tonotopic maps;
Neuron 76, 435–449, October 18, 2012 ª2012 Elsevier Inc. 443
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(A) Schematic of the go/no-go sound discrimination paradigm.

(B) Learning curves (fraction correct trials calculated in blocks of 100 trials) for the 3 pairs of sounds tested for discrimination (n = 12 mice per sound pair, mean ±

SEM). The inset shows the similarity matrix (Pearson correlation coefficient) between averaged global population vectors measured for the three target sounds

(4,734 neurons, 74 populations, 14 mice). This matrix shows that according to global cortical responses sounds S2 and S3 are expected to be perceived more

similar to each other than to sound S1. This observation correlates with the fact that discrimination of S2 and S3 requires a much longer learning than

discrimination between S1 and S2 or S1 and S3.

(C) Spontaneous sound categorization for 26 off-target sounds in a group of mice trained to discriminate sound stimuli S1 and S2 (black line, average ± SD, n = 12

mice). The spectrograms of the sounds are shown at the bottom of the graph. (Duration: Pure tones, 50ms; complex sounds, 70ms; Frequency range: 1–100 kHz,

logarithmic scale.) The colored lines indicate average behavior in the balanced subgroups with switched contingencies (blue: S1 = S+, S2 = S�, n = 6; green: S1 =

S�, S2 = S+, n = 6). Red dots correspond to predictions of a linear SVM classifier trained to discriminate concatenated full response vectors of the pooled 74 local

populations evoked by S1 and S2 and tested with vectors evoked by off-target sounds (same data set as in Figure 2). Gray dots correspond to analogous

predictions of a linear SVM classifier based on concatenated response vectors whose dimensionality had been reduced by mode decomposition (see text).

(D) Behavioral sound categorization versus SVM classifier prediction for the three target sound pairs and all off-target sounds tested. The black line is the identity

line. r: Pearson correlation coefficient.

(E) Average absolute prediction error of the linear SVM classifier for single-trial population vectors from single local populations (white), or concatenated full

response vectors of the pooled 74 local populations (black), or with the concatenated mode decompositions of the pooled local populations (gray). Again, mode

decomposition gives similar performance despite strongly reduced dimensionality. The behavioral replicate (red line) is measured as the mean absolute

discrepancy between measurements made on two balanced groups of 6 mice. Error bars: SD.

See also Figure S7.
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however, the discreteness of local network response patterns

was unexpected, since it was widely assumed that AC neurons

build a continuum of receptive fields even at local scales. Our

observations provide direct evidence that the auditory cortex

network is constituted of partially overlapping subnetworks in

which individual neurons play redundant roles as recently
444 Neuron 76, 435–449, October 18, 2012 ª2012 Elsevier Inc.
proposed in an earlier study to explain the spatial distribution

of pairwise correlations (Rothschild et al., 2010). This has the

important implication that the smooth shape of trial-averaged

single cell tuning curves largely reflects variations in the proba-

bility to elicit the same, stereotyped stochastic network pattern.

Our recordings were performed in a 200 3 200 mm field of view.
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(A) Mean error in the prediction of off-target sound categorization behavior for each of the 74 individual local populations (crosses) and for the global population

(arrows). Each of the three target sound pairs trained for discrimination are tested independently (red, black, blue). Populations are ordered according to themean

prediction error for each target sound pair. The inset shows the same plots but with the same population order for the three target sound pairs. Significance values

were derived from the distribution of prediction errors obtained after 10,000 randomizations of the off-target sound labels in the behavioral data. 1% level

indicated by the dashed line; 5% significance level divided by the Bonferroni correction for multiple testing indicated by the dotted line.

(B) Mean error in the prediction of off-target sound categorization behavior plotted against target discrimination performance for individual local AC populations

and sound pair discriminations. Low prediction errors correlate with high discrimination performance (correlation coefficient: r = �0.44, p-value, p = 2.10�12,

Student’s t distribution transformation method).

(C) (Left) Prediction of the categorization of linearmixtures of the target sounds by the local population discriminating best the targets (different local population for

each target pair). Error bars: SD. (Right) Clustered similarity matrix for the population responses to the sound mixtures in the local population shown on the left.
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The fact that almost 80% of them showed a single response

mode could indicate that the typical spatial extent of the sub-

networks corresponding to a response mode is significantly

larger. While our observations are consistent with a columnar

organization of the mouse auditory cortex (Mountcastle, 1997),

it should be noted that the dynamics of the infragranular layers

is to some extent dissociated from the dynamics of layers II

and III and thus the organization of sound evoked patterns in

discrete response modes could be a specificity of the supragra-

nular layers (Sakata and Harris, 2009).

