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The effects on speech intelligibility and sound quality of two noise-reduction algorithms were com-

pared: a deep recurrent neural network (RNN) and spectral subtraction (SS). The RNN was trained

using sentences spoken by a large number of talkers with a variety of accents, presented in babble.

Different talkers were used for testing. Participants with mild-to-moderate hearing loss were tested.

Stimuli were given frequency-dependent linear amplification to compensate for the individual hear-

ing losses. A paired-comparison procedure was used to compare all possible combinations of three

conditions. The conditions were: speech in babble with no processing (NP) or processed using the

RNN or SS. In each trial, the same sentence was played twice using two different conditions. The

participants indicated which one was better and by how much in terms of speech intelligibility and

(in separate blocks) sound quality. Processing using the RNN was significantly preferred over NP

and over SS processing for both subjective intelligibility and sound quality, although the magnitude

of the preferences was small. SS processing was not significantly preferred over NP for either sub-

jective intelligibility or sound quality. Objective computational measures of speech intelligibility

predicted better intelligibility for RNN than for SS or NP. VC 2019 Acoustical Society of America.

https://doi.org/10.1121/1.5094765

[JGB] Pages: 1493–1503

I. INTRODUCTION

A major complaint of people with sensorineural hearing

loss is difficulty in understanding speech in the presence of

background sounds (Plomp, 1978; Moore, 2007). The diffi-

culty relative to people with normal hearing is especially

pronounced for background sounds containing one or more

competing talkers (Festen and Plomp, 1990; Peters et al.,
1998). While directional microphones and beamformers in

hearing aids can improve the ability to understand speech in

the presence of spatially distributed interfering sounds

(Hawkins and Yacullo, 1984; Bentler et al., 2008; Launer

et al., 2016; Picou and Ricketts, 2017), the benefits in every-

day life have been found to be modest (Picou et al., 2014),

partly because it is not always possible or practical to “point

the beam” at the target talker. This paper compared the

effects of babble reduction produced using two algorithms

that do not depend on spatial separation of the target and

background sounds. The two algorithms were spectral sub-

traction (SS) and processing using a deep recurrent neural

network (RNN). These two types of algorithms are described

next.

Most hearing aids incorporate some form of noise-

reduction algorithm that operates independently of the direc-

tion of the sound sources. Some of these algorithms are

based on SS (Hamacher et al., 2005), which has four steps:

(1) estimation of the short-term spectrum of the noisy speech

and of the noise alone; (2) subtraction of the estimated noise

spectrum from the spectrum of the speech þ noise; (3)

reconstruction of the speech from the resulting spectrum,

using the original noisy phases; (4) repetition of this process

for a series of overlapping time frames. SS can be applied to

the broadband input signal. Alternatively, the noisy signal

can be split into multiple frequency bands or channels, and

the noise spectrum can be estimated independently in each

channel. In some simplified systems that are used in hearing

aids, the gain in each channel is progressively reduced as the

estimated noise level in that channel increases.

The most error-prone stage in SS is estimation of the

noise spectrum. There are two main approaches to this, and

both are based on the assumption that the noise is stationary

or nearly so (Kates, 1987). Hence, these approaches are inef-

fective when the background consists of one or very few

talkers, but they can improve the signal-to-background ratio

(at the potential cost of the introduction of artifacts) when

the background is a reasonably steady noise (e.g., car noise)a)Electronic mail: mahmoud.keshavarzi.ir@ieee.org
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or multiple talkers (babble). It is not clear, however, how

many talkers are required for a babble to be steady enough

for reliable estimation of its spectrum.

The first approach focuses on voice-activity detection

(VAD), which is the process of discriminating between time

periods when speech is present and when it is absent. The

discrimination is usually based on features such as short-

time energy and the pattern of zero-crossings of the input

signal (Loizou, 2007). The estimates of noise power and

spectrum are updated only during non-speech segments, and

it is assumed that the noise power and spectrum remain the

same during speech segments. The second approach esti-

mates the noise spectrum continuously and does not need to

detect voice activity. This approach is based on the assump-

tion that speech contains time-frequency (TF) segments

where the energy is very low, so the output of those seg-

ments is dominated by the noise (Loizou, 2007). Hence, the

noise spectrum in a given frequency region can be estimated

during the level minima in that frequency region.

