
royalsocietypublishing.org/journal/rspb
Research
Cite this article: Rogalla MM, Rauser I,
Schulze K, Osterhagen L, Hildebrandt KJ. 2020

Mice tune out not in: violation of prediction

drives auditory saliency. Proc. R. Soc. B 287:
20192001.

http://dx.doi.org/10.1098/rspb.2019.2001
Received: 28 August 2019

Accepted: 7 January 2020
Subject Category:
Behaviour

Subject Areas:
behaviour, neuroscience, cognition

Keywords:
animal behaviour, expectation, auditory,

statistical learning
Authors for correspondence:
Meike M. Rogalla

e-mail: meike.rogalla@uol.de

K. Jannis Hildebrandt

e-mail: jannis.hildebrandt@uol.de
†Submitting author.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.4819476.
© 2020 The Author(s) Published by the Royal Society. All rights reserved.
Mice tune out not in: violation of
prediction drives auditory saliency

Meike M. Rogalla1,2,†, Inga Rauser1, Karsten Schulze1, Lasse Osterhagen1,2

and K. Jannis Hildebrandt1,2

1Department of Neuroscience, Division of Auditory Neuroscience, and 2Cluster of Excellence, Hearing4all,
Carl von Ossietzky University, Oldenburg, Lower Saxony 26129, Germany

MMR, 0000-0003-3103-0053; KJH, 0000-0003-4455-7495

Successful navigation in complex acoustic scenes requires focusing on rel-
evant sounds while ignoring irrelevant distractors. It has been argued that
the ability to track stimulus statistics and generate predictions supports
the choice of what to attend and what to ignore. However, the role of
these predictions about future auditory events in drafting decisions remains
elusive. While most psychophysical studies in humans indicate that expected
stimuli are more easily detected, most work studying physiological auditory
processing in animals highlights the detection of unexpected, surprising
stimuli. Here, we tested whether in the mouse, high target probability results
in enhanced detectability or whether detection is biased towards low-
probability deviants using an auditory detection task. We implemented a
probabilistic choice model to investigate whether a possible dependence
on stimulus statistics arises from short-term serial correlations or from inte-
gration over longer periods. Our results demonstrate that target detectability
in mice decreases with increasing probability, contrary to humans. We
suggest that mice indeed track probability over a timescale of at least several
minutes but do not use this information in the same way as humans do:
instead of maximizing reward by focusing on high-probability targets, the
saliency of a target is determined by surprise.
1. Introduction
Animals using acoustical information for navigation are nearly continuously
confronted with numerous sounds from different sources. Relevant stimuli
need to be detected while irrelevant ones should be ignored. For this process
of differentiation, the ability of tracking stimulus statistics (if a stimulus
occurs with high or low probability) is essential, sets expectations and creates
predictions about future auditory events [1,2]. While there is general agreement
on the principal importance of expectation in auditory perception, there are
different ways in which these predictions may be used to guide decisions.

One the one hand, high-probability, expected and relevant signals may selec-
tively improve perception and form an important part of the analysis of complex
auditory scenes [3–5]. Adult humans are better at detecting expected auditory
stimuli in reward-based auditory listening tasks [6]. Humans internally monitor
the probability of a stimulus and adapt their behaviour according to the stimulus
statistics [7–9]. This behaviour does not require awareness of the subject and is
driven by unconscious expectations [10]. Within this framework, the improve-
ment of detectability is based on the expectation as an implicit cue and biases
detection performance towards expected targets [11].

While most psychophysical studies indicate that expected stimuli serve as
implicit cues for selective listening, most work studying the physiology of audi-
tory processing highlights the detection of unexpected, surprising stimuli.
Stimuli are more salient when presented rarely to the auditory system due to
pre-attentive mechanisms [1,12]. Within this framework, the evaluation of
stimulus statistics serves to detect novelty, emphasizing changes in the auditory
scene rather than enabling tracking of task relevant information.
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Novelty coding in the auditory system has successfully
been interpreted within the framework of predictive coding
[13]. Stimuli are carried on to higher sensory areas as prediction
error signals, updating predictions for the interpretation of sen-
sory input. Whether and how prediction error signals shape the
detectability of a signal is less clear: on the one hand, larger pre-
diction error signals could result in higher detectability of
surprising signals [14]. On the other hand, top-down processes
are thought to assign higher weights to expected signals and
thereby render them more salient perceptually [15,16].