One important result of our study is that the network activity

carries little information about sounds at the local scale

because of the high constraint on local activity patterns.

However, since different local populations are responsive to

different groups of sounds, the combination of response

patterns from various local ensembles leads to a significant

increase in encoding capabilities. Therefore, our results suggest

that a complete representation of sounds emerges only at a
global scale, potentially encompassing whole auditory fields.

This is in line with the observation that arrays of local field poten-

tial recordings in the human brain are sufficient to retrieve much

of the information about sounds despite their lack of spatial

precision and their inability to account for single-neuron activity

(Pasley et al., 2012). Thus, our results corroborate the idea that

the function of the auditory cortex is dominated by broad scale

dynamics in which groups of hundreds of neurons rather than

single neurons form the functional units. Our results also demon-

strate that these functional units are capable of producing

discrete network states.

The discrete nature of local response modes is highlighted

by the fact that when two modes are observed at the same

location they cannot simultaneously coexist, and transitions

between these between the two response modes are highly

nonlinear (Figure 5). This observation is further corroborated by

the comparison of response patterns elicited by mixed sound

stimuli and by their individual components which reveals that
Neuron 76, 435–449, October 18, 2012 ª2012 Elsevier Inc. 445
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subnetworks corresponding to two modes interact in a com-

petitive fashion (see Figures 5H and S5; Kurt et al., 2008). This

dynamics could result of large scale excitatory and in particular

inhibitory interactions generating collective, attractor-like dy-

namics (Hopfield, 1982) and may be an optimal strategy to

encode information under noisy conditions (Tkacik et al., 2010).

Based on theoretical considerations, discrete network states

have been proposed to underlie the formation of categories

and objects in brain circuits (Hopfield, 1982). However, it is

only recently that experimental evidence for such dynamics

has been obtained (Niessing and Friedrich, 2010; Wills et al.,

2005). Our observation that, in naive mice, various novel sounds

trigger the same local response pattern indicates that local AC

ensembles spontaneously form categories of stimuli indepen-

dent of prior training to specific sounds. We show that discrete

representations measured by calcium imaging quantitatively

reflect spontaneous categorization of sounds measured in a

behavioral task. Therefore, the discrete network dynamics in

AC are compatible with behaviorally measured perceptual cate-

gorization. Predictions of the categorization behavior are based

on a linear classifier (SVM). This classifier is mathematically

equivalent to a binary neuron that would be linearly summing

up inputs from the recorded auditory cortex neurons (Shawe-

Taylor and Cristianini, 2000), similar to the perceptron model

(Rosenblatt, 1958). Interestingly, such a simple architecture

allowed us to predict the behavioral response even when mice

alternated between two choices with close to 50% probability

(Figure 7D). This implies that AC activity reflected not only the

direction of the categorization but also large parts of the

observed variability in the categorization behavior, suggesting

that behavioral variability couldbeexplained inprinciple to a large

extent from the variability of the sensory representation itself.

While we think that much of the sound information is distrib-

uted globally, it is remarkable that a good prediction of the

categorization behavior and of its variability could even be

obtained with well-chosen single local populations (Figure 8).

This indicates that the perceptual decisions made by the animal

can be parsimoniously explained by the selection of a relatively

small group of neurons that spontaneously provides a suitable

categorization of sound stimuli. Such a model would be distinct

from scenarios in which learning leads to an optimal adaptation

of a plastic decision boundary to a continuous sensory

representation.

Whatmay be the functional role of discrete dynamics in circuits

of the auditory cortex? In the primate visual system, complex

category signals (objects or groups of objects) are classically re-

ported in higher areas such as inferior temporal, parietal, and

prefrontal areas (DiCarlo et al., 2012; Swaminathan and

Freedman, 2012). Theobservation of category-formingdynamics

already in a primary sensory area suggests that this may be

a general property of neocortical circuits. It is conceivable that

higher-order categories are built on a hierarchy of lower-order

categories which arise in primary sensory areas. Such a hierar-

chical structure of discrete representations might be essential

for elaborate cognitive functions such as language processing.