Several researchers (Levitt et al., 1993; Jamieson et al.,
1995; Arehart et al., 2003; Alc�antara et al., 2003; Natarajan

et al., 2005; Hu and Loizou, 2007a; Brons et al., 2012) have

investigated both subjective and objective effects of SS on

intelligibility, listening effort and sound quality. Generally,

little or no improvement in speech intelligibility has been

found, although some studies showed improvements in

sound quality for steady noise backgrounds.

There are two major limitations of SS. The first is that

accuracy in estimating the background spectrum is poor

when the background is not stationary, for example when it

is babble or traffic noise. Although many hearing aids

include some form of scene classification (Launer et al.,
2016; Moore et al., 2016), the categories are usually rather

coarse, for example, speech in quiet, speech in noise, music,

or noise alone. Hence, in practice, SS is applied to most

types of noise background, and it might have deleterious

effects for backgrounds such as babble. The second limita-

tion is that the speech is reconstructed using the original

noisy phase, and this generates processing artifacts such as

musical noise (Loizou, 2007). Processing schemes that

jointly enhance the magnitude and the phase have been

developed (Krawczyk and Gerkmann, 2014), but these are

complex and have not, to our knowledge, been implemented

in hearing aids.

An alternative approach to SS is to employ supervised

machine-learning (ML) techniques. Techniques of this sort

have been widely used and artificial neural networks (ANN)

with three or more layers have led to significant progress in

many supervised ML tasks (Hinton et al., 2006). ANN mod-

els consist of a multi-layer structure that is used to transform

n-dimensional input data into m-dimensional output data

representations with arbitrary degrees of abstraction. Each

layer of the model consists of a number of nodes whose

parameters (e.g., connection weights and bias values) are

fine-tuned during a training procedure, for example in a

supervised fashion with pre-labelled output data. Especially

for complex, non-linear tasks, such as single-channel speech

segregation, ANNs represent a promising technique for pre-

dicting the speech-dominant parts of a speech þ noise signal.

We consider here ANNs with two architectures: feed-

forward deep neural networks (DNN) and recurrent neural

networks (RNN). While DNNs process input data exclu-

sively in a feed-forward manner to calculate output data rep-

resentations, RNNs make use of recursive connections

between layers that allow for the build-up of an internal tem-

poral memory. Hence, RNNs make use of the inter-

dependence of data samples across time (Graves et al., 2013;

Lipton et al., 2015) and have achieved the best results for

the detection and recognition of temporal patterns in speech

signals and time-series data in general. One highly success-

ful RNN architecture, the long short-term memory (LSTM)

model, was proposed by Hochreiter and Schmidhuber (1997)

to model the long-range dependencies of temporal sequences

in a more accurate way than with conventional RNNs (Sak

et al., 2014). The LSTM model was therefore used in this

study.

Several ML-based approaches using DNNs to segregate

speech from background sounds have shown improved per-

ception of speech in noise for normal-hearing and hearing-

impaired listeners and users of cochlear implants (Healy

et al., 2013; 2015; Chen et al., 2016; Goehring et al., 2017;

Monaghan et al., 2017; Bramsløw et al., 2018). In the last

few years, the use of RNNs for segregation of speech from

noise has led to improvements over DNN-based methods, in

both estimation accuracy and generalization performance

(Weninger et al., 2015; Huang et al., 2015; Chen and Wang,

2017; Kolbæk et al., 2017). ML-based approaches, in partic-

ular RNNs, appear to be good candidates for reducing babble

noise, given their success in reducing non-stationary noise

maskers at low signal-to-noise ratios. However, to our

knowledge, they have not yet been evaluated with this appli-

cation in mind. While RNN-based methods have been shown

to give better performance than DNN-based methods when

using computational measures of intelligibility (Chen and

Wang, 2017), the benefits for the perception of speech in

babble by human listeners remain unclear.

