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Time is the fundamental dimension of sound, and temporal 
integration is thus fundamental to audition. To recognize a 
complex structure such as a word, the brain must integrate 

information across a wide range of timescales from tens to hundreds 
of milliseconds (Extended Data Fig. 1 plots a histogram of phoneme, 
syllable and word durations)1–3. At present, the neural computations 
that underlie multiscale integration remain unclear. Prior evidence 
suggests that the human brain analyses sound using both generic 
acoustic computations, such as spectrotemporal modulation filter-
ing4–7, as well as category-specific computations that are non-linearly 
tuned for important categories such as speech and music8–15. Both 
modulation filtering and category-specific computations could in 
principle integrate information across a wide range of timescales, 
since natural sounds such as speech contain temporal modula-
tions and category-specific structure at many temporal scales1,2,16–18 
(Extended Data Fig. 1). Anatomically, there is evidence that modu-
lation tuning and category selectivity are localized to primary and 
non-primary regions, respectively8,19. However, the time window 
over which primary and non-primary regions integrate is unknown, 
and thus it remains unclear whether generic and category-specific 
computations integrate over similar or distinct timescales.

To answer this question, we need to measure the time win-
dow over which human cortical regions integrate information. 
Integration windows are often defined as the time window when 
stimuli alter the neural response20–22. Although this definition is 
simple and general, there is no simple and general method to esti-
mate integration windows. Many methods exist for inferring linear 

integration windows with respect to a spectrogram5,22–24, but human 
cortical responses exhibit prominent non-linearities, particularly in 
non-primary regions19. Flexible, non-linear models are challenging 
to fit given limited neural data25,26, and even if one succeeds, it is not 
obvious how to measure the model’s integration window. Methods 
for assessing temporal modulation tuning6,7,27–31 are insufficient, 
since a neuron could respond to fast modulations over either a short 
or long integration window or respond to a complex structure such 
as a word that is poorly described by its modulation content. Finally, 
temporal scrambling can reveal selectivity for naturalistic tempo-
ral structure11,21,32,33, but many regions in auditory cortex show no 
difference between intact and scrambled sounds11, presumably 
because they respond to features that do not differ between intact 
and scrambled stimuli (for example, the frequency spectrum).

To overcome these limitations, we developed a method that 
directly estimates the time window when stimuli alter a neural 
response (the temporal context invariance (TCI) paradigm; Fig. 1). 
We present sequences of natural stimuli in two different random 
orders such that the same segment occurs in two different contexts. 
While context has many meanings34, here we simply define context 
as the stimuli which surround a segment. If the integration win-
dow is shorter than the segment duration, there will be a moment 
when it is fully contained within each segment. As a consequence, 
the response at that moment will be unaffected by surrounding seg-
ments. We can therefore estimate the extent of temporal integration 
by determining the minimum segment duration needed to achieve 
a context-invariant response.
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The TCI paradigm does not make any assumptions about the 
type of response being measured. As a consequence, the method 
is applicable to sensory responses from any modality, stimulus set 
or recording method. We applied our method to intracranial elec-
troencephalography (iEEG) recordings collected from patients 
undergoing surgery for intractable epilepsy. Such recordings pro-
vide a rare opportunity to measure human brain responses with 
spatiotemporal precision, which is essential to studying temporal 
integration. We used a combination of depth and surface electrodes 
to record from both primary regions in the lateral sulcus as well as 
non-primary regions in the superior temporal gyrus (STG), unlike 
many iEEG studies that have focused on just the lateral sulcus35 or 
STG5,36. The precision and coverage of our recordings were both 
essential to revealing how the human auditory cortex integrates 
across multiple timescales.

results
Overview of experiment and TCI paradigm. We recorded intra-
cranial EEG responses to sequences of natural sound segments 
that varied in duration from 31 ms to 2 s (in octave steps). For each 
segment duration, we created two 20-s sequences, each with a dif-
ferent random ordering of the same segments (concatenated using 
cross-fading to avoid boundary artefacts). Segments were excerpted 
from ten natural sounds, selected to be diverse so they differen-
tially drive responses throughout auditory cortex. The same natural 
sounds were used for all segment durations, which limited the num-
ber of sounds we could test given the limited time with each patient. 
However, our key results were robust across the sounds tested (the 
results of all robustness analyses are described in the Anatomical 
organization section). Because our goal was to characterize integra-
tion windows during natural listening, we did not give subjects a 
formal task. To encourage subjects to listen to the sounds, we asked 
them to occasionally rate how scrambled the last stimulus sequence 
was (shorter segment durations sound more scrambled; if patients 
were in pain or confused, we simply asked them to listen).

All of our analyses were performed on the broadband gamma 
power response timecourse of each electrode (70–140 Hz; results 

were robust to the frequency range). We focus on broadband gamma 
because it provides a robust measure of local electrocortical activ-
ity37,38 and can be extracted using filters with relatively narrow inte-
gration windows, which we verified in simulations had a negligible 
effect on the estimated neural integration windows (see Simulations 
section in Methods). By contrast, we found that low-frequency, 
phase-locked activity was substantially biased by the long integra-
tion filters required to extract low-frequency activity and thus was 
not the focus of our analyses.

Our method has two key components. First, we estimate the 
degree to which the neural response is context invariant at each 
moment in time using an analysis we refer to as the ‘cross-context 
correlation’. Second, we use a computational model to estimate the 
integration window from these moment-by-moment estimates.

Cross-context correlation. The cross-context correlation is mea-
sured separately for each electrode and segment duration. First, we 
organize the response timecourse to all segments of a given dura-
tion in a matrix, which we refer to as the segment-aligned response 
(SAR) matrix (Fig. 2a). Each row of the SAR matrix contains the 
response timecourse surrounding a single segment, aligned to seg-
ment onset. Different rows thus correspond to different segments, 
and different columns correspond to different lags relative to seg-
ment onset. We compute two versions of the SAR matrix using the 
two different contexts for each segment, extracted from the two dif-
ferent sequences. The central segment is the same between contexts, 
but the surrounding segments differ.

Our goal is to determine whether there is a lag when the response 
is the same across contexts. We instantiate this idea by correlating 
corresponding columns across SAR matrices from different contexts 
(schematized by the linked columnar boxes in Fig. 2a). At segment 
onset (Fig. 2a, first box pair), the cross-context correlation should be 
near zero since the integration window must overlap the preceding 
segments, which are random across contexts. As time progresses, 
the integration window will start to overlap the shared segment, 
and the cross-context correlation should increase. Critically, if the 
integration window is less than the segment duration, there will be 
a lag where the integration window is fully contained within the 
shared segment, and the response should thus be the same across 
contexts, yielding a correlation of 1 modulo noise (Fig. 2a, second 
box pair). To correct for noise, we measure the test–retest correla-
tion when the context is the same, which provides a noise ceiling for 
the cross-context correlation (not depicted in Fig. 2a).

The shorter segments tested in our study were created by sub-
dividing the longer segments. As a consequence, we could also 
consider cases where a segment was a subset of a longer segment 
and thus surrounded by its natural context, in addition to the case 
described so far when a segment is surrounded by random other 
segments. Since our analysis requires that the two contexts dif-
fer, one context has to be random, but the other can be random or 
natural. In practice, we found similar results using random–ran-
dom and random–natural contexts (see Anatomical organization 
section) and thus pooled across both types of context for maximal 
statistical power.

We plot the cross-context correlation and noise ceiling for seg-
ments of increasing duration for two example electrodes from the 
same subject: an electrode in left posteromedial Heschl’s gyrus 
(HG) and one in left STG (Fig. 2b). The periodic variation evi-
dent in the noise ceiling is an inevitable consequence of correlat-
ing across a fixed set of segments (see Cross-context correlation 
section in Methods for an explanation). For the HG electrode, the 
cross-context correlation started at zero and rose quickly. Critically, 
for segment durations greater than approximately 63 ms, there was a 
lag where the cross-context correlation equalled the noise ceiling (or 
in the case of 63 ms came very close), indicating a context-invariant 
response. For longer segment durations (for example, 250 or 

Segment duration > integration window

Segment duration < integration window

Integration
windowSame response

Same segment surrounded by different context segments

Different response

Fig. 1 | tCI paradigm. Schematic of the paradigm used to measure 
integration windows. Segments of natural stimuli are presented using 
two different random orderings (concatenated using cross-fading). As 
a consequence, the same segment is surrounded by different context 
segments. If the segment duration is longer than the integration window 
(top panel), there will be a moment when the window is fully contained 
within each segment. The response at that moment will thus be unaffected 
by the surrounding context segments. If the segment duration is shorter 
than the integration window (bottom panel), the integration window will 
always overlap the surrounding context segments, which can therefore 
alter the response. The TCI paradigm estimates the minimum segment 
duration needed to achieve a context-invariant response. This figure plots 
waveforms for an example sequence of segments that share the same 
central segment. Segment boundaries are demarcated by coloured boxes. 
The hypothesized integration window is plotted above each sequence at 
the moment when it best overlaps the shared segment.
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500 ms), the cross-context correlation remained yoked to the noise 
ceiling for an extended duration, indicating that the integration 
window remained within the shared segment for an extended time 
window. This pattern is what one would expect for an integration 
window that is ~63 ms, since stimuli falling outside of this window 
have little effect on the response.

By comparison, the results for the STG electrode suggest a much 
longer integration window. Only for segment durations of ~250–
500 ms did the cross-context correlation approach the noise ceiling, 
and its build-up and fall-off with lag were considerably slower. This 
pattern is what one would expect for a longer integration window, 
since it takes more time for the integration window to fully enter 
and exit the shared segment. Nearly all electrodes with a reliable 
response to sound exhibited a similar pattern, although the segment 
duration and lag needed to achieve an invariant response varied 
substantially (Extended Data Fig. 2 shows 20 representative elec-
trodes). This observation indicates that auditory cortical responses 

have a meaningful integration window, outside of which responses 
are largely invariant, but the extent of this window varies substan-
tially across auditory cortex.

Model-estimated integration windows. In theory, one could esti-
mate the extent of the integration window as the shortest segment 
duration for which the peak of the cross-context correlation exceeds 
some fraction of the noise ceiling. This approach, however, would 
be noise prone since a single noisy data point at one lag and seg-
ment duration could alter the estimate. To overcome this issue, we 
developed a model that allowed us to pool noisy correlation values 
across all lags and segment durations to arrive at a single estimate of 
the integration window.

We modelled integration windows using a Gamma distribu-
tion, which is a standard, unimodal distribution commonly used 
to model temporal windows (Fig. 3a)39,40. We varied the width and 
centre of the model window, excluding combinations of widths and 
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Fig. 2 | Cross-context correlation. a, Schematic of the analysis used to assess context invariance for a single electrode and segment duration. The 
response timecourses to all segments of a given duration are organized in a matrix, referred to as the segment-aligned response (SAR) matrix. Each 
row contains the response timecourse to a different segment, aligned to segment onset. A separate matrix is calculated for each of the two contexts. 
The central segments are the same across contexts, but the surrounding segments differ. The grey region highlights the time window when the shared 
segments are present. To determine whether the response is context invariant, we correlate corresponding columns across SAR matrices from different 
contexts (‘cross-context correlation’). This analysis is schematized by the linked columnar boxes. For each box, we plot a schematic of the integration 
window at that moment in time. At the start of the shared segments (first box pair), the integration window will fall on the preceding contexts segments, 
which are random across contexts and so the cross-context correlation should be approximately zero. As the lag relative to segment onset increases, 
the integration will begin to overlap the shared central segment. If the integration window is less than the segment duration, there will be a lag when 
the response is the same across contexts and the correlation will be 1 (second box pair). In practice, noise prevents a correlation value of 1, but we can 
compute a noise ceiling by measuring the correlation when the context is identical using repeated presentations of each sequence (not depicted). b, The 
cross-context correlation (blue line) and noise ceiling (black line) for two example electrodes from the left hemisphere of one patient. Each plot shows a 
different segment duration. The grey region shows the time interval when the shared segment was present. The STG electrode required longer segment 
durations for the cross-context correlation to reach the noise ceiling, and the build-up/fall-off with lag was more gradual for the STG electrode, consistent 
with a longer integration window. The plots in this panel were derived from ~40 min of data.
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centres that resulted in a non-causal window since this would imply 
that the response depends upon the future. The width of the inte-
gration window is the key parameter that we would like to estimate 
and was defined as the smallest interval that contained 75% of the 
window’s mass. The centre of the integration window was defined 
as the window’s median and reflects the overall latency between the 
integration window and the response. We also varied the window 
shape from more exponential to more bell shaped, but found the 
shape to have little influence on the results.