Thus, tracking of stimulus probability may influence audi-
tory processing in two contrary ways: on the physiological
level, low-probability sounds elicit maximal responses, but
during listening tasks, relevant high-probability sounds shape
expectations, and thereby improve their detectability. While
physiological evidence for deviant detection spans all the way
from animal models to humans [13,17], behavioural assessment
of the effects of target probability is largely restricted to humans.

Although rodents serve as widely used animal models to
study auditory phenomena, little is known about their ability
to monitor stimulus probability and how it shapes detectabil-
ity. Here, we asked how target probability influences auditory
perception in mice. More specifically, we tested whether target
probability is used as an implicit cue for expectation-biased
detection or whether detection is biased towards low-
probability deviants. To this end, we devised three different
psychophysical tasks and tested three separate sets of mice.
First, we used faint tones in noise and varied the probability
of a given tone frequency between different sessions. This
paradigm resembles the ‘listening band phenomenon’, the
most prominent example of probability-guided detection bias
in the human literature [6]. Subsequently, we tested whether
the probability-dependence generalizes to other detection
tasks, namely streaming paradigms, in which a target has to
be detected in one out of multiple streams. Here, we separately
tested for effects on the detection of both spectral and temporal
stimulus dimensions. Finally, we present a probabilistic choice
model to investigate whether the dependence on stimulus stat-
istics arises from short-term serial correlations or from
integration over longer periods. A previous version of this
work has been placed on a preprint server [18].
2. Results
(a) Experiment 1: tone-in-noise detection
When humans are asked to detect faint tones in a noise back-
ground, performance for high-probability targets is better
than for those played with low probability, even if listeners
are not consciously aware of the probabilities [9]. This is
usually explained by a focusing on specific auditory filters,
thereby listing selectively to a certain frequency range [7].
In our first experiment, we aimed to test whether mice are
able to track target probabilities from session to session and
display a preference for either high- or low-probability tar-
gets. We devised a behavioural paradigm (figure 1), in
which mice were trained to indicate the detection of faint
tones embedded in a noise background by leaving a small
pedestal after the presentation of a target (figure 1a). A typi-
cal single session contained 60 targets and lasted
approximately 30 min. In order to test the animals near
their individual thresholds, we first tested a single-frequency
in each session, varying the level of the tones to determine the
threshold (figure 1c, upper panel). In the next step, we pre-
sented tones with varying probability as targets in mixed
sessions (lower panel in figure 1c). We hypothesized that if
mice displayed selective listening to high-probability tones
they should (1) be better at tone detection in the single-
frequency sessions compared to the mixed sessions and (2)
show better performance for the high-probability compared
with the low-probability stimulus within the mixed sessions.

Contrary to our hypothesis, all animals tested showed
higher sensitivity in the mixed than in the single-frequency
session tested before (example data in figure 2a; repeated
measures ANOVA, F1,20 = 32.2, p < 0.001). Within the mixed
sessions, the impact of stimulus probability on the prefer-
ence of the mice for low-probability tones was confirmed.
Sensitivity was positively influenced by surprise, quantified
as the prediction error (inverse conditional probability of
the stimulus, [19]). This relation was highly significant,
both when taking the single-frequency sessions into account
and for mixed sessions only, and independent of the fre-
quency that was played. We concluded that tone detection
performance of mice is clearly biased by stimulus prob-
ability, and that low-probability sounds were detected
more reliably.