The fact that, e.g., phonemes are perceived and thereby stably

recognized as discrete sound categories (Liberman et al., 1967)

might rely on similar dynamics of the human auditory cortex.
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EXPERIMENTAL PROCEDURES

Animals

Experimental subjects were male CB57BL/6J mice (Charles River, age: 6 to

16 weeks) and were performed in accordance with the Austrian laboratory

animal law guidelines and approved by the Viennese Magistratsabteilung

MA58 (Approval #: M58/02182/2007/11; M58/02063/2008/8).

Sounds

All sounds were delivered free field at 192 kHz sampling rate in a sound proof

booth by a custom-made system consisting of a linear amplifier and a ribbon

loudspeaker placed 25 cm from the mouse head (Audiocomm, Vienna,

Austria). The transfer function between the loudspeaker and the location of

the mouse hear was measured using a probe microphone (4939-L-002,

Brüel&Kjær, Bremen, Germany) and compensated numerically by filtering

the sound files with the inverse transfer function to obtain a flat frequency

response at the mouse ear (between 0.5 kHz and 64 kHz ± 4 dB). Sound

control and equalization was performed by a custom Matlab program running

on a standard personal computer equipped with a Lynx 22 sound card (Lynx

Studio Technology, Inc, Costa Mesa, CA).

Sounds were 50 ms pure tones of various frequencies or 70 ms complex

sounds characterized by broad frequency content and temporal modulations,

generated from arbitrary samples of music pieces or animal calls played with

fourfold speed. All stimulus onsets and offsets were smoothed with a 10 ms

long half-period cosine function. Series of K linear soundmixtures were gener-

ated asMixture(k) = (1-k/K) Sound1 + k/K Sound2 with 0% k% K. The first set

of stimuli tested in imaging experiments contained 60 sounds: 2, 4, 8, 16, 32,

64 kHz pure tones at 4 intensities (50 to 80 dB SPL at 10 dB interval), 3 broad-

band complex sounds at 5 intensities (53 to 81 dB SPL at 7 dB interval), 6

broadband complex sounds at 74 dB SPL and 15 mixtures of the first 3

complex sounds (74 dB SPL) and was used in 14 mice for prediction of behav-

ioral sound categorization (Figures 6, 7, and 8). In two experiments, 73 sounds

were played including additionally 46 dB SPL complex sounds, 40 dB SPL

pure tones and one more mixture series (examples in Figure 3). A third set of

stimuli contained 34 sounds covering a broader range of spectrotemporal

parameters: 19 pure tones (2 to 45 kHz) and 15 broadband complex sounds

(74 dB) and was used in 10 mice for studying transitions between modes

(Figure 5) and for testing the linear prediction of complex sound responses

(Figure S2). This set of stimuli was also used in 5 mice for awake experiments

(Figures 3D–3G and 4C). The statistical determination of the number of modes

in local populations (Figure 4) was run on experiments in which the sets of

either 60, 73, or 34 sounds were used.

Intrinsic Imaging

To determine the location of calcium imaging recordings with respect to the

functional organization of auditory fields, we routinely performed intrinsic

imaging experiments under isoflurane anesthesia (1%), a day after calcium

imaging. The brain was incidentally illuminated through the cranial window

by a red (intrinsic signal: wavelength = 780 nm) or a green (blood vessel

pattern: wavelength = 525 nm) LED. Reflected light was collected at 25 Hz

by a CCD camera (CCD1200QD, Vosskuehler GmbH, Germany) attached

to a macroscope consisting of two objectives placed face-to-face (Nikon

135 mm and 50 mm; Soucy et al., 2009). The focal plane was placed

400 mm below superficial blood vessels. A custom-made Matlab program

controlled image acquisition and sound delivery. We acquired a baseline

and a response image (170 3 213 pixels, �3.1 3 2.4 mm) as the average illu-

mination image 2 s before and 2 s after sound onset, respectively. For each

trial, the change in light reflectance (DR/R) was computed as (baseline �
response)/baseline (note that with this convention increase in brain activity

translates into positive DR/R values). For each sound, 30 trials were acquired,

averaged and low-pass filtered (Gaussian kernel, s = 5 pixels) to build the

response map. Sounds were trains of 20 white noise bursts or pure tone

pips (80 ms—2, 4, 8, 16, 32 kHz) separated by 20 ms smooth gaps.