The cross-context correlation depends on the degree to which 
the integration window overlaps the shared segment versus the sur-
rounding context segments. We therefore predicted the cross-context 
correlation by measuring the overlap between the model window 
and each segment, separately for all lags and segment durations 
(Fig. 3b). The equation used to predict the cross-context correlation 
from these overlap measures is shown in Fig. 3b and described in 
the legend. A formal derivation is given in Methods.

Figure 3c illustrates how changing the width and centre of the 
model window alters the predicted correlation. Increasing the width 
lowers the peak of the cross-context correlation, since a smaller 
fraction of the window overlaps the shared segment at the moment 
of maximum overlap. The build-up and fall-off with lag are also 
more gradual for wider windows since it takes longer for the win-
dow to enter and exit the shared segment. Increasing the centre sim-
ply shifts the cross-context correlation to later lags. We varied these 

model parameters and selected the window that best predicted the 
measured cross-context correlation.

We tested the ability of our complete analysis pipeline to recover 
ground-truth integration windows from a variety models: (1) a 
model that integrated waveform magnitudes within a known tem-
poral window, (2) a model that integrated energy within a cochlear 
frequency band, (3) a standard spectrotemporal model that inte-
grates energy across time and frequency19,40 and (4) a simple, deep 
neural network with a known integration window (see Simulations 
section for details). Our simulations revealed two upward biases: 
one present at very low signal-to-noise ratios (SNRs) when using 
the mean-squared error loss and one present for just the spectro-
temporal model because of the presence of strong responses at the 
boundary between segments. We corrected these two biases by 
modifying the loss and including an explicit boundary model (see 
Model-estimated integration windows and Modelling boundary 
effects sections). With these modifications, we found that we could 
accurately infer integration widths and centres from all four mod-
els using noisy responses with comparable SNRs to those from our 
electrodes (Extended Data Fig. 3).

Figure 3d,e shows the results of applying our model to the 
example electrodes from Fig. 2b. For the example HG electrode, 
the cross-context correlation was best predicted by a window with 
a narrow width (68 ms) and early centre (64 ms) compared with the 
STG electrode, which was best predicted by a wider, more delayed 
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line). b, Schematic of the procedure used to predict the cross-context correlation. For a given lag and segment duration, we measured how much the 
window overlapped the shared central segment (w, blue segment) versus all surrounding context segments (βn, yellow, purple and green segments). 
The cross-context correlation should reflect the fraction of the response variance due to the shared segment, multiplied by the noise ceiling (rceil). The 
variance due to each segment is given by the squared overlap with the model window. The overlap measures (w, βn) varied as a function of lag and 
segment duration and were computed by convolving the model window with boxcar functions representing each segment (tapered at the boundaries to 
account for cross-fading). c, Illustration of how the width (top panel) and centre (bottom panel) of the window alter the model’s prediction for a single 
segment duration (63 ms). Increasing the width lowers and stretches-out the predicted cross-context correlation, while increasing the centre shifts the 
cross-context correlation to later lags. d, The prediction error for model windows of varying widths and centres for the example electrodes from Fig. 2b. 
Redder colours indicate lower error. e, The measured and predicted cross-context correlation for the best-fit window with lowest error (same format as  
Fig. 2b). LHG, left Heschl’s gyrus; LSTG, left superior temporal gyrus.
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window (375 ms width, 273 ms centre). These results validate our 
qualitative observations and provide us with a quantitative estimate 
of each electrode’s integration window. We used these estimates to 
understand how temporal integration organizes cortical computa-
tion in human auditory cortex.

Anatomical organization. We first examined how different regions 
of human auditory cortex collectively integrate across multiple 
timescales. We identified 190 electrodes with a reliable response to 
sound across 18 patients (test–retest correlation: r > 0.1, P < 10−5 
via a permutation test across sound sequences; 128 left hemisphere 
electrodes, 62 right hemisphere electrodes). From these electrodes, 
we created a map of integration widths and centres, discarding a 
small fraction of electrodes (eight electrodes: two right hemisphere, 
six left hemisphere) where the model predictions were not highly 
significant (P > 10−5 via a phase-scrambling analysis) (Fig. 4a). This 
map was created by localizing each electrode on the cortical surface 
and aligning each subject’s brain to a common anatomical template. 
By necessity, we focus on group analyses due to the sparse, clinically 
driven coverage in any given patient. Most electrodes were located 
in and around lateral sulcus and STG, as expected9.

We observed a diverse range of integration windows with widths 
varying from approximately 50 to 400 ms. Moreover, integration 
windows exhibited a clear anatomical gradient: integration widths 
and centres increased substantially from primary regions near pos-
teromedial HG to non-primary regions near STG. We quantified 
this trend by binning electrodes into anatomical regions of interest 
(ROIs) based on their distance to primary auditory cortex (PAC), 
defined as posteromedial HG (TE1.1) (Fig. 4b)19 (this analysis 
included 154 electrodes across all 18 subjects that were within a 
30 mm radius of posteromedial HG: 53 right hemisphere electrodes, 
101 left hemisphere electrodes). Significance was evaluated using 
a linear mixed-effects model trained to predict the electrode inte-
gration windows from un-binned distances and hemisphere labels 
(with random intercepts and slopes for subjects). We controlled for 
electrode type (depth, grid and strip) by including it as a covariate 
in the model, although we did not observe any evidence for a dif-
ference in integration windows between electrode types (Extended 
Data Fig. 4a).

Our analysis revealed a three to four fold increase in integration 
widths and centres from primary to non-primary regions (median 
integration width: 74 ms (0–10 mm), 136 ms (10–20 mm), 274 ms 
(20–30 mm); median integration centre: 68 ms, 115 ms, 197 ms). As 
a consequence, there was a highly significant effect of distance to 
PAC on the measured integration windows (width: F1,20.85 = 20.56, 
P < 0.001, βdistance = 0.064 octaves/mm, CI 0.036–0.091; centre: 
F1,20.38 = 24.80, P < 0.001, βdistance = 0.052 octaves/mm, CI 0.032–
0.073; N = 154 electrodes). There was no significant difference in 
integration widths or centres between the two hemispheres (width: 
F1,7.38 = 0.84, P = 0.39, βhemi = 0.16 octaves (left − right), CI −0.19 to 
0.52; centre: F1,10.17 = 1.81, P = 0.21, βhemi = 0.17 octaves (left − right), 
CI −0.08 to 0.43; N = 154 electrodes), although we note that intra-
cranial recordings are under-powered for detecting hemispheric dif-
ferences due to the limited coverage, which is often strongly biased 
towards one hemisphere in any given patient (the hemisphere from 
which the epileptic focus is thought to arise). These findings were 
robust across the specific sounds tested (Extended Data Fig. 5a), the 
type of context used to assess invariance (random versus natural; 
Extended Data Fig. 5b), the shape of the model window (Extended 
Data Fig. 5c) and the frequency range used to measure broadband 
gamma (Extended Data Fig. 5d).

Across all electrodes, we found that integration centres were an 
approximately affine function (linear plus constant) of the integra-
tion width (Fig. 4c; orange line shows the best-fit affine function; 
note that affine functions, unlike linear functions, appear curved 
on a log–log plot such as that in Fig. 4c). This dependence is not an 

artefact of our model since we found that we could independently 
estimate integration centres and widths in simulations (Extended 
Data Fig. 3a), as expected given that integration widths and centres 
have distinct effects on the cross-context correlation (Fig. 3c). In 
part as a consequence of this observation, we found that integra-
tion centres were relatively close to the minimum possible value for 
a causal window (Fig. 4c, blue line) even when not explicitly con-
strained to be causal (Extended Data Fig. 6). Since the integration 
centre can be thought of as the overall latency between the stimulus 
and the response, this finding suggests that auditory cortex analyses 
sounds about as quickly as possible given the integration time. The 
fact that our data were well fit by an affine function (linear plus a 
constant) rather than a purely linear function suggests that there 
might be a minimum latency (the constant, which we estimated 
to be 21 ms) that is independent of the integration width, perhaps 
reflecting fixed synaptic delays required for information to reach 
auditory cortex.

Functional organization. What is the functional consequence of 
hierarchical temporal integration for the analysis of natural sounds? 
A priori, it seemed possible that spectrotemporal modulation tun-
ing and category-specific computations could both be used to 
analyse a wide range of timescales. Speech, for instance, has a wide 
range of temporal modulations16,17,41, as well as unique phonemic, 
syllabic and word-level structure spanning tens to hundreds of 
milliseconds1,2,42,43 (Extended Data Fig. 1). However, the anatomi-
cal hierarchy revealed by our integration window maps combined 
with prior evidence that modulation tuning and category selectiv-
ity are localized to primary and non-primary regions8,19 suggested 
an alternative hypothesis: that spectrotemporal modulation and 
category-specific computations integrate over distinct timescales. 
We sought to directly test this hypothesis and, if true, determine the 
specific timescales over which modulation and category-specific 
computations integrate information.

We measured responses in a subset of 104 electrodes from 11 
patients to a larger set of 119 natural sounds (4 s in duration), drawn 
from 11 categories (Fig. 5b). We subdivided the electrodes from 
these patients into three equally sized groups based on the width 
of their integration window (Fig. 5a) and examined the functional 
selectivity of the electrodes in each group (Fig. 5b–d). We pooled 
across both hemispheres because we had fewer electrodes and 
because integration windows (Fig. 4) and functional selectivity for 
natural sounds are coarsely similar across hemispheres8,9,11.

To visualize any potential selectivity for sound categories, we 
projected the time-averaged electrode responses for each sound 
onto the top two principal components from each group (Fig. 5b). 
This analysis revealed a substantial increase in category separation 
for electrodes with long integration windows. The weak/absent cat-
egory separation for short integration electrodes is not an artefact 
of analysing just the first two principal components since similar 
results were obtained when we explicitly selected components with 
maximum category separation (Extended Data Fig. 7).

To quantify selectivity for categories versus standard acoustic 
features, we attempted to predict the response timecourse of each 
electrode (without any averaging) using cochleagrams and category 
labels (Fig. 5c). Cochleagrams are similar to spectrograms but are 
computed using filters designed to mimic the pseudo-logarithmic 
frequency resolution of cochlear filtering39. This analysis thus 
provides an estimate of the fraction of the response that can be 
predicted using a linear spectrotemporal receptive field5,23. The cat-
egory labels were binary indicators representing whether a given 
sound belonged to a given category for all timepoints with sound 
energy above a minimum threshold. As is standard, we predicted the 
response of each electrode using a regression model with temporally 
delayed copies of each regressor. The delays were selected to span 
the integration window of each electrode. Prediction accuracies  
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were noise-corrected using the test–retest reliability of the electrode 
responses, which provides an upper bound on the fraction of the 
response explainable by any model10,23,44.

For the short-integration electrodes, prediction accuracies were 
more than twice as high for cochleagrams compared with cate-
gory labels (cochleagram: median r2 = 0.45, CI 0.37–0.53; category 
labels: median r2 = 0.22, CI 0.15–0.31) (Fig. 5c). Moreover, the vari-
ance explained by both cochleagrams and category labels (median 
r2 = 0.45, CI 0.36–0.50) was very similar to the variance explained by 
cochleagrams alone, indicating that the category labels added little 
unique variance. By contrast, category labels explained nearly twice 
as much response variance in electrodes with long integration win-
dows (cochleagram: median r2 = 0.31, CI 0.27–0.43; category labels: 
median r2 = 0.60, CI 0.50–0.73), and cochleagrams added little 
unique variance (both cochleagram and category labels: r2 = 0.62, 
CI 0.49–0.74). As a consequence, there was a highly significant 
interaction between the integration window of the electrode and 
the prediction accuracy of the cochleagram versus category model 
(F1,12.35 = 104.71, P < 0.001, N = 104 electrodes; statistics reflect a 
linear mixed-effects model, where integration widths were used to 
predict the difference in prediction accuracies between cochlea-
grams versus category labels). Figure 5d plots the unique variance 
explained by cochleagrams and category labels for all individual 
electrodes as a function of the integration window. This analysis 
revealed a transition point at ~200 ms, below which cochleagrams 
explain substantially more variance and above which category labels 
explain substantially more variance.

Note that the absolute prediction accuracies were modest for 
both the cochleagram and category labels, never exceeding more 
than 45% and 60% of the explainable response variance, respectively. 
This fact illustrates the utility of having a model-independent way 

of estimating integration widths, since even our best-performing 
models fail to explain a large fraction of the response, and the 
best-performing model can vary across electrodes.

To ensure that our findings were not an inevitable consequence 
of increasing temporal integration, we repeated our analyses using 
integration-matched responses, accomplished by integrating the 
responses of the short- and intermediate-integration electrodes 
within a carefully selected window such that their integration 
windows matched those of the long-integration electrodes (see 
Integration matching section for details). Results were very simi-
lar using integration-matched responses (Extended Data Fig. 8), 
indicating that it is not the integration window itself that drives dif-
ferences in functional selectivity but rather the particular features/
categories that the electrode responds to within that window.