(b) Experiment 2: frequency change detection in
streams

Contrary to the behaviour displayed in experiment 1, a strat-
egy to focus on high-probability sounds would have
maximized rewards. A possible explanation for mice not
taking advantage of tracking probabilities is that they are
not able to focus on a single-frequency band in a continuous
noise background with very sparse tones appearing at
random times. We reasoned that a more natural situation
could be the presence of multiple streams of tones that
allow to selectively track one of these streams [20,21]. We
therefore designed an experiment in which animals had to
detect a frequency change in either one of two continuous
streams of tone pips (figure 3a). The repetition rate was
rapid (5 Hz for either stream) and the tone streams were
more than an octave apart in frequency, a parameter range
that results in a clear two-stream percept in most animals,
including rodents [22,23]. To this end, we trained a batch of
naive mice (n = 6). Again, we varied the probability that a
target could appear in either of the two streams. In one set of
sessions, frequency changes would be inserted in either one
of the two streams only. In a second set, targets appeared in
both streams with equal probability. Sessions were randomized
in order to avoid sequence effects.

When we compared the mean sensitivity for the two
different probability levels, we observed a higher mean sen-
sitivity for the mixed sessions for all tested frequency
changes (figure 3c). As in Experiment 1 (figure 2), targets
were more salient to the mice if they were distributed
between the two streams than if they were played in one
of the two streams only. This was confirmed when we com-
pared all animals for both streams (figure 3e; rmANOVA,
F = 6.0, p = 0.0171). Experiment 2 confirmed that detection
of targets in mice is strongly biased by target probabilities
from session to session, but detectability seems to be deter-
mined by surprise rather than be biased towards expected
targets, despite the latter being the better strategy to
maximize rewards in a given session.
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Figure 1. Behavioural paradigm and stimulus protocol used in Experiment 1. (a) Go/No-Go paradigm used in this study. Mice initiated a trial by climbing on a small
pedestal on the circular platform. After a variable waiting interval, a target was presented. Animals received a reward if they left the platform within 1 s after target
presentation. The next trial could be initiated immediately. (b) Timeline of one experimental session. Throughout the entire session, a broadband noise stimulus was
presented. Once a trial was initiated, a 500 ms pure tone was presented after a random stimulus delay. In a single session, an animal had to complete 73 or 78
trials, which typically lasted 30–45 min. (c) Different probabilities of single-frequency pure tone targets in different sessions. In single-frequency sessions, the level
of the tones was varied, but only pure tones of either frequency f1 (10 kHz) or f2 (21 kHz) were presented. In mixed session, level was held constant near the
behavioural threshold, but three different frequencies were presented. In any one session, either f1 or f2 was presented with 48% probability and the respective
other with only 26%. In addition, a tone of the frequency close to the high-probability targets was presented in 26% of the trials. (Online version in colour.)
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Figure 2. Results for Experiment 1—tone-in-noise detection. (a) Example performance of two different animals for the tone-in-noise stimuli at a single tone
frequency, presented with different probabilities. Before the mixed-frequency experiments, animals were tested individually for their thresholds at each tone fre-
quency by presenting tones of a single-frequency (probability 100%) at different levels to construct psychometric functions (black circles, grey line). In the mixed
experiments, tones with a level corresponding to a d0 of 1 (dashed line) were presented with probabilities of 48% (red circle) or 26% (blue circle). (b) Population
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(c) Experiment 3: gap detection in streams
Since the two streams were separated by frequency and target
changes were along the same dimension, we aimed to test
whether our results would generalize to other stimulus dimen-
sions. Therefore, we trained a naive set of animals (n= 7) to
detect temporal irregularities in the form of short gaps, intro-
duced into one of the two streams (figure 3b). Here, we used
three probabilities for each condition: targets in only one of
the two streams (100%), or 66.7% and 33.3% probability in ses-
sions with targets in both streams. As already observed for the
frequency changes, sensitivity for detection of gaps strongly
depended on target probability, with the best detectability for
low-probability targets in the mixed sessions, and lowest detec-
tion performance for targets in only one out of two streams
(figure 3d). We observed this effect for both possible target
streams in all animals (figure 3f, rmANOVA, F1,206 = 30.0, p <
0.001). Experiment 3 confirmed our results from the previous
experiments and generalizes the saliency of surprising targets
to temporal features as well.