In Vivo Calcium Imaging

A craniotomy (�1 3 2 mm) was performed above the right auditory cortex

under isoflurane anesthesia (1.5% to 2%). A standard solution (Garaschuk
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et al., 2006) containing 1 mM of the calcium-sensitive dye Oregon Green

BAPTA 1 (OGB1) was pressure ejected (0.7 bar: 10 pulses of 10 s) at �10

loci of the auditory cortex region through a thin glass pipette (�5 MU tip resis-

tance). The craniotomy was closed with a thin cover glass, sealed with dental

cement (Ortho-Jet, Lang Dental, Wheeling, IL). After a 30 min recovery period,

the animal was head-fixed under the imaging apparatus and kept under

isoflurane anesthesia (1%). Fields of neurons in cortical layers 2/3 (�150–

300 mm below the dura) were imaged using a two-photon microscope (Ultima

IV, Prairie Technologies, Middleton, WI) equipped with a 20x objective

(XLUMPlan Fl, n.a. = 0.95, Olympus, Tokyo, Japan). OGB1 was excited at

950 nm using a pulsed laser (Chameleon Ultra, Coherent). Line scans (33 to

25 lines/s) over visually selected neurons were used to record OGB1 fluores-

cence changes (see also Supplemental Experimental Procedures for details

on the line scan design). For a given recording site, imaging was performed

in less than 30 min. We did not observe a significant change in sound-evoked

firing rates during this period (2.9 ± 0.1 AP/s, SD over the 15 trials, ANOVA, p =

0.39, n = 74 populations).

Calcium Imaging in Awake Mice

Mice habituated to head-fixation underwent OGB-1 injection and window

implantation following procedures used in a previous report and described

in detail in the Supplemental Experimental Procedures (Komiyama et al.,

2010). To allow off-line compensation of movement artifacts images were

acquired in full-frame mode (128 3 128 pixels, 162.2 ms sampling interval).

Deconvolution of calcium traces and construction of clustered similarity

matrices was performed as for data from anaesthetized mice.

Cell-Attached Recordings

To establish a relationship between the observed changes in fluorescence

and the actual firing rate of a neuron, we performed in a number of experiments

simultaneous calcium imaging and cell-attached recordings. Cell-attached

recordings were obtained with pulled, thin wall glass pipettes (5 to 8 MU tip

resistance) filled with intracellular solution (in mM: 130 K-gluconate, 5 KCl,

2.5 MgCl2, 10 HEPES, 0.6 EGTA, 4 Na2ATP, 0.4 Na3GTP, 10 Na2-phosphocre-

atine, and 0.03 sulforhodamine for visualization). Extracellular voltage was

amplified by an ELC-03XS amplifier (NPI, Tamm, Germany) and digitized

through a Digidata1440A (Molecular Devices). We recorded action potentials

elicited by sounds or by ejection of currents (up to 100 nA) through the

recording pipette.

Deconvolution of Calcium Signals

All recordings consisted of blocks of 10–15 s separated by more than 2 s. To

evaluate the baseline fluorescence F0, the onsets ti of calcium transients were

detected as peaks of the first derivative of the raw signal that were two

standard deviations above the mean. F0 was obtained by fitting the linear

model F0 +
P

iaiqðt � tiÞ expð�ðt � tiÞ=tÞ to the raw fluorescence signal F(t) (q

is a step function and t = 1.3 s) using the Moore-Penrose pseudoinverse.

After having obtained an estimate of F0 the normalized change in calcium

fluorescence was computed as DF/F = (F(t)-F0)/ F0. The neuronal firing rate

r(t) was evaluated by deconvolution of the normalized fluorescence change

DF/F = (F(t)-F0)/ F0:

rðtÞ=a

�
dDF=F

dt
� 1

t
DF=F

�
:

t = 1.3 s and a = 0.018 are the typical decay time and DF/F amplitude of the

calcium transient triggered by a single action potential. They were determined

to minimize the error between estimated and actual firing rate observed in

simultaneous in vivo cell attached recordings and imaging.

Response Pattern Analysis

For a local population of N neurons recorded simultaneously the response

pattern to presentation i of sound p was represented by the population

vector R
!

p;i = ðrk;p;iÞk˛½1:N� of dimension N where each entry contains the firing

rate of one of the N neurons averaged between 0 and 250 ms following sound

onset (note that other time bins were also analyzed; see Figure S7). We

defined the response similarity between sounds p and q as Sp;q =

1=M2
PM

i =1

PM
j =1rðR

!
p;i ; R

!
q;jÞ with rðA!; B

!Þ being the Pearson correlation
coefficient between A
!

and B
!
, and M being the number of presentations of

a sound. This corresponds to the average correlation of all possible pairwise

combinations of single trial response vectors of two sounds. Similarly,

we defined the reliability of the response to sound p as Sp;p = 2=ðM2�
MÞPM

i =1

PM
j = i +1rðR

!
p;i ; R

!
p;jÞ. In all displayed matrices, sounds were sorted

using the standard single link agglomerative hierarchical clustering algorithm

implemented in Matlab to group sounds that elicit similar response patterns.