Discussion
Our study demonstrates that multiscale integration organizes 
auditory computation in the human brain, both anatomically and 
functionally. We found that auditory cortex integrates hierarchi-
cally across time, with substantially longer integration windows in 
non-primary regions. Notably, we found that electrodes with short 
and long integration windows exhibited distinctive functional prop-
erties. Electrodes with short integration windows (below ~200 ms) 
responded selectively to spectrotemporal modulations in a cochle-
agram representation of sound and exhibited weak selectivity for 
sound categories, while electrodes with long integration windows 
(above ~200 ms) exhibited robust category selectivity. This finding 
suggests that distinct cortical computations are used to analyse dif-
ferent timescales in natural sounds, with short and long timescales 
preferentially analysed by generic and category-specific computa-
tions, respectively.
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These findings were enabled by our TCI method, which makes 
it possible to estimate the time window over which any neural 
response integrates sensory information. Unlike prior methods, the 
TCI paradigm makes no assumptions about the type of response 
being measured. It simply estimates the time window when stimuli 
alter the neural response. As a consequence, the method should be 
applicable to any modality, stimulus set or recording method. We 
applied our method to intracranial recordings from patients with 
epilepsy, using surface and depth electrodes placed throughout 
human auditory cortex. The precision and coverage of our record-
ings were essential to understanding how multiscale integration 
organizes auditory computation in the human brain.

Relationship to prior methods. Many methods have been devel-
oped for exploring sensory timescales. In the auditory system, it is 
common to estimate a linear mapping between a spectrogram-like 
representation and the neural response5,22,23. The extent of the 
resulting spectrotemporal receptive field provides an estimate of the 
integration window. This approach, however, cannot estimate the 
temporal extent of non-linear temporal integration, which is promi-
nent in cortical responses19,23,45. Flexible, non-linear models such as 

deep neural networks are often challenging to fit given limited neu-
ral data25,26 and are difficult to analyse.

Higher-order cortical regions sometimes respond selectively 
to naturalistic temporal structure (for example, the sequence of 
phonemes that compose a word) and thus respond more weakly 
to temporally scrambled stimuli11,21,32. The temporal extent of this 
selectivity can be estimated by measuring how strongly or reliably 
a region responds to stimuli that have been scrambled at different 
timescales. Many neurons, however, are tuned to features that are 
similarly present in both intact and scrambled stimuli. For exam-
ple, a neuron that integrated spectral energy would show similarly 
strong responses for intact and scrambled stimuli, even for stimuli 
that are scrambled within its integration window. This insensitivity 
to scrambling is common in regions in and around primary audi-
tory cortex11.

The stimulus sequences that make up the TCI paradigm are simi-
lar to those used in standard scrambling paradigms (though note 
the use of two different scrambled orderings), but the analysis is 
quite different: standard scrambling paradigms measure the overall 
strength or reliability of the response across the scrambled sequence, 
while the TCI paradigm measures the minimum segment duration 
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needed to achieve a context-invariant response. Our analysis is 
related to a recent functional magnetic resonance imaging (fMRI) 
study that examined the delay needed for responses to become 
synchronized across subjects after a stimulus change46. However, 
because the timescale of the fMRI response is an order of magnitude 
slower than auditory cortical integration windows, this study was 
not able to estimate integration windows within auditory cortex.

Another important concept is the ‘encoding window’ of a 
neural response, which corresponds to the rate at which the neu-
ral response is updated to reflect changes in the stimulus20,22,47. 
Encoding windows are related to the maximum frequency at which 
a neural response can synchronize to a stimulus (see ref. 20 for a 
more detailed discussion). Synchronization rates, however, are dis-
tinct from integration windows, since fast neural synchronization 
could be produced by responses with both short (for example, a 
delta function) or long integration windows (for example, a sinu-
soidal filter that integrates over many cycles of a rapid oscillation).

Modulation frequencies can also be coded by changes in firing 
rate in the absence of synchronization48–50. Integration windows, 
however, also cannot be inferred from this type of rate selectivity, 
since, for example, a neuron could respond selectively to a particu-
lar modulation frequency by integrating over one or many cycles 
of a modulation. In addition, many regions of non-primary audi-
tory cortex are poorly described by modulation tuning19, plausibly 
because they respond to complex structures in speech and music 
(for example, words or musical notes) that are not well described by 
modulation content51.

Finally, many neurons also exhibit ‘intrinsic fluctuations’ that are 
not locked to the stimulus, but are nonetheless highly structured52. 
There is evidence that intrinsic timescales, measured as the decay 
of the autocorrelation function, exhibit a coarsely similar form of 
hierarchical organization53. The relationship between intrinsic 
timescales and stimulus integration windows could be explored in 
greater detail by measuring both quantities in the same neurons or 
electrodes, and such data could provide a valuable way to test and 
constrain network models54.

Anatomical organization. Multiscale temporal analysis has long 
been thought to play a central role in auditory processing3,22,24,31,55–58, 
but how multiscale integration is instantiated in the human auditory 
cortex has remained debated.

Hemispheric models posit that the left and right hemisphere are 
specialized for analysing distinct stimulus timescales57,58, in part to 
represent the distinctive temporal structure of sound categories such 
as speech and music27. Recent evidence for hemispheric specializa-
tion comes from studies that have shown that filtering out fast tem-
poral modulations in speech has a greater impact on responses in 
left auditory cortex27,28. However, as discussed above, the integration 
window of a response cannot be inferred from its modulation selec-
tivity, and many non-primary responses are poorly described by 
modulation tuning19. Another common proposal is that the auditory 
cortex integrates hierarchically across time3,24,31,55,56. Early evidence 
for hierarchical temporal organization came from the observation 
that phase locking slows from the periphery to the cortex48–50, which 
implies that neurons encode temporal modulations via changes 
in firing rate rather than synchronized activity. Spectrotemporal 
receptive field analyses have also provided evidence that integration 
windows grow from the periphery to cortex22,56, but the presence of 
prominent non-linearities in cortex19,23,45 has limited the utility of 
these types of analyses, particularly in non-primary regions19. Our 
study demonstrates that integration windows grow substantially (by 
a factor of approximately 3 to 4) as one ascends the auditory corti-
cal hierarchy from primary to non-primary regions. While we did 
not find a significant difference in integration windows between the 
two hemispheres, this could be due to the sparse/limited coverage 
of intracranial recordings.

Across auditory cortex, we found that integration centres scaled 
approximately linearly with integration widths and were close to the 
minimum possible for a causal window (Fig. 4c and Extended Data 
Fig. 6). This finding is not inevitable, since there could have been 
integration windows with a narrow width but delayed centre. The 
fact that we never observed narrow but delayed integration windows 
suggests that auditory cortex ‘never waits’: it integrates information 
about as quickly as possible given the time window being analysed1.

Our findings do not rule out the possibility that there might 
be a small neural population in non-primary auditory cortex with 
short integration widths and centres59,60, potentially reflecting direct, 
low-latency projections from thalamus61. However, our results suggest 
that the dominant organization is hierarchical: electrodes with short 
integration widths and centres are much more likely to be located in 
primary regions, and their response shows little evidence for the type 
of higher-order category selectivity that characterizes electrodes with 
long integration windows (Fig. 5 and Extended Data Fig. 7).

The hierarchical organization of temporal integration windows 
appears analogous to the hierarchical organization of spatial recep-
tive fields in visual cortex62,63, which suggests that there might be 
general principles that underlie this type of organization. For 
example, both auditory and visual recognition become increasingly 
challenging at large temporal and spatial scales, in part because the 
input space grows exponentially with increasing scale. Hierarchical 
multiscale analysis may help overcome this exponential expansion 
by allowing sensory systems to recognize large-scale structures as 
combinations of smaller-scale structures (for example, a face from 
face parts) rather than attempting to recognize large-scale struc-
tures directly from the high-dimensional input3,24,55,56.

Functional organization. How the human brain integrates across 
the complex multiscale structure that defines natural sounds such 
as speech and music is one of the central questions of audition1–3,64. 
Prior studies have suggested that the human brain analyses sounds 
using both generic acoustic features, such as spectrotemporal mod-
ulation4–7, as well as category-specific computations, non-linearly 
tuned to the structure of important sound categories such as speech 
and music8–15. But how these different computations integrate across 
time has remained unclear. A prior fMRI study used a scrambling 
technique called ‘quilting’ to show that speech-selective regions 
respond selectively to intact temporal structure up to about 500 ms 
in duration11. However, this study was only able to identify a sin-
gle analysis timescale across all of auditory cortex, likely because 
scrambling is a coarse manipulation and fMRI a coarse measure of 
the neural response. Our paradigm and recordings enabled us to 
identify a broad range of integration windows from ~50 to 400 ms, 
and we could thus test how the representation of sound changes as 
integration windows grow.

We emphasize that our findings are not an inevitable/generic 
consequence of increasing temporal integration, since we observed 
very similar results for integration-matched responses (Extended 
Data Fig. 8). Of course, the performance of an ideal observer on any 
task will always improve as integration windows grow since there 
is more information available. However, this fact cannot explain 
why neural responses with short integration windows show weak 
category selectivity, since behaviourally people are excellent at cat-
egorizing sounds at short timescales65, and also cannot explain why 
neural responses with long integration windows show prominent 
category selectivity, since long integration responses are perfectly 
capable of just encoding lower-level acoustic structure, as our 
matching analysis demonstrates (Extended Data Fig. 8).

The shortest integration windows at which we observed 
category-selective responses (~200 ms) correspond to about the 
duration of a multiphone syllable, which is substantially lon-
ger than the duration of most speech phonemes (Extended Data  
Fig. 1). This finding does not imply that speech-selective regions 
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are insensitive to short-term structure such as phonemes but 
rather that speech-selective responses respond to larger-scale pat-
terns, such as phoneme sequences, consistent with recent work on 
phonotactics1,42,43.

Some studies have argued for two distinct processing timescales 
in auditory cortex29,58,66. The methods and findings from these stud-
ies vary widely, but in all cases what is being measured is a specific 
aspect of the neural tuning, such as modulation synchronization29 
or predictive oscillatory activity66, rather than the overall integra-
tion window. Our results suggest that integration windows increase 
in a graded fashion as one ascends the cortical hierarchy, in contrast 
with what might naively be expected if there were two distinct tim-
escales. However, we do show that neural responses with short and 
long integration windows exhibit distinctive functional properties.

Limitations and future directions. As with any method, our results 
could depend upon the stimuli tested. We tested a diverse set of nat-
ural sounds with the goal of characterizing responses throughout 
auditory cortex using ecologically relevant stimuli. Because time 
is inevitably short when working with neurosurgical patients, we 
could only test a small number of sounds, but found that our key 
findings were nonetheless robust to the sounds tested (Extended 
Data Fig. 5a). Nonetheless, it will be important in future work to 
test whether and how integration windows change for different 
stimulus classes.

A given neural response might effectively have multiple integra-
tion windows. For example, neural responses are known to adapt 
their response to repeated sounds on the timescale of seconds67 to 
minutes68 and even hours69, suggesting a form of memory70. The 
TCI paradigm measures the integration window of responses that 
are reliable across repetitions, and as a consequence, the paradigm 
will be insensitive to response characteristics that change across 
repeated presentations. Future work could try and identify multiple 
integration windows within the same response by manipulating the 
type of context which surrounds a segment. Here, we examined 
two distinct types of contexts and found similar results (Extended 
Data Fig. 5b), suggesting that hierarchical temporal integration is a 
robust property of human auditory cortex.

Our analyses focused on broadband gamma power, which pro-
vides an aggregate measure of local neural activity. Although broad-
band gamma often correlates strongly with spiking37,38, it is likely 
also influenced by dendritic processes71,72. For example, Leszczyński 
et al. reported prominent broadband gamma responses in superfi-
cial layers of A1 and V1 that was not accompanied by multi-unit 
spiking and potentially reflected feedback-driven dendritic activ-
ity72. Thus, the integration windows measured in our study plau-
sibly reflect a mixture of spiking and dendritic activity, as well as 
feedforward and feedback responses.

An important question is whether temporal integration windows 
reflect a fixed property of the cortical hierarchy or whether they are 
shaped by attention and behavioural demands73. In our study, we 
did not give subjects a formal task because our goal was to measure 
integration windows during natural listening without any particular 
goal or attentional focus. Future work could explore how behav-
ioural demands shape temporal integration windows by measuring 
integration windows in the presence or absence of focused attention 
to a short-duration (for example, phoneme) or long-duration (for 
example, word) target.