(d) Probabilistic choice model
We observed higher detection performance for low-probability
stimuli in three different behavioural experiments. However,
this does not necessarily mean that the animals were tracking
long-term probability. When manipulating probability, the
structure of the randomized trial sequences is changed as
well: in sessions in which one type of target is presented
with low probability, stimuli are more often preceded by a
different target than if presented in high-probability sessions.
A simple switch of the stream being monitored after each
trial could explain our results just as well as tracking prob-
ability over a time course of up to tens of minutes. In order
to test whether the animals were tracking probability over
longer timescales or simply displaying short-term trial-history
effects, we devised a probabilistic choice model (figure 4a). The
model included the factors stimulus intensity, stimulus prob-
ability within the session, and recent history of stimuli
presented in the immediately preceding trials. The model
was fit separately for each mouse and experiment, in versions
including or excluding probability and history terms. If the
probability-dependence was due to recent history effects, a
model including only the respective term should perform
equally well as one including both probability and history,
and better than one that takes only probability into account.
Inclusion of the probability term significantly improved
model performance (figure 4b). By contrast, inclusion of the
recent history term (up to four preceding trials) improved
the model only marginally (figure 4b).

The average interval between two trials was 30.2 ± 10.3 s
(mean ± s.d., n = 528 sessions from all three experiments).
Since there was little effect of recent trial history up to at
least four trials, perception in the mice was apparently
shaped by long-term probability on the timescale of several
minutes at least. In line with this, we could not find a differ-
ence between hit rates after a switch of the stimulus class
between two trials or a repetition of stimuli from the same
class (figure 4d ). We also did not find a change in overall
strategy between mixed and pure sessions—false alarm
rates did not differ between those session (figure 4c).
3. Discussion
Stimulus statistics in auditory scenes have been suggested to
shape auditory perception in two contrary ways: (1) a focus
on novelty detection, favouring low-probability sounds [17]
and (2) improving detectability of expected, high-probability
sounds, maximizing overall detection rate [6,10]. Here, we
tested whether detectability in mice is biased rather towards
low- or high-probability target sounds. To this end, we con-
ducted three different experiments varying the probability
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of targets. While humans direct their attention to the most
probable target out of several acoustic channels or streams,
target detectability in mice decreased with increasing
probability. Thus, the more surprising a stimulus was, the
more reliably it was detected. This was confirmed in three
independent experiments using three separate sets of ani-
mals, one with changing probability of target frequency in
noise (figure 2) and two using a streaming paradigm
(figure 3) with either a spectral or temporal variation to
be detected. Finally, our probabilistic choice model best pre-
dicted animal behaviour for all three tasks if it took overall
probability into account, but not if we considered recent
trial history (figure 4b). These results suggest that mice
indeed track probability over a timescale of at least several
minutes, but do not use this information in the same way
as humans: instead of maximizing reward by focusing
on high-probability targets, the saliency of a target is
determined by surprise.
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(a) Different strategy or mouse-specific auditory
processing?