This paper investigated the effects of babble reduction

produced using two algorithms. The first was an ML algo-

rithm based on a deep (multi-layer) LSTM model. For brev-

ity, this is referred to hereafter simply as the RNN. The RNN

was first trained to predict the ideal ratio mask (IRM, a soft-

gain function based on the ideal Wiener filter in the TF

domain), using recordings of speech that were combined

with babble. The clean (babble-free) speech was used to esti-

mate the target IRM. The trained model was then used to

process the speech in babble, so as to attenuate TF segments

with low speech-to-babble ratio (SBR) while retaining seg-

ments with high SBR. The second algorithm used multi-

band SS, as described by Kamath and Loizou (2002). This

algorithm was included as a comparison condition because

similar algorithms have been used in hearing aids and

because, as described earlier, SS processing in hearing aids

is likely to be applied to many types of background, not just

steady noise. Both algorithms were frame based, using 5-ms

frames, chosen here because for application in hearing aids a

low time delay is required (Stone and Moore, 1999, 2002)

and this requires short frames. A control condition used

speech in babble with no processing (NP). Each condition

1494 J. Acoust. Soc. Am. 145 (3), March 2019 Keshavarzi et al.



was compared pairwise with the two other conditions to

assess subjective preferences for intelligibility and sound

quality, using participants with hearing loss. Subjective judg-

ments of sound quality were used since signal processing

that leads to poor sound quality is unlikely to be accepted by

users of hearing aids. Subjective intelligibility was assessed

to speed testing time and because it has been shown to be

highly correlated with objective intelligibility (Cienkowski

and Speaks, 2000).

II. METHOD

A. Participants

Eight native British English-speaking participants with

hearing loss took part in the experiment. The number of par-

ticipants was chosen to be sufficient to reveal small-to-mod-

erate effect sizes, based on previous studies using similar

methods to assess preferences (Moore and Sek, 2013; 2016;

Keshavarzi et al., 2018). Audiometric thresholds were mea-

sured for audiometric frequencies from 0.25 to 8 kHz, using

a Grason-Stadler GSI-61 audiometer (Eden Prairie, MN) and

Telephonics TDH50 headphones (Huntington, NY). Only

the better-hearing ear of each participant was tested (based

on the average threshold across 0.5–4 kHz). The sex, age,

and audiometric thresholds for the test ears of the hearing-

impaired participants are shown in Table I. The participants

were chosen to be representative of the general population of

people with mild-to-moderate hearing loss, and most had

greater hearing loss at high than at low frequencies. Seven

participants were regular users of hearing aids, but the hear-

ing aids were removed for testing. The experiment lasted

about 1 h for each participant, and participants were paid for

taking part as well as receiving reimbursement for travel

expenses. Ethical approval was granted by the National

Research Ethics Service, East of England (approval 06/

Q0108/101).

B. Speech and babble materials

The speech stimuli used in this study were selected from

a British English multi-speaker corpus named CSTR VCTK

(Centre for Speech Technology Voice Cloning Toolkit),

developed by researchers at the University of Edinburgh and

available at http://homepages.inf.ed.ac.uk/jyamagis/release/

VCTK-Corpus.tar.gz. The speakers had a variety of accents.

This set of recordings was chosen to ensure that the RNN

would generalize to a wide range of talkers. The recordings

were made using a 96-kHz sampling rate and 24-bit resolu-

tion. They were subsequently converted by the creators of

the corpus to 48-kHz sampling with 16-bit resolution. For

this study, the sentences were further down-sampled to

16 kHz. We used 1600 sentences from 80 speakers (40

female and 40 male) for training the RNN and 300 sentences

from six other speakers (three female and three male) for

evaluating the performance of the RNN and SS algorithms

using objective measures. For subjective evaluations of

speech intelligibility and sound quality, we used eight sen-

tences (two from each of two female and two male talkers)

randomly chosen from the 300 used for the objective

measures.

The babble was taken from a recording made by

Auditec St Louis and consisted of a mixture of speech from

20 American-English speakers (eight male and 12 female).

For the subjective evaluations, SBRs of 0 and 5 dB were

used. For training of the RNN and for the objective evalua-

tions, SBRs of �5, 0, 5, and 10 dB were used. The SBRs

were based on the long-term average of the speech and bab-

ble levels. Independent 2-min samples of the babble were

used for training and testing.