Our study focused on characterizing integration windows within 
human auditory cortex, which we showed have integration win-
dows ranging from roughly 50 to 400 ms. Natural sounds, such as 
speech and music, are clearly structured at much longer timescales 
(for example, sentences and melodies)18, and this structure may be 
coded by higher-order cognitive regions with multi-second integra-
tion windows21,33,64. Natural sounds also have important structure 
at much shorter timescales (for example, pitch periodicity), which 

are plausibly coded by subcortical nuclei with narrower integration 
windows22,56. The TCI method provides a simple tool to measure 
and compare integration windows across all of these regions, thus 
providing a way to better understand how the brain constructs 
meaning from the complex multiscale structure that defines natu-
ral stimuli.

Methods
Participants and data collection. Data were collected from 23 patients undergoing 
treatment for intractable epilepsy at NYU Langone Hospital (14 patients) and 
Columbia University Medical Center (CUMC, 9 patients) (12 male, 11 female; 
mean age 36 years, s.d. 15 years). One patient was excluded because they had a 
large portion of the left temporal lobe resected in a prior surgery. Of the remaining 
22 subjects, 18 had sound-responsive electrodes (see Electrode selection section). 
No formal tests were used to determine the sample size, but the number of subjects 
was larger than in most intracranial studies, which typically test fewer than ten 
subjects5,36. Electrodes were implanted to localize epileptogenic zones and delineate 
these zones from eloquent cortical areas before brain resection. NYU patients 
were implanted with subdural grids, strips and depth electrodes depending on the 
clinical needs of the patient. CUMC patients were implanted with depth electrodes. 
All subjects gave informed written consent to participate in the study, which was 
approved by the Institutional Review Boards of CUMC and NYU. NYU patients 
were compensated $20 per hour. CUMC patients were not compensated because of 
Institutional Review Board prohibition.

Stimuli for the TCI paradigm. Segments were excerpted from ten natural  
sound recordings, each 2 s in duration (cat meowing, geese honking, cicadas 
chirping, clock ticking, laughter, English speech, German speech, big band  
music, pop song, and drumming). Shorter segments were created by subdividing 
the longer segments. Each natural sound was root-mean-square normalized  
before segmentation.

We tested seven segment durations (31.25, 62.5, 125, 250, 500, 1,000 and 
2,000 ms). For each duration, we presented the segments in two pseudorandom 
orders, yielding 14 sequences (7 durations × 2 orders), each 20 s. The only 
constraint was that a given segment had to be preceded by a different segment 
in the two orders. When we designed the stimuli, we thought that integration 
windows might be influenced by transients at the start of a sequence, so we 
designed the sequences such that the first 2 s and the last 18 s contained distinct 
segments so that we could separately analyse just the last 18 s. In practice, 
integration windows were similar when analysing the first 18 s versus the entire 
20-s sequence. Segments were concatenated using cross-fading to avoid click 
artefacts (31.25 ms raised cosine window). Each stimulus was repeated several 
times (four repetitions for most subjects; eight repetitions for two subjects; six and 
three repetitions for two other subjects).

Natural sounds. In a subset of 11 patients, we measured responses to a diverse set 
of 119 natural sounds from 11 categories, similar to those from our prior studies 
characterizing auditory cortex9 (with at least seven exemplars per category). The 
sound categories are listed in Fig. 5a. Most sounds (108) were 4 s. The remaining 
11 sounds were longer excerpts of English speech (28–70 s) that were included to 
characterize responses to speech for a separate study. Here, we just used responses 
to the first 4 s of these stimuli to make them comparable to the others. The 
longer excerpts were presented either at the beginning (six patients) or end of the 
experiment (five patients). The non-English speech stimuli were drawn from ten 
languages: German, French, Italian, Spanish, Russian, Hindi, Chinese, Swahili, 
Arabic and Japanese. We classified these stimuli as ‘foreign speech’ since most were 
unfamiliar to the patients. Twelve of the sounds (all 4 s) were repeated four times to 
measure response reliability and noise-correct our measures. The other 107 stimuli 
were presented once. All sounds were root-mean-square normalized.

As with the main experiment, subjects did not have a formal task, but the 
experiment was periodically paused and subjects were asked a simple question to 
encourage them to listen to the sounds. For the 4-s sounds, subjects were asked to 
identify/describe the last sound they heard. For the longer English speech excerpts, 
subjects were asked to repeat the last phrase they heard.

Pre-processing. Electrode responses were common-average referenced to the 
grand mean across electrodes from each subject. We excluded noisy electrodes 
from the common-average reference by detecting anomalies in the 60 Hz power 
band (measured using an infinite impulse response filter with a 3 dB down 
bandwidth of 0.6 Hz, implemented using MATLAB’s iirpeak.m function). 
Specifically, we excluded electrodes whose 60 Hz power exceeded five standard 
deviations of the median across electrodes. Because the standard deviation is itself 
sensitive to outliers, we estimated the standard deviation using the central 20% of 
samples, which are unlikely to be influenced by outliers. Specifically, we divided 
the range of the central 20% of samples by that which would be expected from a 
Gaussian of unit variance. After common-average referencing, we used a notch 
filter to remove harmonics and fractional multiples of the 60 Hz noise (60, 90, 
120 and 180 Hz, using an infinite impulse response notch filter with a 3 dB down 
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bandwidth of 1 Hz; the filter was applied forward and backward; implemented 
using MATLAB’s iirnotch.m function).

We measured integration windows from the broadband gamma power 
response timecourse of each electrode. We computed broadband gamma power by 
measuring the envelope of the pre-processed signal filtered between 70 and 140 Hz 
(implemented using a sixth-order Butterworth filter with 3 dB down cutoffs of 70 
and 140 Hz; the filter was applied forward and backward; envelopes were measured 
using the absolute value of the analytic signal, computed using the Hilbert 
transform; implemented using fdesign.bandpass in MATLAB). Results were  
robust to the frequency range used to measure broadband gamma (Extended Data 
Fig. 5d). We estimated the integration window of the filter to be ~19 ms, calculated 
as the smallest interval containing 75% of the filter’s mass, where the mass is taken 
to be the envelope of the impulse response. We found in simulations that the bias 
introduced by the bandpass filter was small relative to the range of integration 
windows we observed in human auditory cortex (~50–400 ms) (Extended Data  
Fig. 3a). Envelopes were downsampled to 100 Hz (the original sampling rate was 
512, 1,000, 1,024 or 2,048 Hz, depending on the subject).

Occasionally, we observed visually obvious artefacts in the broadband gamma 
power for a small number of timepoints. To detect such artefacts, we computed the 
90th percentile of each electrode’s response distribution across all timepoints. We 
classified a timepoint as an outlier if it exceeded 5 times the 90th percentile value 
for each electrode. We found this value to be relatively conservative in that only a 
small number of timepoints were excluded (on average, 0.04% of timepoints were 
excluded across all sound-responsive electrodes). We replaced the outlier values 
with interpolated values from nearby non-outlier timepoints (using piecewise 
cubic Hermite interpolation as implemented by MATLAB’s interp1.m function).

As is standard, we time-locked the iEEG recordings to the stimuli by either 
cross-correlating the audio with a recording of the audio collected synchronously 
with the iEEG data or by detecting a series of pulses at the start of each stimulus 
that were recorded synchronously with the iEEG data. We used the stereo jack on 
the experimental laptop either to send two copies of the audio or to send audio 
and pulses on separate channels. The audio on one channel was used to play 
sounds to subjects, and the audio/pulses on the other were sent to the recording 
rig. Sounds were played through either a Bose Soundlink Mini II speaker (at 
CUMC) or an Anker Soundcore speaker (at NYU). Responses were converted to 
units of percent signal change relative to silence by subtracting and then dividing 
the response of each electrode by the average response during the 500 ms before 
each stimulus.

Electrode selection. We selected electrodes with a reliable broadband gamma 
response to the sound set. Specifically, we measured the test–retest correlation of 
each electrode’s response across all stimuli (using odd versus even repetitions). 
We selected electrodes with a test–retest Pearson correlation of at least 0.1, which 
we found to be sufficient to reliably estimate integration windows in simulations 
(described below). We ensured that this correlation value was significant using 
a permutation test, where we randomized the mapping between stimuli across 
repeated presentations and recomputed the correlation (using 1,000 permutations). 
We used a Gaussian fit to the distribution of permuted correlation coefficients to 
compute small P values74. Only electrodes with a highly significant correlation were 
retained (P < 10−5). We identified 190 electrodes out of 2,847 total that showed a 
reliable response to natural sounds based on these criteria (62 right hemisphere 
electrodes, 128 left hemisphere electrodes).

Electrode localization. Following standard practice, we localized electrodes as 
bright spots on a post-operative computer tomography (CT) image or dark spots 
on a magnetic resonance image (MRI), depending on whichever was available in 
a given patient. The post-operative CT or MRI was aligned to a high-resolution, 
pre-operative MRI that was undistorted by electrodes. Each electrode was 
projected onto the cortical surface computed by Freesurfer from the pre-operative 
MRI, excluding electrodes greater than 10 mm from the surface. This projection 
is error prone because locations which are distant on the two-dimensional (2D) 
cortical surface can be nearby in three-dimensional (3D) space due to cortical 
folding. To minimize gross errors, we preferentially localized sound-responsive 
electrodes to regions where sound-driven responses are likely to occur75. 
Specifically, we calculated the likelihood of observing a significant response to 
sound using a recently collected fMRI dataset, where responses were measured 
to a large set of natural sounds across 20 subjects with whole-brain coverage76 
(P < 10−5, measured using a permutation test). We treated this map as a prior and 
multiplied it by a likelihood map, computed separately for each electrode based 
on the distance of that electrode to each point on the cortical surface (using a 
Gaussian error distribution with a full-width at half-maximum of 10 mm). We 
then assigned each electrode to the point on the cortical surface where the product 
of the prior and likelihood was greatest (which can be thought of as the maximum 
posterior probability solution). We smoothed the prior map (using a Gaussian 
kernel with full-width at half-maximum of 10 mm) so that it would not bias the 
location of electrodes locally, only helping to resolve gross-scale ambiguities/
errors, and we set the minimum prior probability to be 0.05 to ensure that each 
point had non-zero prior probability. We plot the prior map and its effect on 
localization in Supplementary Fig. 1.

Anatomical analyses. We grouped electrodes into ROIs based on their anatomical 
distance to posteromedial HG (TE1.1)77 (Fig. 4b), which is a common anatomical 
landmark for primary auditory cortex (PAC)19,78. Distance was measured on the 
flattened 2D representation of the cortical surface as computed by Freesurfer. 
Electrodes were grouped into three 10-mm bins (0–10, 10–20 and 20–30 mm), and 
we measured the median integration width and centre across the electrodes in each 
bin, separately for each hemisphere.

Statistics were computed using a linear mixed-effects (LME) model. In all 
cases, we used logarithmically transformed integration widths and centres, and 
for our key statistics, we did not bin electrodes into ROIs but rather represented 
each electrode by its distance to PAC. The LME model included fixed-effects terms 
for distance to PAC, hemisphere and type of electrode (grid, strip or depth), as 
well as a random intercept and slope for each subject (slopes were included for 
both hemisphere and distance-to-PAC effects)79. Fitting and significance analysis 
were performed by using the MATLAB functions fitlme.m and coefTest.m. A 
full covariance matrix was fit for the random-effects terms, and the Satterthwaite 
approximation was used to estimate the degrees of freedom of the denominator80. 
We report the estimated weight for the distance-to-PAC regressor (and its 95% 
confidence interval) as a measure of effect size in units of octaves per millimetre. 
We did not formally test for normality since regression models are typically robust 
to violations of normality81,82 and our key effects were highly significant (P < 0.001). 
The relevant data distribution can be seen in Extended Data Fig. 4. No a priori 
hypotheses/predictions were altered after the data were analysed or during the 
course of writing/revising our manuscript.

Bootstrapping was used to compute error bars. We resampled both subjects 
and electrodes with replacement, thus accounting for the hierarchical nature of the 
data. Specifically, for each subject, we sampled a set of electrodes with replacement 
from that subject. We then sampled a set of subjects with replacement, and for 
each subject used the previously sampled electrodes. There were a small fraction of 
samples that were missing data from one of the bins/hemispheres, and we simply 
discarded these samples (bin 3 in the right hemisphere was missing samples for 
4.0% of samples, with lower percentages for the rest of the bins/hemispheres). 
Error bars plot the central 68% interval (equivalent to one s.d.).

Component analyses. To investigate the functional selectivity of our electrodes, 
we used responses to the larger set of 119 natural sounds that were tested in a 
subset of 11 patients. There were 104 electrodes from these 11 subjects that passed 
the inclusion criteria described above. We subdivided these electrodes into three 
equally sized groups (Fig. 5a). We then used component (Fig. 5b) and prediction 
analyses (Fig. 5c,d) to investigate selectivity for spectrotemporal modulations  
and categories.