It seems that mice are very good at something that humans
find hard and vice versa. Are our results in mice really
caused by a different strategywith respect to target probability
or can it be explained by more basic differences in their audi-
tory system? Mice have much wider auditory filters [24], so
our stimuli could have been merged into one perceptual cat-
egory, such that no separate streams would have built up.
However, in all three experiments, we used targets that were
more than an octave apart, far above the frequency discrimi-
nation threshold of mice [25]. It was not assessed whether
the two sequences used in experiments 2 and 3 resulted in a
streaming percept, as this was not the focus of our study and
our results do not critically depend on the sequences being
perceived as streams. However, all animal species that have
been tested so far showed evidence for streaming for stimuli
separated by one octave and upwards [22], including rats
[23], which have similar auditory filters to mice. Furthermore,
our positive results on the effect of target probability and
its generalization across paradigms provide evidence for
perceptual separation rather than merging.
(b) Deviance detection in the auditory system
We found clear evidence for mice to favour unexpected, sur-
prising stimuli. An explanation for this behaviour is that in
mice, the deviance signal (prediction error) is not weighted
by probability-cued top-down processes as it is in humans.
There is a largebodyofworkon enhancedneural representation
of deviant stimuli in the auditory system in both animal
models and humans. At the single-cell level, stimulus-specific
adaptation (SSA) describes the enhancement of the neural rep-
resentation of low-probability sounds [1,17]. A typical
paradigm is the presentation of a sequence of tones of two
different frequencies, with varying relative probability [26].
Experiment 1 of this study is such a paradigm, but the ratio of
stimulus duration (0.5 s) and the very long inter-stimulus inter-
val (mean of all sessions: 30.2 s) has not been reported before.
However, timescales up to several minutes are reasonable
based on the measurement of adaptation time constants in the
cat auditory cortex [27]. The stimuli in our Experiments 2 and
3 extended this to two synchronously presented sequences of
standard and deviants—Experiment 2 using frequency shifts
and Experiment 3 using temporal deviants. SSA is likely to
shape responses to the deviant targets in both of the streams
in either experiment. Deviants in both streams are very rare:
approximately 30 s inter-trial intervals with a background
pulse repetition rate of 5 Hz result in a deviant probability of
approximately 1% in session with the target in one stream
and approximately 0.5% in sessions with equal distribution
between the two streams. Neural sensitivity for such small
changes has not been reported yet, but there is no principle
reason why they cannot exist. SSA has been shown to extend
beyond simple pure tone patterns [28] and to more complex
statistical structure of the sensory context [29]. Similar to the
findings presented here (figure 4), SSA is sensitive to average
statistics rather than recent history [30].

It is very difficult to directly observe a correlate of neural
deviance representation at the behavioural level. This is prob-
ably due to its pre-attentive nature—deviance detection is



royalsocietypublish

7
observable in passively listening subjects [31] as well as in
anaesthetized animals [12]. In active listening tasks, implicit
cueing could then use the predictive signal to improve the
representation of high-probability sounds through top-down
control of sensory processing [10] by inverting the sign [16].
However, in mice we may be able to directly observe the
strength of a prediction error signal at the perceptual level.
ing.org/journal/rspb
Proc.R.Soc.B
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(c) Sensory ecology
Deviance detection is of foremost importance for the detec-
tion of sudden, potentially dangerous changes in the
environment. In mice, as potential targets of predation,
deviance detection may have priority over probability-cued
selective attention. On the contrary, both humans and carni-
vores [21] may be cued implicitly using target probability—
providing evidence that the effect of stimulus probability
on perception may be due to sensory ecology rather than tax-
onomy. Both primates and carnivores might use their
auditory senses to tune in and follow potential prey or con-
specific communication signals. Interestingly and consistent
with the strategy reported here for mice, threatening stimuli
in humans are best perceived if they occur with relatively
low-probability [32]. By contrast, implicit cueing in reward-
based tasks usually enhances perception of high-probability
signals [6,10,11].

An alternative explanation for our results would be that
mice are not able to provide top-down influence and scale
the deviance signals accordingly. However, recent work
suggests that mice are able to selectively attend at least expli-
citly cued visual patterns [33] or auditory streams [34]. This
could indicate that mice do not lack a mechanism for top-
down control of input-signal scaling, but it is not activated
by probability-cueing. Instead, if mice use contextual audi-
tory information mainly for the detection of threats, this
rule may be hard-wired and not under the control of
top-down signals.