The statistical method to determine the number of significant clusters is

described in Supplemental Experimental Procedures.

The distance between the ‘‘centers of mass’’ of the mean response patterns

corresponding to two modes was computed as

d = k X
k˛½1:N�

0
B@ rk;mode 1P

k˛½1:N�
rk;mode 1

� rk;mode 2P
k˛½1:N�

rk;mode 2

1
CA
�
xk
yk

�k
where xk and yk are the two-dimensional spatial coordinates of neuron k in the

field of view rk, mode 1 and rk, mode 2 are the mean firing rates of this neuron in

each response mode. The ‘‘center of mass’’ of a response pattern can be

viewed as the average position ofmost active neurons in the pattern. The signal

correlation between a pair of neuron was computed as the Pearson correlation

coefficient between the two vectors containing the average firing rate

responses (250 ms time bin starting at sound onset) of each of the neurons

for all sounds tested in the particular experiment. Signal correlations were

computed for mode-specific neurons associated to the same mode or to

different modes. A mode-specific neuron is defined as having significantly

higher activity levels in one of the modes of the local population (p < 0.01:

Wilcoxon test, comparing the pooled groups of responses to sounds belonging

to each mode).
Sound Discrimination and Categorization by Cortical

Representations

The efficiency of single trial sound pair discrimination by cortical representa-

tions was evaluated using linear Support Vector Machine classifiers (Shawe-

Taylor and Cristianini, 2000) implemented in Matlab using the OSU SVM

toolbox (http://sourceforge.net/projects/svm/). Half of the single trial popula-

tion vectors were used as training set to determine the maximum margin

classifier between vectors representing each sound. This classifier was then

tested with the remaining trials to compute the fraction of correctly classified

trials. To predict behavioral categorization, the linear classifier optimized to

distinguish the cortical responses to the two target sounds of the behavioral

discrimination task (1 and 2) was tested with single trial response patterns

evoked by off-target sounds. The fraction of trials classified as sound 1 (or

2) gave our estimate of the probability of choosing the response appropriate

for sound 1 (or 2). For both sets of analysis, we used alternatively local

population vectors containing the responses of a set of neurons recorded

simultaneously or global population vectors consisting of the concatenated

populations vectors (in full or reduced by mode decomposition) from several

local populations and mice.
Sound Discrimination and Categorization Behavior

Water deprived mice were trained daily in a 30 min session of �200 trials to

obtain water reward (�5 ml) by licking on a spout over a threshold after a posi-

tive target sound S+ and to avoid a 10 s air puff by decreasing licking below this

threshold after a nonrewarded, negative target sound S�. Both sounds con-

sisted of two 4 kHz pips (50 ms) followed after a 375 ms interval by a specific

70 ms complex sound taken from the set of sounds used for imaging. Licking

was assessed 0.58 s after the specific sound cue in a 1 s long window by an

infrared beam system which detected the presence of the mouse’s snout

immediately next to the licking spout (Coulbourn instruments, PA). The licking

threshold was set to be 75% beam-break duration in the assessment window.

Sound delivery and valve control for water reward and air puff was performed

by a custom Matlab program. Positive and negative sounds were played in

a pseudorandom order with the constraint that exactly 4 positive and 4 nega-

tive sounds must be played every 8 trials.
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Performance was measured as the fraction of correct positive and correct

negative trials over all trials. Once a mouse had reached at least 80% correct

performance, 1 of 27 off-target sounds (26 sounds + 1 blank off-target)

randomly replaced a target sound in one over 10 trials followed by no rein-

forcement. In a given session only 9 out of 27 off-target sounds were pre-

sented. Given two target sounds, 1 and 2, spontaneous categorization of

off-target sounds was measured as the probability that the mouse makes

the correct response for sound 2 after hearing a specific off-target sound.

We observed that categorization measurements beyond the 8 first trials

started to display a small systematic drift. This drift could result from learning

that off-target soundswhich are categorized as the positively reinforced sound

in fact do not yield a reward. Therefore, we included only the 8 first trials of any

given off-target sound for our estimation of categorization behavior.
SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and Supplemental Experi-

mental Procedures and can be found with this article online at http://dx.doi.
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