Component methods are commonly used to summarize responses from a 
population of electrodes or neurons9,75,83. For each electrode, we measured the 
average response of each electrode across each 4-s sound (from 250 ms to 4 s 
post stimulus onset), and projected these time-averaged responses onto the top 
two principal components (PCs) from each electrode group (Fig. 5b). PCs were 
measured by applying the singular value decomposition to the de-meaned and 
time-averaged electrode responses. We flipped and rotated the top two PCs so that 
they were maximally aligned with each other across the three groups in order to 
make them easier to visually compare.

Because the first two PCs might obscure category selectivity present at higher 
PCs, we repeated the analysis using the two components that best separated the 
categories, estimated using linear discriminant analysis84 (Extended Data Fig. 7). 
To avoid statistical circularity, we used half the sounds to infer components and 
the other half to measure their response. To prevent the analysis from targeting 
extremely low-variance components, we applied linear discriminant analysis to the 
top five PCs from each electrode group.

Feature predictions. As a complement to the component analyses, we measured 
the degree to which individual electrode response timecourses could be predicted 
from category labels versus a cochleagram representation of sound (Fig. 5c,d).

Cochleagrams were calculated using a cosine filterbank with bandwidths 
designed to mimic cochlear tuning19 (29 filters between 50 Hz and 20 kHz, 2× 
overcomplete). The envelopes from the output of each filter were compressed to 
mimic cochlear amplification (raised to the 0.3 power). The frequency axis was 
resampled to a resolution of 12 cycles per octave, and the time axis was resampled 
to 100 Hz (the sampling rate used for all of our analyses).

For each category label, we created a binary timecourse with 1 s for all 
timepoints/sounds from that category and 0 s for all other timepoints. We only 
labelled timepoints with a 1 if they had sound energy that exceeded a minimum 
threshold. Sound energy was calculated by averaging the cochleagram across 
frequency, and the minimum threshold was set to one-fifth of the mean energy 
across all timepoints and sounds.

We predicted electrode responses between 500 ms before stimulus onset to 4 s 
after stimulus onset. We used ridge regression to learn a linear mapping between 
these features and the response. We included five delayed copies of each regressor, 
with the delays selected to span the integration window of the electrode (from the 
bottom to top quintile of the window’s CDF). Regression weights were fit using 
the 107 sounds that were presented once, and we evaluated the fits using the 12 
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test sounds that were repeated four times each, making it possible to compute a 
noise-corrected measure of prediction accuracy:10,44

[0.5 × corr (r1, p) + 0.5 × corr(r2, p)]2

corr (r1, r2)
(1)

where r1 and r2 are two independent measures of the response (computed using odd 
and even repetitions) and p is the prediction computed from the training data. One 
electrode (out of 104) was discarded because of a negative test–retest correlation 
across the test sounds, making correction impossible. We used cross-validation 
within the training set to choose the regularization coefficient (testing a wide range 
of values from 2−100 to 2100 in octave steps). Figure 5c plots the median squared 
correlation (after noise correction) across the electrodes in each group for each 
feature set. Bootstrapping across subjects and electrodes was again used to compute 
error bars.

Figure 5d plots the difference in squared correlation values for all individual 
electrodes between a combined model that included both cochleagrams and 
category labels and the individual feature sets, as a measure of the unique 
variance contributed by each feature type85. The data in Fig. 5d were fit with a 
three-parameter logistic sigmoid curve (using MATLAB’s implementation of the 
Levenberg–Marquardt algorithm86 in fit.m),

y =
c

1 + e{−b(x−a)}

where x is the logarithmically transformed integration width (log2(i/50), where i 
is the integration width in milliseconds) and y is the unique variance explained by 
cochleagram features or category labels (parameters of fit logistic curve for unique 
cochleagram variance: a = 1.998, b = −4.601, c = 0.206; parameters for unique 
category variance: a = 2.011, b = 4.125, c = 0.332). The mid-way point of the logistic 
curve corresponded to 200 and 201 ms for unique cochleagram and category 
variance, respectively.

Significance was again evaluated using an LME model. The key statistical 
question was whether category labels explained significantly more variance than 
the cochleagrams for electrodes with longer integration windows. To test for this 
interaction between integration windows and feature types, we used an LME 
model to predict the difference between the correlation accuracies for the category 
versus cochleagram features. We used the raw prediction accuracies for the two 
feature sets, rather than trying to measure unique variance, to avoid any spurious 
dependence between the two measures (since estimating unique variance requires 
subtracting prediction accuracies from the same combined model), and we did not 
correct for noise, since the goal of this analysis was to assess significance and not 
effect size. The model included fixed-effects terms for the electrode’s integration 
width and hemisphere, as well as random intercepts and slopes for each subject. 
A fixed-effects regressor was added to control for electrode type (depth, grid and 
strip). We did not attempt to evaluate the significance of the hemisphere effect 
for this analysis because we did not have enough subjects with right hemisphere 
coverage who participated in both the TCI and natural sound experiment (2 
subjects, 20 electrodes).

Integration matching. We tested whether the functional changes we observed 
with increasing integration (Fig. 5) could be a generic consequence of greater 
temporal integration by matching the integration windows of our electrodes. To do 
this, we grouped the electrodes based on their integration width into three equally 
sized groups, as in our main analysis. We then increased the integration window 
of the short and intermediate groups so that their distribution of integration 
windows closely matched those for the long-integration group (Extended Data 
Fig. 8). Matching was accomplished by equating the cumulative distribution 
function across groups, which is a standard way to match the histogram of 
two distributions19. We manipulated the integration window of an electrode by 
convolving its response with a Gamma-distributed window, whose width was 
chosen separately for each electrode to achieve the desired effective integration 
window. The effective integration window was measured empirically by applying 
the TCI paradigm to the Gamma-convolved responses. We tested a wide range of 
Gamma widths (from 50 to 800 ms in quarter-octave steps) and selected the width 
that yielded the closest match to the desired integration window.

TCI method. In this section, we give a complete description of our TCI method. 
We repeat some of the details already described in Results so that this section is 
self-contained.

Overview. The integration window of a sensory response is defined as the time 
window when stimuli alter the response. Our method involves presenting a set of 
stimulus segments in two different random orders, such that each segment occurs 
in two different contexts (Fig. 1). If the integration window is shorter than the 
segment duration, then there should be a moment when the response is unaffected 
by the surrounding context segments. We developed an analysis to measure the 
degree to which the neural response depends upon context at each moment in time 
for each segment duration (the cross-context correlation). We then developed a 

model that estimates the overall integration window by pooling across these noisy, 
moment-by-moment estimates.

Cross-context correlation. The cross-context correlation is schematized in Fig. 2a. 
For each electrode and segment duration, we compile the responses to all segments 
into a matrix, aligned to segment onset (the SAR matrix) (Fig. 2a). A separate 
SAR matrix is computed for each of the two contexts tested. Each row of the SAR 
matrix contains the response timecourse to a single segment. Corresponding rows 
contain the response timecourse to the same segment for two different contexts. 
We correlate corresponding columns across the two SAR matrices (schematized in 
Fig. 2a by connected columnar boxes). This correlation provides a measure of the 
degree to which the response is the same across contexts. Before the onset of the 
shared segments, the integration window will fall on the context segments, which 
are random, and the correlation should thus be close to 0. After the onset of the 
shared segment, the integration window will begin to overlap the shared central 
segment, and if the window is shorter than the segment duration, there will be a 
moment/lag when it is fully contained within the shared segment and does not 
overlap the context. As a consequence, the response at that moment will be the 
same across the two contexts, yielding a correlation of 1. While noise prevents a 
correlation of 1, we can measure a noise ceiling for the cross-context correlation 
by measuring the correlation when the context is the same using repeated 
presentations of the same sequence.

The noise ceiling shows reliable and periodic variation across lags (Fig. 2b). 
We know that the variation is reliable because it is mirrored in the cross-context 
correlation when the integration is short relative to the segment duration (evident, 
for example, in the HG electrode’s data for 250 and 500 ms segments in Fig. 
2b). This variation is expected since the sounds that happen to fall within the 
integration window will vary with lag, and the noise ceiling will depend upon how 
strongly the electrode responds to these sounds. The periodicity is also expected 
and is an inevitable consequence of correlating across a fixed set of segments. To 
see why, note that the onset of one segment is the offset of the preceding segment. 
Since we are correlating across different segments for a fixed lag, the values being 
used to compute the correlation are nearly identical at the start and end of a 
segment (the only difference occurring for the first and last segment of the entire 
sequence). The same logic applies to all lags that are separated by a period equal to 
the segment duration.

Because the shorter segments were subsets of the longer segments, we could 
consider two types of context: (1) random context, where a segment is flanked 
by random other segments, and (2) natural context, where a segment is a part 
of a longer segment and thus surrounded by its natural context (see schematic 
in Extended Data Fig. 5b). Since the two contexts being compared must differ, 
one of the contexts has to be random, but the other context can be random or 
natural. In practice, we found similar results for random–random and random–
natural comparisons (Extended Data Fig. 5b). This fact is practically useful since 
it greatly increases the number of comparisons that can be made. For example, 
each 31-ms segment had 2 random contexts (one per sequence) and 12 natural 
contexts (2 sequences × 6 longer segment durations). The two random contexts 
can be compared with each other as well as with the other 12 natural contexts. We 
averaged the cross-context correlation across all of these comparisons for maximal 
statistical power.

The number of data points in the correlation is equal to the number of 
segments. The number of segments was determined by however many segments 
could fit in a 20-s sequence, which varied inversely with the segment duration 
from 640 segments (31 ms duration) to 10 segments (2 s duration). A consequence 
of this design is that the cross-context correlation will be more reliable for the 
shorter segment durations, since there are more data points. We consider this 
property useful since for responses with short integration windows there will 
be a smaller number of lags at the shorter segment durations that effectively 
determine the integration window, and thus it is helpful if these lags are highly 
reliable. Conversely, electrodes with longer integration windows exhibit a gradual 
build-up of the cross-context correlation at the longer segment durations, and as 
a consequence, there are many more lags that are relevant for determining the 
integration window. Our model enables us to pool across all of these lags to arrive 
at a robust estimate of the integration window.

Model-estimated integration windows. To estimate the neural integration window, 
we used a parametric window to predict the cross-context correlation across all 
lags and segment durations, and we selected the parameters that yielded the best 
prediction.

We parametrized the window using a Gamma distribution (h) and varied the 
width and centre of the distribution by scaling and shifting the window in time:

h (t; δ, λ, β) = g
(

t − δ
λ

, γ
)

(2)

g (t;γ) =
γγ

Γ(γ)
tγ−1e−γt (3)
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The window shape is determined by γ and varies from more exponential 
to more bell shaped (Extended Data Fig. 5c). The parameters λ and δ scale and 
shift the window, respectively. The width and centre of the integration window 
do not correspond directly to any of these three parameters, mainly because the 
scale parameter (λ) alters both the centre and width. The integration width was 
defined as the smallest interval that contained 75% of the window’s mass, and the 
integration centre was defined as the window’s median. Both parameters were 
calculated numerically from the cumulative distribution function of the window.

For a given integration window, we predicted the cross-context correlation at 
each lag and segment duration by measuring how much the integration window 
overlaps the shared central segment (w) versus the N surrounding context 
segments (βn) (see Fig. 3b for a schematic):

rceil
w2

w2 +
∑N

n=1 β2
n

(4)

where rceil is the measured noise ceiling, and the ratio on the right is the predicted 
correlation in the absence of noise. The predicted cross-context correlation 
varies with the segment duration and lag because the overlap varies with the 
segment duration and lag. When the integration window only overlaps the shared 
segment (w = 1, 

∑

βn = 0), the model predicts a correlation equal to the noise 
ceiling, and when the integration window only overlaps the surrounding context 
segments (w = 0, 

∑

βn = 1), the model predicts a correlation of 0. Between these 
two extremes, the predicted cross-context correlation equals the fraction of the 
response variance driven by the shared segment, with the response variance 
for each segment given by the squared overlap with the integration window. A 
formal derivation of this equation is given below (see Deriving a prediction for 
the cross-context correlation). The lag-dependent overlap with each segment was 
computed by convolving the model integration window with a boxcar function 
whose width was equal to the segment duration (with edges tapered to account for 
segment cross-fading).

We varied the width, centre and shape of the model integration window and 
selected the window with the smallest prediction error (using a bias-corrected 
variant of the mean squared error; see Simulations and Deriving the bias-corrected 
loss). Since the cross-context correlation is more reliable for shorter segment 
durations because of the greater number of segments, we weighted the error by 
the number of segments used to compute the correlation before averaging the 
error across segment durations. Integration widths varied between 31.25 ms and 
1 s (using 100 logarithmically spaced steps). Integration centres varied from the 
minimum possible given for a causal window up to 500 ms beyond the minimum 
in 10 ms steps. We tested five window shapes (γ = 1, 2, 3, 4 and 5).