C. Machine-learning algorithm and RNN

As described in the introduction, the LSTM model vari-

ant of the RNN proposed by Hochreiter and Schmidhuber

(1997) was used here. As illustrated in Fig. 1, the RNN con-

sisted of an input layer, three LSTM layers with 128 units

each, and a fully connected output layer with 64 units. This

architecture is typical of RNN-based speech-segregation sys-

tems, with the modelling of increasingly abstract representa-

tions of the input features and their temporal dependencies

within the three LSTM layers and a recombination of the

information for the final output estimation in the fully con-

nected layer. The RNN used fewer units in each of the hid-

den layers than previously proposed RNN architectures

(Chen and Wang, 2017) to reduce its computational com-

plexity and memory requirements for potential applications

in practice. The signal was segmented into frames with a

duration of 5 ms (80 samples) and an overlap of 50% (40

samples) between successive frames. The RNN processed a

five-time-step input and each step corresponded to features

extracted from one frame of speech; steps 1, 2, 3, 4, and 5

corresponded to successive frames j-4, j-3, j-2, j-1, and j,

respectively. We used only four past frames and the current

frame as input to keep the RNN processing causal, to mini-

mize the delay and memory requirements for the processing,

and to keep the size of the RNN small while allowing for a

temporal window at the input layer comparable to the frame

length used in other studies (often around 20–25 ms). The

choice of five frames was also based on results from a previ-

ous study (Keshavarzi et al., 2018), in which we used four

input frames. The RNN took acoustic features as its inputs

and predicted the IRM based on the ideal Wiener filter in the

TF domain (Wang et al., 2014; Delfarah and Wang, 2017;

Healy et al., 2017).

TABLE I. Sex, age and audiometric thresholds (in dB HL) of the test ears of

the hearing-impaired participants.

Frequency, kHz

Sex Age, years 0.125 0.5 1 2 3 4 6 8

Male 73 10 20 25 40 50 55 50 70

Female 82 40 50 55 50 55 55 50 75

Female 46 5 20 30 45 45 50 30 30

Male 71 15 20 20 10 30 45 50 60

Female 56 0 10 10 45 60 70 85 75

Male 62 15 30 20 40 55 50 55 55

Male 77 10 5 5 25 45 70 65 65

Female 72 10 10 10 35 45 50 40 40
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The speech in babble was considered as

xðtÞ ¼ sðtÞ þ vðtÞ; (1)

where t is time, x is the speech in babble, s is the clean

speech, and v is the babble, respectively. For training, SBRs

of �5, 0, þ5, and þ 10 dB were used, and these were inter-

mixed in random order during training. The IRM for the jth
frame and mth channel was defined as

IRMðj;mÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ðj ; mÞ

S2ðj ; mÞ þ V2ðj ; mÞ

s
; (2)

where S(j, m) and V(j, m) represent the magnitudes of s(t)
and v(t) in the mth channel of frame j, respectively (Delfarah

and Wang, 2017). Essentially, this equation means that the

gain applied to each channel and frame increased from 0 to 1

as the ratio of the speech signal power to the total power in

that channel and frame increased as a function of the local

SBR. The IRM has been widely used in previous noise-

reduction studies to attenuate speech-absent TF units while

preserving speech-dominant TF units. Note that the babble-

free speech was used to obtain S(j,m) for calculating the

IRM training data, but this is not available in practice and

needs to be estimated by the RNN.

The features used to train the RNN were the energy in

each frame at the output of a 64-channel gammatone filter

bank (Patterson et al., 1995) with filter center frequencies

uniformly spaced on the ERBN-number scale (Glasberg and

Moore, 1990) and spanning the range 50–8000 Hz. Similar

features have been used previously in DNN- and RNN-based

noise reduction (Chen et al., 2016; Chen and Wang, 2017).

The gammatone features were calculated using a fast Fourier

transform with 5-ms Hanning windowed frames and 50%

overlap. No smoothing of the spectrum was applied.

The ML frameworks TFlearn and Tensorflow, which are

freely available, were used to construct, train, and test the

RNN (Abadi et al., 2016; Tang, 2016). The resilient back-

propagation algorithm “RMSprop” (Riedmiller and Braun,

1993) was used as the optimizer function in the training

algorithm, with the goal of minimizing the mean square

error. The learning rate started at 0.001 and was decreased

by a factor of 0.999 in each training run (a run was based on

using all of the training data once). The batch size was 100

and 20 training runs were performed. After the RNN had

been trained, the estimate of the IRM for each frame was

used to process the speech plus babble for that frame in the

TF domain so as to attenuate TF segments with low SBR

while maintaining the level of segments with high SBR. The

modified magnitudes from the processed frames were com-

bined with the original noisy phases and the output signals

were constructed using the overlap-add operation.