Our results suggest that in mice, predictions based on
complex statistic regularities are computed along the sensory
pathway, but mostly used to suppress ongoing input, similar
to sensory adaptation on shorter timescales [1,12]. The
development of top-down modulation of error signals in car-
nivores and primates may have been added later on to this
first step of probabilistic analysis of complex sensory scenes.
(d) Perspective
In summary, our study provides evidence for animal detec-
tion behaviour being shaped directly by prediction error.
This finding could be very helpful for future work on predic-
tion-guided behaviour, since we may be able to study the
neural mechanisms underlying extraction of complex contex-
tual sensory information without the confounding of the
interplay with top-down modulation shaped by the task.
The mouse model offers unrivalled possibilities to record
and manipulate neural activity in the behaving animal. In
future studies, this may not only enable measurements of
neural deviance detection during relevant behaviour. It also
offers the perspective of direct manipulation of potential
mechanisms, with the observed behaviour as readout to
infer causal relationships.
4. Material and methods
(a) Experimental model and subject details
In total, 17 adult male mice bred at the University of Oldenburg
animal facilities were used in the experiments (Experiment 1, n =
4; Experiment 2, n = 6; Experiment 3, n = 7). All mice had a
C57BL/6.CAST-Cdh23Ahl+ background (the Jackson laboratory,
#002756) and were between three and nine months old. We
used this line because it does not display the age-dependent
hearing loss which is present in other C57BL/6 lines [35,36]. Ani-
mals were kept at a reversed 12 L : 12 D cycle, all experiments
were performed during the dark period. Animals had unlimited
access to water but were food-deprived to a moderate extent (85–
90% of their ad libitum weight) and single-housed in standar-
dized enriched cages but with visual and olfactory contact to
neighbouring animals.
(i) Behavioural paradigm
All three experiments were performed using the following
reward-based go/no-go paradigm. Animals were placed on an
annular platform made from wire mesh (figure 1a). The raised
platform was placed in a custom sound-proof chamber that
was lined with pyramid foam. On one side of the platform, a
small pedestal was installed. Once the animals ascended the ped-
estal, a random, variable waiting time started, drawn from a
distribution between 1.25 and 5.25 s (in steps of 1 s). After this
pseudo-random interval, a target was presented. The onset of
the target triggered a 1 s response window. If the animals des-
cended within the window (‘go’), a food pellet (0.02 g, Dustless
precision pellets rodent, grain based, Bio-Serv, #F0163) was deliv-
ered at the opposite side of the annular platform. If the animals
stayed on the pedestal, a new trial was presented after a newly
drawn waiting time. A typical session contained 60 targeted
trials and 25 sham trials and lasted 30–40 min. For all different
target stimuli, the distribution of waiting times was the same,
both within and across sessions. Animals were tested once or
twice per day with at least 2 h between subsequent sessions.
All experiments were controlled by custom software (GitHub
repository: https://github.com/Spunc/PsychDetect) written in
MATLAB (The MathWorks, RRID : SCR_001622). Pellet dispen-
ser and light barriers were custom build (University of
Oldenburg workshop) and controlled by a microcontroller
(Arduino UNO, Arduino AG, Italy) connected to a Windows PC.
(ii) Estimation of false alarm rates and sensitivity
For the experiments, each trial was drawn from five, non-over-
lapping response windows. Thus, randomly choosing one of
the five windows to descend from the platform in a given trial
would theoretically have resulted in 20% chance level. However,
since the paradigm is not strictly forced choice, we needed to esti-
mate the real chance level for each session in order to quantify
detectability in terms of the sensitivity d0 (see section Data analy-
sis and statistics). Here d0 is independent of the individual
decision boundary and thus more comparable across sessions
and animals than uncorrected hit rates [37]. In order to estimate
false alarm rates for each session, we introduced sham trials with
a designated ‘stimulus’ delay, but without presentation of a
target at that delay. If the animals descended the platform
within the response window of a sham trial, a false alarm was
scored—if not, the response was counted as a correct rejection
(electronic supplementary material, figure s1D). Descending the
platform at any other time without a target was not counted.
Depending on the paradigm 25–33% of trials in a given session
were sham trials, with the same distribution of waiting times
as in the target trials.