We assessed the significance of our model predictions by creating a null 
distribution using phase-scrambled model predictions. Phase scrambling preserves 
the mean, variance and autocorrelation of the predictions but alters the locations 
of the peaks and valleys. Phase scrambling was implemented by shuffling the 
phases of different frequency components without altering their amplitude and 
then reconstructing the signal (using the fast Fourier transform and its inverse). 
After phase scrambling, we remeasured the error between the predicted and 
measured cross-context correlation, and selected the model with the smallest error 
(as was done for the unscrambled predictions). We repeated this procedure 100 
times to build up a null distribution, and used this null distribution to calculate 
a P value for the actual error based on unscrambled predictions (again fitting 
the null distribution with a Gaussian to calculate small P values). For 96% of 
sound-responsive electrodes (182 of 190), the model predictions were highly 
significant (P < 10−5).

For the shape parameters tested (γ = 1, 2, 3, 4 and 5), the minimum centre for 
a causal window is equal to half the integration width (Fig. 4c, blue line). This 
value occurs when γ = 1 and δ = 0, in which case the window has an exponential 
distribution. An exponential distribution is monotonically decreasing and reaches 
its maximal value at t = 0, which intuitively fits the notion of a window with 
minimal delay. Note that for γ < 1, the centre can be less than half the integration 
width, but this is arguably an idiosyncrasy of how the parameters were defined. 
If we instead define the integration width as the highest-density 50% interval 
instead of the highest-density 75% interval, then the centre equals the width for all 
windows with γ ≤ 1, which fits the intuition that all of these windows have minimal 
delay in the sense that they decrease monotonically from a maximal value at t = 0.

Modelling boundary effects. The model just described assumes that the neural 
response reflects a sum of responses to individual segments and does not explicitly 
account for responses that only occur at the boundary between segments. We 
found in simulations (described below) that strong boundary responses suppressed 
the cross-context correlation and led to an upward bias in the estimated integration 
widths when not accounted for. The suppression is probably due to the fact that 
boundary effects by definition depend upon two segments and thus must be 
context dependent.

To correct this bias, we modelled boundary effects explicitly. By construction, 
boundary effects can only occur when the integration window overlaps two 
adjacent segments. We captured this fact using the equations below. For every pair 
of adjacent segments, we compute the magnitude of the boundary effect as

b (α1, α2) = (α1 + α2) g (α1, α2) η (5)

g (α1, α2) = 0.5
(

1 − cos
(

2π
α1

α1 + α2

))

(6)

where α1 and α2 represent how much the integration window overlaps the two 
adjacent segments being considered. The first term, (α1 + α2), reflects the overall 
amount of overlap across the two segments, and the second term (raised cosine 
function, g(α1,α2)) is a non-linear function that ensures that boundary effects 
are only present when the window overlaps both segments (taking a value of 1 
when the overlap is equal across the two adjacent segments and a value of 0 when 
the overlap is exclusive to just one segment). The free parameter η determines 
the overall strength of the boundary effects, which will depend upon the type of 
response being measured and thus needs to be estimated from the data. We tested a 
range of boundary strengths (η = 0, 0.25, 0.5, 1 and 2.0) and selected the parameter 
that yielded the best prediction accuracy for each electrode.

For each lag and segment duration, we measured the strength of boundary 
effects for all pairs of adjacent segments using equation (5). We then summed 
the boundary effects across all adjacent segments and added this term to the 
denominator of equation (4), which results in a suppression of the cross-context 
correlation that depends on the strength of the boundary effect. In simulations, we 
found that this approach substantially reduced the estimated bias for integration 
windows with substantial boundary sensitivity but had no effect on integration 
windows without boundary sensitivity (as expected, since η = 0 removes the effect 
of the boundary).

Simulations. We tested the ability of our complete analysis pipeline to correctly 
estimate ground-truth integration windows from a variety of simulated model 
responses. In all cases, there was a ground-truth, Gamma-distributed integration 
window. We varied the width and centre of the window between 32 and 500 ms, 
excluding combinations that led to a non-causal window. For simplicity, all 
windows had the same shape (γ = 3), but we did not assume that the shape was 
known and thus varied the shape along with the width and centre when inferring 
the best-fit window, as was done for the neural analyses.

We simulated responses from four types of models. The first and simplest 
model integrated waveform magnitudes (absolute value of amplitude) over the 
specified Gamma window.

The second model integrated energy within a cochlear frequency band. 
Cochlear energy was computed in a standard manner19,51: the waveform was 
convolved with a filter whose frequency characteristics were designed to mimic 
cochlear frequency tuning, and the envelope of the filter’s response was then 
compressed (raised to the 0.3 power) to mimic cochlear amplification. We used 
filters with five different centre frequencies: 0.5, 1, 2, 4 and 8 kHz.

The third model integrated energy across time and frequency in a cochleagram 
representation of sound (computed in the same manner as described above). 
The spectrotemporal filters were taken from a standard model of cortical 
responses19,40. The filters are tuned in three dimensions: audio frequency, spectral 
modulation and temporal modulation. The temporal envelope of the filters have a 
Gamma-distributed window, and we varied the width and centre of the envelope in 
the same way as for the other models. The temporal modulation rate is determined 
by the envelope, with the modulation centre frequency equal to 3

3.5λ, where λ is the 
scale parameter of the Gamma-distributed envelope (which was set to achieve the 
desired width and centre). We tested five audio frequencies (0.5, 1, 2, 4 and 8 kHz) 
and four spectral modulation scales (0.25, 0.5, 1 and 2 cycles/octave).

The fourth model was a simple deep network, where we first passed the 
cochleagram through a series of ten pointwise non-linearities (that is, applied 
separately to each timestep) and then integrated the output within a specified 
Gamma-distributed window, thus ensuring that the output had a well-defined 
integration window and was also a highly non-linear function of the input. Each 
pointwise non-linearity involved multiplication by a random, fully connected 
weight matrix (sampled from a unit-variance Gaussian), mean normalization 
(setting the mean of the activations at each timepoint to 0) and rectification 
(setting negative values to 0).

For each model/window, we simulated responses to all of the stimulus 
sequences from our paradigm. We then used this response to modulate a 
broadband gamma carrier (Gaussian noise filtered between 70 and 140 Hz 
in the frequency domain; 75 dB/octave attenuation outside of the passband), 
which enabled us to test whether our gamma-extraction frontend had sufficient 
precision to enable accurate integration estimates (for simulations we used a 
512 Hz sampling rate, the minimum sampling rate used for neural data analyses; 
measured envelopes were downsampled to 100 Hz, again mimicking the neural 
analyses). Finally, we added wide-band noise to the signal to manipulate the 
SNR of the measurements (Gaussian noise filtered between 1 and 256 Hz in the 
frequency domain; 75 dB/octave attenuation outside the passband). We generated 
four repeated measurements per stimulus using independent samples of the 
carrier and wide-band noise (for most subjects, we also had four independent 
measurements per stimulus). We set the level of the wide-band noise to achieve a 
desired test–retest correlation (r = 0.05, 0.1, 0.2 and 0.4), the same measure used 
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to select electrodes (the noise level was iteratively increased/decreased until the 
desired test–retest correlation was attained). We tested the ability of our analysis to 
recover the correct integration windows from the four repeated measurements, as 
was done for our neural analyses. For each model/window, we repeated this entire 
process ten times to generate more samples with which to test our analysis pipeline 
(each time using different carrier and wide-band noise samples).

We found we were able to recover ground-truth integration windows and 
centres from the simulated model responses (Extended Data Fig. 3a). Accuracy 
was relatively good as long as the test–retest correlation was greater than 0.1, the 
threshold we used to select electrodes. The median error in estimated integration 
widths across all simulations for a test–retest correlation of 0.1 ranged from 
11% (waveform model) to 29% (spectrotemporal model). The median error 
for estimated centres was lower, ranging from 1% (waveform model) to 3% 
(spectrotemporal model).

For the spectrotemporal filters, the boundary model described above was 
important for correcting an upward bias induced by the presence of strong 
responses to spectrotemporal changes at the transition between segments 
(Extended Data Fig. 3b). In addition, we found that our bias-corrected loss helped 
correct an upward bias present at low SNRs (Extended Data Fig. 3c). We used the 
boundary model and bias-corrected loss for all of our analyses, although the results 
were similar without them.

Deriving a prediction for the cross-context correlation. In this section, we derive the 
equation used to predict the cross-context correlation from a model integration 
window (equation 4). The cross-context correlation is computed across segments 
for a fixed lag and segment duration by correlating corresponding columns of SAR 
matrices from different contexts (Fig. 2a). Consider two pairs of cells (es,A, es,B) 
from these SAR matrices, representing the response to a single segment (s) in two 
different contexts (A, B) for a fixed lag and segment duration (we do not indicate 
the lag and segment duration to simplify notation). To reason about how the 
shared and context segments might relate to the cross-context correlation at each 
moment in time, we assume that the response reflects the sum of the responses to 
each segment weighted by the degree of overlap with the integration window (Fig. 
3b):

es,A = wr(s) +
N

∑

n=1
βnr (cs,A,n) (7)

es,B = wr(s) +
N

∑

n=1
βnr(cs,B,n) (8)

where r(s) reflects the response to the shared central segment, r(cs,A,n) and r(cs,B,n) 
reflect the response to the nth surrounding segment in each of the two contexts 
(for example, the segment right before and right after, two before and two after, 
etc.) and w and βn reflect the integration window overlap with the shared and 
surrounding segments, respectively (Fig. 3b).

Below we write down the expectation of the cross-context correlation in the 
absence of noise, substitute equations (7) and (8), and simplify (for simplicity, we 
assume in these equations that the responses are zero mean). Moving from line 
(9) to line (10) takes advantage of the fact that contexts A and B are no different in 
structure and so their expected variance is the same. Moving from line (11) to line 
(12), we have taken advantage of the fact that surrounding context segments are 
random, and thus all cross products that involve the context segments are zero in 
expectation, cancelling out all of the terms except those noted in line (12). Finally, 
in moving from line (12) to line (13), we take advantage of the fact that there is 
nothing special about the segments that make up the shared central segments 
compared with the surrounding context segments, and their expected variance is 
therefore equal and cancels between the numerator and denominator.

E [rcross] =
Es [es,Aes,B]

√

Es
[

e2s,A
]

Es
[

e2s,B
]

(9)

=
Es [es,Aes,B]
Es

[

e2s,A
] (10)

=
Es

[(

wr (s) +
∑N

n=1 βnr (cs,A,n)
) (

wr (s) +
∑N

n=1 βnr (cs,B,n)
)]

Es
[

(

wr (s) +
∑N

n=1 βnr (cs,A,n)
)2
] (11)

=
w2Es

[

r (s)2
]

w2Es
[

r (s)2
]

+
∑N

n=1 β2
nEs

[

r (cs,A,n)2
] (12)

=
w2

w2 +
∑N

n=1 β2
n

(13)

We multiplied equation (13) by the noise ceiling to arrive at our prediction of 
the cross-context correlation (equation 4).

Deriving the bias-corrected loss. Here, we derive the correction procedure used to 
minimize the bias when evaluating model predictions via the squared error.

Before beginning, we highlight a potentially confusing, but necessary, 
distinction between noisy measures and noisy data. As we show below, the bias is 
caused by the fact that our correlation measures are noisy in the sense that they 
will not be the same across repetitions of the experiment. The bias is not directly 
caused by the fact that the data are noisy, since if there are enough segments, 
the correlation measures will be reliable even if the data are noisy, which is what 
matters since we explicitly measure and account for the noise ceiling. To avoid 
confusion, we use the superscript ‘(n)’ to indicate noisy measures, ‘(t)’ to indicate 
the true value of a noisy measure (that is, in the limit of infinite segments), and 
‘(p)’ to indicate a ‘pure’ measure computed from noise-free data.

Consider the error between the measured 
(

r(n)cross

)

 and model-predicted 
(

p(n)cross

)

 cross-context correlation for a single lag and segment duration (the model 

prediction is noisy because of multiplication with the noise ceiling, which is 
measured from data):

(

r(n)cross − p(n)cross

)2
(14)

Our final cost function averages these pointwise errors across all lags and segment 
durations weighted by the number of segments used to compute each correlation 
(which was greater for shorter segment durations). Here, we analyse each lag and 
segment duration separately, and thus ignore the influence of the weights, which is 
simply a multiplicative factor that can be applied at the end after bias correction.

Our analysis proceeds by writing the measured 
(

r(n)cross

)

 and predicted 
(

p(n)cross

)

 

cross-context correlation in terms of their underlying true and pure measures 
(equations (15)–(18)). We then substitute these definitions into the expectation of 
the squared error and simplify (equations (19)–(22)), which yields insight into the 
cause of the bias.