D. Spectral subtraction

The multi-channel SS algorithm described by Kamath

and Loizou (2002) was used here. We used the implementa-

tion from the freely available MATLAB code provided with the

book by Loizou (2007). The algorithm divides the speech

spectrum into N non-overlapping frequency channels, and

SS is performed independently in each channel. Here, N was

set to four. The parameters of the processing used here were

similar to those used by Kamath and Loizou (2002) except

for the frame duration, which was chosen to be the same as

for the RNN, i.e., 5 ms, whereas Kamath and Loizou used

20-ms frames. To assess whether the use of shorter frames

would be likely to have deleterious effects, we used three

objective intelligibility metrics to predict the intelligibility

of speech in babble for SBRs from �5 to 10 dB. As is

described in more detail later, all three metrics predicted

slightly better intelligibility for the 5-ms frames than for the

20-ms frames, so it seems unlikely that the use of shorter

frames here had deleterious effects.

The processing was frame-based, using the overlap-add

procedure (Allen, 1977). Each frame used a 5-ms hamming

window and there was a 2.5-ms overlap between frames.

Each frame was zero-padded at the start and end to give 128

samples and a fast Fourier transform (FFT) was used to

determine the short-term spectrum. The short-term spectrum

was smoothed by taking a weighted average of preceding

and following frames, as defined by

�XjðkÞ ¼
XM

i¼�M

WiXj�iðkÞ; (3)

where j is the frame index, k is the frequency index, Xj-i is

the spectrum of the speech-plus-babble for frame j-i, �Xj is

the smoothed short-term spectrum of the speech-plus-babble,

M¼ 2, and W¼ (0.09,0.25,0.32,0.25,0.09) defines the weight

applied to frames �M to M.

The babble power spectrum was estimated during peri-

ods when the SBR in a given TF segment dropped below a

certain threshold, based on the method described by Hu and

Loizou (2007b). The parameters of the processing were the

same as described by Hu and Loizou (2007b), except for the

duration of the frames. The estimate of the babble spectrum

FIG. 1. Schematic diagram of the LSTM network used to estimate the IRM.
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was updated when the following condition for frame j was

satisfied:

E
j �XjðkÞj2

jV̂ j–1ðkÞj2

 !
�log10

j �XjðkÞj2

jV̂ j–1ðkÞj2

 !
–1

( )
� 0:45; (4)

where E is the expected value operator, and V̂ j–1ðkÞ is the

estimate of the babble spectrum for the previous frame.

Equation (4) is a discrete approximation of the Itakura–Saito

distance (Itakura and Saito, 1968) as a measure of the differ-

ence between the speech-plus-babble spectrum, �XjðkÞ, and

the estimate of the babble spectrum for the previous frame,

V̂ j–1ðkÞ. The decision rule of Eq. (4) is based on a log-

likelihood ratio and the assumption that speech is absent in

the current frame when the rule is satisfied. The running esti-

mate of the babble spectrum was then calculated as

V̂ jðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:9jV̂ j–1ðkÞj2 þ 0:1j �XjðkÞj2

q
: (5)

This meant that the estimate of the babble spectrum in any given

frame had only a small influence on the running estimate.

It should be noted that a more modern VAD method has

been proposed for estimating the spectrum of the back-

ground (Gerkmann and Hendriks, 2013). However, this

newer method has been used in studies on normal-hearing

listeners with cochlear-implant simulations (Bolner et al.,
2016) and with hearing-impaired listeners (Monaghan et al.,
2017) and it did not provide significant improvements in

speech intelligibility in babble. Also, it did not improve per-

ceived speech quality for 17 hearing-impaired listeners.

Therefore, it seems that there is no clear advantage in using

this newer method over the method used here.

The four channels were constructed from the appropri-

ate bins of the smoothed spectrum so as to cover the fre-

quency ranges 0–2, 2–4, 4–6, and 6–8 kHz. The estimate of

the clean-speech spectrum in the ith channel, Ŝi, in a given

frame was obtained by subtracting a scaled version of the

estimate of the babble spectrum from the combined speech-

plus-babble spectrum:

jŜiðkÞj2 ¼ j �XiðkÞj2–aidijV̂ iðkÞj2; bi � k � ei; (6)

where �Xi is the smoothed signal spectrum for the ith fre-

quency channel, V̂ i is the estimated babble power spectrum,

ai and di are parameters controlling the amount of babble

reduction in the ith frequency channel, and bi and ei are the

beginning and ending frequency bins of the ith frequency

channel. The values of ai and di varied across channels, as

described below.