https://github.com/Spunc/PsychDetect
https://github.com/Spunc/PsychDetect
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(iii) Stimuli
For sound presentation, a speaker (Vifa XT 300/K4, Denmark) was
mounted in the sound-proof chamber approximately 0.5 m above
the pedestal. Sound was generated using a high-fidelity sound
card (Fireface UC, RME, Germany) connected to the PC. Sound
was played back at either 192 kHz (experiment 1) or 96 kHz
(Experiments 2 and 3) sampling rate. The speaker was calibrated
at the approximate position of the head of the animals using a
measurement microphone (model 40BF, G.R.A.S., Denmark).
 rg/journal/rspb
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(iv) Paradigms
Experiment 1: tone–in-noise detection. Tones in noise served as a
target in Experiment 1. Once a session started, broadband noise
(4–64 kHz, 60 dB) was constantly played until the end of the ses-
sion. Pure tone of either 10 or 21 kHz served as targets (2 ms
cosine ramps, 500 ms duration). In the sessions containing only
one target frequency, the level for that frequency was varied
between 20 and 80 dB in steps of 10 dB in order to obtain a psy-
chometric function. Psychometric functions were fit with a
logistic function and an individual signal-to-noise ratio (SNR)
threshold was estimated. In the mixed sessions, we used the
level corresponding to the individual SNR thresholds, estimated
as the point on the psychometric curve with a d’ value of
1. During the mixed session, targets were played back at three
different frequencies: (1) high-probability (0.48), ‘priming’ frequen-
cies, which were present in the first 10 trials and also throughout
the rest of the session, (2) the low-probability (0.26) target fre-
quency, only played back from trial no. 11 onwards, and (3)
target tones of a third frequency close to the priming frequency,
played with low probability (0.26). These last stimuli were not
used for further analysis, since they had not been used in corre-
sponding sessions with high-probability. Only trials 11 onward
(after the priming) were used for analysis. Each animal performed
at least 10 sessions for both priming frequencies. Measurement of
psychometric function was repeated after the mixed sessions in
order to rule out effects of perceptual learning when comparing
single-frequency with mixed sessions. Prior to the described
experiments, animals have been trained in a tone-in-noise detec-
tion task with either one of the two target frequencies (10 or
21 kHz) which were randomly chosen for each session until the
performance reached a stable level in several consecutive sessions
(electronic supplementary material, figure s1E).

Experiment 2: frequency change detection in streams. For Exper-
iment 2, two alternating tones with frequencies of 10 and 21 kHz
(1.07 octaves) were played at rate of 5 tones/s throughout the
experimental session. Tone duration was 100 ms including 2 ms
cosine ramps. The level of each individual tone was roved
between 60 and 66 dB SPL (randomly) in order to avoid the
detection of a differences in loudness when the shift in frequency
occurred. The frequency of a tone from either tone sequence was
shifted upwards by 4%, 8%, 16% or 32%. Mice had to report the
appearance of the frequency shift within 700 ms after onset of the
shifted tone. Within a session, targets appeared either in only one
of the two tone sequences (‘single’, probability 1 and 0, respect-
ively) or in either of the two sequences (‘mixed’, probability 0.5
for each sequence). Each animal completed at least eight sessions
for each of the mixed session types. Prior to experiments, animals
have been trained in a frequency change detection task in a single
stream, frequencies (10 or 21 kHz) were chosen randomly for
each training session. After receiving a stable and similar perform-
ance in both streams in several consecutive sessions, experiments
with the two alternating streams were introduced. Mice
responded towards the simultaneous presentation immediately
without a decline in performance.