The cross-context correlation 
(

r(n)cross

)

 is the sum of the true cross-context 
correlation plus error:

r(n)cross = r(t)cross + ecross (15)

And the true cross-context correlation is the product of the pure/noise-free 
cross-context correlation 

(

r(p)cross

)

 with the true noise ceiling 
(

r(t)ceil

)

:

r(t)cross = r(p)crossr
(t)
ceil (16)

The predicted cross-context correlation is the product of the noise-free 
prediction 

(

p(p)cross

)

 with the measured noise ceiling 
(

r(n)ceil

)

:

p(n)cross = p(p)crossr
(n)
ceil (17)

And the measured noise ceiling is the sum of the true noise ceiling 
(

r(t)ceil

)

 plus 
error (eceil):

r(n)ceil = r(t)ceil + eceil (18)

Below we substitute the above equations into the expectation for the squared 
error and simplify. Only the error terms (ecross and eceil) are random, thus in 
equation (21), we have moved all of the other terms out of the expectation. 
In moving from equation (21) to equation (22), we make the assumption/
approximation that the errors are uncorrelated and zero mean, which causes all 
but three terms to drop out in equation (22). This approximation, while possibly 
imperfect, substantially simplifies the expectation and makes it possible to derive a 
simple and empirically effective bias-correction procedure, as described next.

E
[

(

r(n)cross − p(n)cross

)2
]

= E
[

((

r(p)crossr
(t)
ceil + ecross

)

−

(

p(p)cross

(

r(t)ceil + eceil
)))2

]

(19)

= E
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(

r(t)ceil

(

r(p)cross − p(p)cross

)

+ ecross − p(p)crosseceil
)2

]

(20)

= r(t)ceil
2 (r(p)cross − p(p)cross

)2
+ E
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e2cross
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+ p(p)cross
2E
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+2r(t)ceil
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r(p)cross − p(p)cross

)

E [ecross] − 2r(t)ceil
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)
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−2p(p)crossE [eceilecross]
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≈ r(t)ceil
2 (r(p)cross − p(p)cross

)2
+ E

[
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+ p(p)cross
2E

[
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]

(22)
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The first term in equation (22) is what we would hope to measure: a factor 
which is proportional to the squared error between the pure cross-context 

correlation computed from noise-free data 
(

r(p)cross

)

 and the model’s prediction of 

the pure cross-context correlation 
(

p(p)cross

)

. The second term does not depend upon 
the model’s prediction and thus can be viewed as a constant from the standpoint 
of analysing model bias. The third term is potentially problematic, since it biases 
the error upwards based on the squared magnitude of the predictions, with the 
magnitude of the bias determined by the magnitude of the errors in the noise ceiling. 
This term results in an upward bias in the estimated integration width, because 
narrower integration windows have less overlap with context and the predicted 
cross-context correlation tends to be larger in magnitude as a consequence. This bias 
is only present when there is substantial error in the noise ceiling, which explains 
why we only observed the bias for data with low reliability (Extended Data Fig. 3c).

We can correct for this bias by subtracting a factor whose expectation is equal 
to the problematic third term in equation (22). All we need is a sample of the error 
in the noise ceiling, which our procedure naturally provides since we measure 
the noise ceiling separately for segments from each of the two contexts and then 
average these two estimates. Thus, we can get a sample of the error by subtracting 
our two samples of the correlation ceiling and dividing by 2 (subtracting two 
independent variables causes their variance to sum, thus the need to divide by 2). 
We then take this sample of the error, square it, and multiply by the square of the 
noise-free model prediction (that is, p(p)cross), thus approximating the third term in 
equation (22). We then subtract this number from the measured squared error. 
This procedure is done separately for every lag and segment duration.

We found that this procedure substantially reduced the bias when pooling 
across both random and natural contexts (compare Extended Data Fig. 3a with 
Extended Data Fig. 3c), as was done for all of our analyses except those shown 
in Extended Data Fig. 5b. When only considering random contexts, we found 
that this procedure somewhat over-corrected the bias (inducing a downward 
bias for noisy data), perhaps due to the influence of the terms omitted in our 
approximation (equation 22). However, our results were very similar when using 
random or natural contexts (Extended Data Fig. 5b) and when using either the 
uncorrected or bias-corrected error. Thus, we conclude that our findings were not 
substantially influenced by noise and were robust to details of the analysis.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Source data are also provided with this paper. The data supporting the findings 
of this study are available from the corresponding author upon request. Data 
are shared upon request due to the sensitive nature of human patient data. The 
TCI stimuli and the Source data underlying key statistics and figures (Figs. 4 
and 5) are available at this repository: https://github.com/snormanhaignere/
NHB-TCI-source-data.

Code availability
Code implementing the TCI analyses described in this paper is available at:  
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Extended Data Fig. 1 | Histogram of phoneme, syllable, and word durations in tIMIt. Durations of phonemes, multi-phoneme syllables, and 
multi-syllable words in the commonly used TIMIT database. Phonemes and words are labeled in the database. Syllables were computed from the 
phoneme labels using the software tsylb287. The median duration for each structure is 64, 197, and 479 milliseconds, respectively.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Cross-context correlation for 20 representative electrodes. Electrodes were selected to illustrate the diversity of integration 
windows. Specifically, we partitioned all sound-responsive electrodes into 5 groups based on the width of their integration window, estimated using a 
model (Fig. 3 illustrates the model). For each group, we plot the four electrodes with the highest SNR (as measured by the test-retest correlation across 
the sound set). Electrodes have been sorted by their integration width, which is indicated to the right of each plot, along with the location, hemisphere and 
subject number for each electrode. Each plot shows the cross-context correlation and noise ceiling for a single electrode and segment duration (indicated 
above each column). There were more segments for the shorter durations, and as a consequence, the cross-context correlation and noise ceiling were 
more stable/reliable for shorter segments (the number of segments was inversely proportional to the duration). This property is useful because at the 
short segment durations, there are a smaller number of relevant time lags, and it is useful if those lags are more reliable. The model used to estimate 
integration windows pooled across all lags and segment durations, taking into account the reliability of each datapoint.
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Extended Data Fig. 3 | Simulation results. a, Integration windows estimated from four different model responses (from top to bottom): (1) a model that 
integrated waveform magnitudes within a known window (2) a model that integrated energy within a cochlear frequency band (3) a model that integrated 
spectrotemporal energy in a cochleagram representation of sound (4) a simple, deep neural network. All models had a ground truth, Gamma-distributed 
integration window. We independently varied the width and centre of the integration window (excluding non-causal combinations) and tested if we could 
infer the ground truth values. Results are shown for several different SNRs, as measured by the test-retest correlation of the response across repetitions, 
the same metric used to select electrodes (we selected electrodes with a test-retest correlation greater than 0.1). Black dots correspond to a single model 
window/simulation. Red dots show the median estimate across all windows/simulations. Some models included more variants (for example different 
spectrotemporal filters), which is why some plots have a higher dot density. There is a small upward bias for very narrow integration widths (31 ms), 
probably due to the effects of the filter used to measure broadband gamma, which has an integration width of ~19 milliseconds. The integration widths of 
our electrodes (~50 to 400 ms) were mostly above the point at which this bias would have a substantial effect, and the bias works against our observed 
results since it compresses the possible range of integration widths. b, Integration windows estimated without explicitly modeling and accounting for 
boundary effects. Results are shown for the spectrotemporal model, which produces strong responses at the boundary between two segments due to 
prominent spectrotemporal changes. Note there is a nontrivial upward bias, particularly for integration widths, when not accounting for boundary effects 
(see Methods for a more detailed discussion). c, Integration windows estimated without accounting for an upward bias in the squared error loss. The bias 
grows as the SNR decreases (see Methods for an explanation). Results are shown for the waveform amplitude model, but the bias is present for all models 
since it is caused by the loss. Our bias-corrected loss largely corrected the problem, as can be observed in panel a.
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Extended Data Fig. 4 | Integration windows for different electrode types and subjects. a, This panel plots integration widths (left) and centres (right) 
for individual electrodes as a function of distance to primary auditory cortex, defined as posteromedial Heschl’s gyrus. The electrodes have been labeled 
by their type (grid, depth, strip). The grid/strip electrodes were located further from primary auditory cortex on average, but given their location did not 
show any obvious difference in integration properties. The effect of distance was significant for the depth electrodes alone (the most numerous type 
of electrode) when excluding grids and strips (width: F1,14.53 = 24.51, p < 0.001, βdistance = 0.065 octaves/mm, CI = [0.039,0.090]; centre: F1,12.83 = 27.76, 
p < 0.001, βdistance = 0.052 octaves/mm, CI = [0.032,0.071], N = 114 electrodes). To be conservative, electrode type was included as a covariate in the linear 
mixed effects model used to assess significance as a whole. b, Same as panel a but indicating subject membership instead of electrode type. Each symbol 
corresponds to a unique subject. The effect of distance on integration windows is broadly distributed across the 18 subjects.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | robustness analyses. a, Sound segments were excerpted from 10 sounds. This panel shows integration windows estimated using 
segments drawn from two non-overlapping splits of 5 sounds each (listed on the left). Since many non-primary regions only respond strongly to speech 
or music8,9,11, we included speech and music in both splits. Format is analogous to Fig. 4 but only showing integration widths (integration centres were 
also similar across analysis variants). The effect of distance was significant for both splits (split1: F1,12.660 = 40.20, p < 0.001, βdistance = 0.069 octaves/mm, 
CI = [0.047,0.090], N = 136 electrodes; split 2: F1,21.66 = 30.11, p < 0.001, βdistance = 0.066 octaves/mm, CI = [0.043,0.090], N = 135 electrodes). b, Shorter 
segments were created by subdividing longer segments, which made it possible to consider two types of context (see schematic): (1) random context, in 
which each segment is surrounded by random other segments (2) natural context, where a segment is a subset of a longer segment and thus surrounded 
by its natural context. When comparing responses across contexts, one of the two contexts must be random so that the contexts differ, but the other 
context can be random or natural. Our main analyses pooled across both types of comparison. Here, we show integration widths estimated by comparing 
either purely random contexts (top panel) or comparing random and natural contexts (bottom panel). The effect of distance was significant for both types 
of context comparisons (random-random: F1,28.056 = 30.01, p < 0.001, βdistance = 0.064 octaves/mm, CI = [0.041,0.087], N = 121 electrodes; random-natural: 
F1,18.816 = 27.087, p < 0.001, βdistance = 0.062 octaves/mm, CI = [0.039,0.086], N = 154 electrodes). c, We modeled integration windows using window shapes 
that varied from more exponential to more Gaussian (the parameter γ in equations 2 and 3 controls the shape of the window, see Methods). For our main 
analysis, we selected the shape that yielded the best prediction for each electrode. This panel shows integration widths estimated using two different fixed 
shapes. The effect of distance was significant for both shapes (γ = 1: F1,21.712 = 24.85, p < 0.001, βdistance = 0.067 octaves/mm, CI = [0.040,0.093], N = 154 
electrodes; γ = 4: F1,20.973 = 19.38, p < 0.001, βdistance = 0.055 octaves/mm, CI = [0.031,0.080], N = 154 electrodes). d, Similar results were obtained using 
two different frequency ranges to measure gamma power (70–100 s Hz: F1,21.05 = 19.38, p < 0.001, βdistance = 0.058 octaves/mm, CI = [0.032,0.083], N = 133 
electrodes; 100–140 Hz: F1,20.56 = 12.57, p < 0.01, βdistance = 0.051 octaves/mm, CI = [0.023,0.080], N = 131 electrodes).
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Extended Data Fig. 6 | relationship between integration widths and centres without any causality constraint. This figure plots integration centres vs. 
widths for windows that were not explicitly constrained to be causal. Results were similar to those with an explicit causality constraint (Fig. 4c). Same 
format as Fig. 4c.
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Extended Data Fig. 7 | Components most selective for sound categories at different integration widths. Electrodes were subdivided into three equally 
sized groups based on the width of their integration window. The time-averaged response of each electrode was then projected onto the top 2 components 
that showed the greatest category selectivity, measured using linear discriminant analysis (each circle corresponds to a unique sound). Same format as 
Fig. 5b, which plots responses projected onto the top 2 principal components. Half of the sounds were used to compute the components, and the other 
half were used to measure their response to avoid statistical circularity. As a consequence, there are half as many sounds as in Fig. 5b.
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Extended Data Fig. 8 | results for integration-matched responses. a, For our functional selectivity analyses, we subdivided the electrodes into three 
equally sized groups, based on the width of their integration window. To test if our results were an inevitable consequence of differences in temporal 
integration, we matched the integration windows across the electrodes in each group. Matching was performed by integrating the responses from the 
electrodes in the short and intermediate groups within an appropriately chosen window, such that the resulting integration window matched those for the 
longest group (see Integration matching in Methods). This figure plots a histogram of the effective integration windows after matching. b-d, These panels 
show the results of our applying our functional selectivity analyses to integration-matched responses. Format is the same as Fig. 5b-d.
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n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data were collected from 23 patients undergoing treatment for intractable epilepsy at the NYU Langone Hospital (14 patients) and the 
Columbia University Medical Center (9 patients) (12 male, 11 female; mean age: 36 years, STD: 15 years). One patient was excluded because 
they had a large portion of the left temporal lobe resected in a prior surgery. Of the remaining 22 subjects, 18 had sound-responsive 
electrodes (see Electrode selection). No formal tests were used to determine the sample size, but the number of subjects was larger than in 
most intracranial studies, which often test fewer than 10 subjects5,36. Electrodes were implanted to localize epileptogenic zones and 
delineate these zones from eloquent cortical areas before brain resection. NYU patients were implanted with subdural grids, strips, and depth 
electrodes depending on the clinical needs of the patient. CUMC patients were implanted with depth electrodes. All subjects gave informed 
written consent to participate in the study, which was approved by the Institutional Review Boards of CUMC and NYU. NYU patients were 
compensated $20/hour. CUMC patients were not compensated due to IRB prohibition. 