Equation (6) can sometimes result in negative values.

When this happened, the estimated power spectrum in the ith
frequency channel was replaced by an attenuated version of

the spectrum of noisy speech in that channel using the fol-

lowing equation:

jŜiðkÞj2 ¼
jŜiðkÞj2

bjXiðkÞj2
jŜiðkÞj2 > 0

otherwise;

(
(7)

where the spectral floor parameter b was set to 0.002, corre-

sponding to an attenuation of 27 dB.

Parameter ai is called the oversubtraction factor for the

ith channel. It was a function of the SBR in the ith frequency

channel, SBRi:

ai¼

5 SBRi <�5

4� 3

20
SBRi �5�SBRi �20

1 SBRi >20;

8>><
>>: (8)

where SBRi is

SBRiðdBÞ ¼ 10 log10

Xei

bi

jX̂iðkÞj2

Xei

bi

jV̂ iðkÞj2

0
BBBBB@

1
CCCCCA: (9)

Hence, the amount of babble reduction increased as SBRi

decreased.

Parameter di was a function of frequency:

di¼

1 fi �1kHz

2 1kHz< fi �
Fs

2
�2kHz

1:5 fi >
Fs

2
�2kHz;

8>>><
>>>:

(10)

where FS is the sampling rate (16 kHz here). Hence, the

amount of babble reduction was greater for frequencies

between 1 and 6 kHz than for lower or higher frequencies.

To reconstruct the signal for a given frame, the proc-

essed spectrum in each channel [Eq. (6)] was combined

across channels and an inverse FFT was applied. This was

repeated for each frame and the overlap-and-add method

was utilized to obtain the babble-reduced speech.

E. Equipment and conditions

The participants were seated in a soundproof room and

wore Sennheiser HD580 headphones (Wedemark, Germany)

connected to the sound card of a computer (with 24-bit resolu-

tion and a sampling rate of 16 000 Hz). Three conditions were

used: NP, RNN, and SS. For condition NP, the root-mean-

square level of the speech (excluding the noise and before

frequency-dependent amplification) was 65 dB sound pressure

level (SPL). The overall level when the babble was added to

the speech was 68 dB SPL for SBR¼ 0 dB and 66.2 dB SPL

for SBR¼ 5 dB. The SS and RNN processing would have

reduced the level of the babble markedly and reduced the level

of the speech slightly. To allow for this, the overall level of the

processed mixture of speech-plus-babble was set to 65 dB SPL.

The stimuli for each condition and each subject were

subjected to linear frequency-dependent amplification

according to the “Cambridge formula” (Moore and

Glasberg, 1998) to ensure that the speech was audible over a

wide frequency range. This was done independently for each

participant, based on the audiogram of the test ear, using a

513-tap finite impulse response filter implemented using the

fir2 function in Matlab.
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F. Procedure

The three conditions were compared in terms of subjec-

tive speech intelligibility and sound quality, using the

paired-comparison procedure described by Moore and Sek

(2013) and Keshavarzi et al. (2018). There were three types

of paired comparisons: RNN vs SS, RNN vs NP, and SS vs

NP. The two sounds to be compared were presented in suc-

cession in random order with a 1-s silent interval between

them.

Preferences in terms of speech intelligibility were

assessed first. The instructions on the computer screen were

as follows: “On each trial you will hear the same sentence

twice in succession. Please decide whether the first or second

sentence is easier to understand and by how much, by using

the mouse to position the slider on the screen.”

Next, preferences in terms of sound quality were

assessed. The instructions on the screen were: “On each trial

you will hear the same sentence twice in succession. Please

decide whether the first or second sentence has a better

sound quality and by how much, by using the mouse to posi-

tion the slider on the screen.”

Each pair of sounds was presented once on a given trial.

Participants used a mouse to select the position of a slider on

the screen along a continuum, which was labeled “1 much

better,” “1 moderately better,” “1 slightly better,” “equal,”

“2 slightly better,” “2 moderately better,” and “2 much

better.” Any point along the slider could be chosen, so the

ratings were continuous rather than categorical. Within a

given block of trials, a given pair of conditions (e.g., SS and

NP) was presented in both orders for both SBRs (5 and 0 dB)

and for each of the eight sentences, yielding 32 trials in a

block. Each participant was tested in six blocks, correspond-

ing to three pairs of comparisons (RNN vs SS, RNN vs NP,

and SS vs NP) and two types of judgment (intelligibility and

sound quality).