Experiment 3: gap detection in streams. The temporal structure
of the sequences in Experiment 3 was the same as in Experiment
2, but instead of pure tones, narrowband noise with a bandwidth
of 0.25 octaves around 10 or 21 kHz was used. The level of nar-
rowband pulses was fixed at 60 dB SPL. In the target pulses, gaps
with duration of 15, 30, 45, 60 and 75 ms were introduced
(including 2 ms cosine pulses). The response window was 1 s.
For Experiment 3, we used three different probabilities: 1
(target only in one sequence), 0.66 or 0.33. Each animal com-
pleted at least eight sessions for each session type. For this
specific paradigm, the auditory training was performed in the
same way as Experiment 2 but was started with a broadband
instead of a narrowband noise, centre frequencies of 10 and
21 kHz were randomly chosen. After animals showed a stable
performance for both individual streams, the bandwidth of
the noise was slowly reduced in each session until the final
bandwidth of 0.25 octaves was reached. Subsequently, final
experiments with both streams were conducted.
(b) Quantification and statistical analysis
(i) Data analysis and statistics
In all three experiments, for each session i and stimulus class s,
the sensitivity d0 was calculated as

d0i,s ¼ zðHi,sÞ � zðFAiÞ,
where z() is the inverse of normal cumulative function, Hi,s is
the hit rate for the stimuli with parameters s in the ith
session P(response|stimulus s) and FAi is the false alarm rate
P(response|sham).

In order to check for significant effects of stimulus prob-
ability on the sensitivity, we fit a generalized mixed effects
model (MATLAB fitglme), with the d’ values as response variable
and probability and stimulus parameters as factors. In Exper-
iment 1, the stimulus parameter factor was target tone
frequency. For Experiment 2, relative frequency shifts were
entered as factor. For Experiment 3, the stimulus factor was
gap duration. For each experiment, we performed repeated
measures ANOVA (rmANOVA, MATLAB) and report both
F-values and exact p-values up to the fourth decimal.
(ii) Probabilistic choice model
To account for different factors affecting animal choice
behaviour we devised a probabilistic choice model, similar
to what has been used before in order to include history in
psychophysics [38].

The probability pgo to jump at a given trial t in a behavioural
session is given by

pgoðtÞ ¼ 1
1� eLðtÞ

,

with the response variable L(t), that is a weighted sum of three
main terms: (1) the stimulus parameters s(t), (2) the overall prob-
ability of the stimulus to appear in the given channel p(t), and the
stimulus history h(t):

LðtÞ ¼ bs � sðtÞ þ bppðtÞ þ bh � hðtÞ:

The stimulus parameters depend on the paradigm. For
Experiment 1, this was absolute stimulus frequency and the
SNR ratio. For Experiment 2, this was the absolute frequency
of the stream the target appeared in and the frequency shift of
the target. For Experiment 3, we entered absolute frequency of
the target stream and the gap duration in the target pulse.

The probability term is constant across a given session and
only depends on the target channel. The history term is
described by

bh � hðtÞ ¼
Xn

i¼1

bjhhðt� iÞ,
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where h(t− i) is 1 if the target in the (t− i)th trial before the cur-
rent was in the same channel and 0 if it was presented in the
respective other.

The weights were fit using the MATLAB function glmfit with
a logit link and no constant term. For each animal, sessions were
combined into sets that each contained all probability distri-
butions (four single sessions in Experiments 1 and 3, three
sessions in Experiment 2). For each experiment and animal, at
least five such sets were combined randomly and corresponding
models were fitted, resulting in a total of 86 sets. For each such
set four versions of the model were fitted, the full model above
and the following reduced versions.

Stimulus parameters only:

LðtÞ ¼ bs � sðtÞ,

Stimulus parameters + probability:

LðtÞ ¼ bs � sðtÞ þ bppðtÞ,

Stimulus parameters + history:

LðtÞ ¼ bs � sðtÞ þ
Xn

i¼1

bjhhðt� iÞ:
For each set and model version, the deviance between the
animal’s response and the probability pgo was collected and nor-
malized to the model deviance for the model version including
stimulus parameters only.
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