Data analysis MATLAB  ocd implementing the TCI analysis (both cross-context correlation and model fits) is available here: https://github.com/
snormanhaignere/TCI 
 
Anatomical reconstructions were created using Freesurfer (v5.3.0).  
 
Preprocessing/filtering of intracranial data was performed using the MATLAB functions described in the main text (i.e. iirpeak.m, iirnotch.m, 
fdesign.bandpass).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data supporting the findings of this study are available from the corresponding author upon request. Data are shared upon request due to the sensitive nature 
of human patient data. Source data underlying key statistics and figures (Figures 4 & 5) are available at this repository:  
 
https://github.com/snormanhaignere/NHB-TCI-source-data
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Anatomical analyses were based on 182 electrodes across 18 patients (Figure 4). Functional selectivity analyses were based on 104 electrodes 
across 11 patients (Figure 4). Electrode selection procedures are described below.

Data exclusions Electrode selection. We selected electrodes with a reliable broadband gamma response to the sound set. Specifically, we measured the test-
retest correlation of each electrodes response across all stimuli (using odd vs. even repetitions). We selected electrodes with a test-retest 
Pearson correlation of at least 0.1, which we found to be sufficient to reliably estimate integration windows in simulations (described below). 
We ensured that this correlation value was significant using a permutation test, where we randomized the mapping between stimuli across 
repeated presentations and recomputed the correlation (using 1000 permutations). We used a Gaussian fit to the distribution of permuted 
correlation coefficients to compute small p-values71. Only electrodes with a highly significant correlation relative to the null were kept (p < 
10^(-5)). We identified 190 electrodes out of 2847 total that showed a reliable response to natural sounds based on these criteria.  
 
Model predictions. We assessed the significance of our model predictions by creating a null distribution using phase-scrambled model 
predictions. Phase scrambling exactly preserves the mean, variance and autocorrelation of the predictions but alters the locations of the 
peaks and valleys. Phase scrambling was implemented by shuffling the phases of different frequency components without altering their 
amplitude and then reconstructing the signal (using the FFT/iFFT). After phase-scrambling, we remeasured the error between the predicted 
and measured cross-context correlation, and selected the model with the smallest error (as was done for the unscrambled predictions). We 
repeated this procedure 100 times to build up a null distribution, and used this null distribution to calculate a p-value for the actual error 
based on unscrambled predictions (again fitting the null distribution with a Gaussian to calculate small p-values). For 96% of sound-responsive 
electrodes (182 of 190), the model’s predictions were highly significant (p < 10^(-5)).

Replication We demonstrate robustness in several ways.  
 
We show that our model is capable of recovering integration windows across a variety of models (Extended Figure 3). 
 
We show that the pattern of cross-context correlations is reliable by plotting a large and representative sample of electrodes (selected based 
on test-retest reliability) across multiple subjects (Extended Figure 2). 
 
We show that our findings are robust across the specific sounds tested (Extended Figure 5a), the type of context used to assess invariance 
(Extended Figure 5b),  the shape of the model window (Extended Figure 5c), the frequency range used to measure broadband gamma 
(Extended Figure 5d), and the type of electrode used (Extended Figure 4). 
 
All of our statistics take into account both within- and between-subject variability. 

Randomization Subjects were not grouped.

Blinding Blinding is not relevant to our study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Data were collected from 23 patients undergoing treatment for intractable epilepsy at the NYU Langone Hospital (14 
patients) and the Columbia University Medical Center (9 patients) (12 male, 11 female; mean age: 36 years, STD: 15 years). 

Recruitment Patients were asked if they would like to participate in research as a part of their clinical procedure, and it was made clear 
that participation was completely voluntary and would not affect their treatment in any way. There were no selection criteria 
for our experiments, since they just required listening to sounds.

Ethics oversight Institutional Review Boards of CUMC and NYU

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type These categories are not relevant.  
 
Stimuli for the TCI paradigm. Segments were excerpted from 10 natural sound recordings, each two seconds in duration 
(cat meowing, geese honking, cicadas chirping, clock ticking, laughter, English speech, German speech, big band music, 
pop song, drumming). Shorter segments were created by subdividing the longer segments. Each natural sound was 
RMS-normalized before segmentation.  
 
We tested seven segment durations (31.25, 62.5, 125, 250, 500, 1000, and 2000 ms). For each duration, we presented 
the segments in two pseudorandom orders, yielding 14 sequences (7 durations x 2 orders), each 20 seconds. The only 
constraint was that a given segment had to be preceded by a different segment in the two orders. When we designed 
the stimuli, we thought that integration windows might be influenced by transients at the start of a sequence, so we 
designed the sequences such that the first 2 seconds and last 18 seconds contained distinct segments so that we could 
separately analyze the just last 18 seconds. In practice, integration windows were similar when analyzing the first 18 
seconds vs. the entire 20-second sequence. Segments were concatenated using cross-fading to avoid click artifacts 
(31.25 ms raised cosine window). Each stimulus was repeated several times (4 repetitions for most subjects; 8 
repetitions for 2 subjects; 6 and 3 repetitions for two other subjects). Stimuli will be made available upon publication.  
 
Natural sounds. In a subset of 11 patients, we measured responses to a diverse set of 119 natural sounds from 11 
categories, similar to those from our prior studies characterizing auditory cortex9 (there were at least 7 exemplars per 
category). The sound categories are listed in Figure 5a. Most sounds (108) were 4 seconds. The remaining 11 sounds 
were longer excerpts of English speech (28-70 seconds) that were included to characterize responses to speech for a 
separate study. Here, we just used responses to the first 4 seconds of these stimuli to make them comparable to the 
others. The longer excerpts were presented either at the beginning (6 patients) or end of the experiment (5 patients). 
The non-English speech stimuli were drawn from 10 languages: German, French, Italian, Spanish, Russian, Hindi, 
Chinese, Swahili, Arabic, Japanese. We classified these stimuli as “foreign speech” since most were unfamiliar to the 
patients. Twelve of the sounds (all 4-seconds) were repeated four times in order to measure response reliability and 
noise-correct our measures. The other 107 stimuli  were presented once. All sounds were RMS-normalized.  
 
As with the main experiment, subjects did not have a formal task but the experiment was periodically paused and 
subjects were asked a simple question to encourage them to listen to the sounds. For the 4-second sounds, subjects 
were asked to identify/describe the last sound they heard. For the longer English speech excerpts, subjects were asked 
to repeat the last phrase they heard. 

Design specifications See above response.

Behavioral performance measures N/A
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Acquisition

Imaging type(s) Anatomical T1 images were used to localize electrodes

Field strength 1.5 and 3T

Sequence & imaging parameters Standard T1-weighted anatomical images

Area of acquisition Whole Brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Anatomical reconstructions were created using Freesurfer (v5.3.0).  
 
Preprocessing/filtering of intracranial data was performed using the MATLAB functions described in the main text (i.e. 
iirpeak.m, iirnotch.m, fdesign.bandpass).

Normalization Each electrode was projected onto the cortical surface computed by Freesurfer from the pre-op MRI, excluding electrodes 
greater than 10 mm from the surface. This projection is error prone because locations which are distant on the 2D cortical 
surface can be nearby in 3D space due to cortical folding. To minimize gross errors, we preferentially localized sound-
responsive electrodes to regions where sound-driven responses are likely to occur72. Specifically, we calculated the 
likelihood of observing a significant response to sound using a recently collected fMRI dataset, where responses were 
measured to a large set of natural sounds across 20 subjects with whole-brain coverage73 (p < 10^(-5), measured using a 
permutation test). We treated this map as a prior and multiplied it by a likelihood map, computed separately for each 
electrode based on the distance of that electrode to each point on the cortical surface (using a 10 mm FWHM Gaussian error 
distribution). We then assigned each electrode to the point on the cortical surface where the product of the prior and 
likelihood was greatest (which can be thought of as the maximum posterior probability solution). We smoothed the prior 
map (10 mm FWHM kernel) so that it would not bias the location of electrodes locally, only helping to resolve gross-scale 
ambiguities/errors, and we set the minimum prior probability to be 0.05 to ensure every point had non-zero prior probability. 
We plot the prior map and its effect on localization in Extended Data Fig 9.

Normalization template FsAverage Template brain distributed by Freesurfer

Noise and artifact removal Not relevant since MRIs were only used for electrode localization.

Volume censoring Not relevant.

Statistical modeling & inference

Model type and settings Statistics for anatomical analyses. Statistics were computed using a linear mixed effects (LME) model. In all cases, we used 
logarithmically transformed integration widths and centers, and for our key statistics, we did not bin electrodes into ROIs, but 
rather represented each electrode by its distance to PAC. The LME model included fixed effects terms for distance-to-PAC, 
hemisphere, and type of electrode (grid, strip, or depth), as well as a random intercept and slope for each subject (slopes 
were included for both hemisphere and distance-to-PAC effects)76. Fitting and significance was performed by the matlab 
functions fitlme and coefTest. A full covariance matrix was fit for the random effects terms, and the Satterwaite 
approximation was used estimate the degrees of freedom of the denominator77. We report the estimated weight for the 
distance-to-PAC regressor (and its 95% confidence interval) as a measure of effect size in units of octaves per millimeter. We 
did not formally test for normality since regression models are typically robust to violations of normality1,2 and our key 
effects were highly significant (p < 0.001). The relevant data distribution can be seen in Extended Data Figure 4. No a priori 
hypotheses/predictions were altered after the data were analysed or during the course of writing/revising our manuscript.  
 
Statistics for functional analyses. Significance was again evaluated using an LME model. The key statistical question was 
whether category labels explained significantly more variance than the cochleagrams for electrodes with longer integration 
windows. To test for this interaction between integration window and feature type, we used an LME model to predict the 
difference between the correlation accuracies for the category vs. cochleagram features. We used the raw prediction 
accuracies for the two feature sets, rather than trying to measure unique variance to avoid any spurious dependence 
between the two measures (since estimating unique variance requires subtracting prediction accuracies from the same 
combined model), and we did not correct for noise, since the goal of this analysis was to assess significance and not effect 
size. The model included fixed effects terms for the electrode’s integration width and hemisphere, as well as random 
intercepts and slopes for each subject. A fixed effects regressor was added to control for electrode type (depth, grid, strip). 
We did not attempt to evaluate the significance of the hemisphere effect for this analysis because we did not have enough 
subjects with right hemisphere coverage that participated in both the TCI and natural sound experiment (2 subjects, 20 
electrodes). 

Effect(s) tested Effect of integration windows on distance to PAC. Difference between cochleagram vs. category prediction accuracy as a 
function of the integration width.

Specify type of analysis: Whole brain ROI-based Both
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Anatomical location(s)

We grouped electrodes into regions-of-interest (ROI) based on their anatomical distance to 
posteromedial Heschl’s gyrus (TE1.1) (Fig 3b), which is a common anatomical landmark for primary 
auditory cortex. Distance was measured on the flattened 2D representation of the cortical surface as 
computed by Freesurfer. Electrodes were grouped into three 10 millimeter bins (0-10, 10-20, and 20-30 
mm), and we measured the median integration width and center across the electrodes in each bin, 
separately for each of the two hemispheres.  
 
No binning was done for LME model. Rather we predicted electrode statistics based on distance to PAC.

Statistic type for inference
(See Eklund et al. 2016)

Fitting and significance was performed by the matlab functions fitlme and coefTest. A full covariance matrix was fit for the 
random effects terms, and the Satterwaite approximation was used estimate the degrees of freedom of the denominator. 

Correction Not relevant.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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