Preference scores for each participant and each pair of

conditions were computed as described by Moore and Sek

(2013). Briefly, the extreme positions of the slider were

assigned arbitrary values of �3 and þ3. Regardless of

whether condition X or condition Y was presented first, if X

was preferred the slider position was coded as a negative

number and if Y was preferred the slider position was coded

as a positive number. The overall score for a given SBR and

a given comparison was based on the average of the scores

for the two orders for that comparison and SBR for each par-

ticipant. Therefore preference scores had to fall in the range

�3 to þ3.

III. RESULTS

A. Objective evaluation of the accuracy of the RNN

To evaluate the accuracy of the RNN in estimating the

IRM from the unprocessed speech in babble, the estimated

SBR for each TF segment was compared with that for the

IRM determined using the speech alone and the babble

alone. This was done using 300 sentences produced by six

talkers who had not been used for training the RNN. An arbi-

trary threshold of 0 dB SBR was used to convert the IRM

estimated by the RNN into a binary mask in order to calcu-

late the hit rate (the percentage of correctly classified TF

units with SBR � 0 dB) and the false alarm rate (the percent-

age of TF units with SBR < 0 dB that were incorrectly clas-

sified as having SBR � 0 dB) (Kim et al., 2009; Goehring

et al., 2017). The hit and false-alarm rates were used to cal-

culate the detectability index d0 (Green and Swets, 1974)

(see Table II).

As expected, the d0 values decreased with decreasing

SBR. Nevertheless, the d0 values were above 1 for all SBRs,

indicating reasonably good classification accuracy.

B. Objective evaluation of speech intelligibility and
quality

Three objective metrics for estimating speech intelligi-

bility were computed for the stimuli used in conditions NP,

RNN, and SS. In addition, the metrics were computed for

stimuli processed using the original frame size of 20 ms for

the SS processing method of Kamath and Loizou (2002).

The metrics were the normalized covariance metric (NCM)

(Ma et al., 2009), the short-time objective intelligibility

(STOI) measure (Taal et al., 2011), and a method called

sEPSMcor that combines the auditory processing front end of

the multi-resolution speech-based envelope power spectrum

model (Jørgensen et al., 2013) with a correlation-based stage

similar to that for the STOI (Relano-Iborra et al., 2016). The

sEPSMcor method has been shown to give accurate predic-

tions of the intelligibility of speech that has been processed

using SS with a variety of parameter values (Relano-Iborra

et al., 2016). In addition, we used a method developed by

Kates and Arehart (2014), the Hearing Aid Speech Quality

Index, version 2 (HASQI2), to predict the quality of the

processed speech signals. All metrics cover the range from

0 to 1, where 1 indicates perfect intelligibility (or quality)

and 0 indicates zero intelligibility (or quality). The HASQI

requires specification of the audiogram of the listener, and

takes into account the effects of hearing loss, when present.

For the present purpose, the mean audiometric thresholds

of the participants were used. The outcomes are shown

in Fig. 2.

Both the intelligibility and quality metrics predicted a

worsening with decreasing SBR, as would be expected. All

three intelligibility metrics predicted slightly higher intelligi-

bility for condition RNN than for condition NP, for all

SBRs. Intelligibility for condition SS with the 5-ms frame

size used here was predicted to be similar to or slightly lower

than for condition NP and lower than for condition RNN.

Intelligibility for condition SS with the 20-ms frame size

used by Kamath and Loizou (2002) was predicted to be

TABLE II. Hit and false alarm rates (percent) and d0 values for the esti-

mated IRM.

SBR (dB) Hit rate, % False alarm rate, % d0

10 91.7 16.0 2.37

5 85.9 17. 9 1.99

0 69.9 17.1 1.47

�5 55.6 16.4 1.11
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similar to or slightly worse than for the 5-ms frame size.

Except for the lowest SBR, the speech quality predicted

using the HASQI was best for condition NP, slightly worse

for condition RNN, worse still for condition SS with the 5-

ms frame size and worst of all for the 20-ms frame size. For

the lowest SBR (not used for testing the participants) the

HASQI predicted very slightly better performance for condi-

tion RNN than for condition NP. The predictions of the intel-

ligibility metrics were broadly consistent with the results

presented in Sec. III C, while the results for the HASQI qual-

ity metric were not fully consistent with the results.

C. Preferences scores for speech intelligibility

To assess whether the preference scores for a given

comparison and a given SBR were significantly different

from zero (which would indicate a significant preference for

one condition relative to another at that SBR), the scores for

each participant were first averaged across the eight senten-

ces and two orders of presentation used for evaluation.

Wilcoxon non-parametric tests were used to assess whether

the mean of the eight resulting scores (one for each partici-

pant) was significantly different from zero (using two-tailed

tests). This was done separately for each pair of conditions

and each SBR. Since the number of participants was small,

the W statistic was used. Since we had specific hypotheses,

namely that RNN would produce a benefit relative to NP

while SS would not, no correction for multiple comparisons

was applied.

Figure 3 shows box plots of the preference scores for

speech intelligibility for each SBR and each pair of condi-

tions. For each pair, if the score fell above 0, then the first

condition in the pair was preferred; otherwise the second

condition was preferred. For the pair RNN vs SS (panel a),

the mean and median preference scores were slightly posi-

tive for both SBRs, indicating preferences for the RNN. The

Wilcoxon test was significant for both SBRs (W¼ 1,

p< 0.05 for SBR¼ 0 dB and W¼ 0, p< 0.05 for

SBR¼ 5 dB). For the pair RNN vs NP (panel b), the mean

and median preference scores were all positive, favoring the

RNN. The Wilcoxon test was significant for both SBRs

(W¼ 1, p< 0.05 for SBR¼ 0 dB and W¼ 0, p< 0.05 for

SBR¼ 5 dB). For the pair SS vs NP (panel c), the mean and

median preference scores were close to 0 and the mean pref-

erence scores were not significantly different from 0

(W¼ 17, p> 0.05 for SBR¼ 0 dB and W¼ 7, p> 0.05 for

SBR¼ 5 dB). In summary, RNN was significantly preferred

over both SS and NP, but SS was not significantly preferred

over NP.

D. Preferences scores for quality

Figure 4 shows box plots of the preference scores for

sound quality. For the pair RNN vs SS (panel a), the mean

and median preference scores were positive for both SBRs,

favoring the RNN, and the Wilcoxon test was significant for

both SBRs (W¼ 0, p< 0.05 for SBR¼ 0 dB and W¼ 0,

p< 0.05 for SBR¼ 5 dB). For the pair RNN vs NP (panel b),

the mean and median preference scores were all positive,

favoring the RNN. The Wilcoxon test was significant for

both SBRs (W¼ 1, p< 0.05 for SBR¼ 0 dB and W¼ 0,

p< 0.05 for SBR¼ 5 dB). For the pair SS vs NP (panel c),

the mean and median preference scores were close to 0 and

the mean preference scores were not significantly different

from 0 (W¼ 15, p> 0.05 for SBR¼ 0 dB and W¼ 15,

p> 0.05 for SBR¼ 5 dB). In summary, RNN was preferred

over both SS and NP, and SS was not significantly preferred

over NP.

IV. DISCUSSION

The results showed significant preferences for RNN

over both SS and NP for both subjective intelligibility and

sound quality. In contrast, SS was not significantly preferred

over NP, confirming the limited effectiveness of SS for bab-

ble backgrounds, as found in other studies (Elberling et al.,
1993; Hu and Loizou, 2007a). One question that arises is

whether the responses to the two subjective questions (sub-

jective intelligibility and quality) were different. To assess

this, the preference scores for each participant were averaged

across the two SBRs used, and the Pearson correlation

between intelligibility preferences and quality preferences

was calculated for each pair of conditions. For the compari-

son SS vs NP, the intelligibility and quality preference scores

were highly correlated (r¼ 0.84, p< 0.05), reflecting the

fact that participants who preferred SS for intelligibility also

tended to prefer it for quality, while participants who pre-

ferred NP for intelligibility also tended to prefer it for qual-

ity. For the comparison RNN vs NP, the correlation was

smaller and was not significant (r¼ 0.52, p> 0.05). For the

FIG. 2. NCM, STOI, sEPSMcor, and HASQI2 values for conditions RNN,

SS, and NP for each SBR.
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comparison RNN vs SS, the correlation was even smaller

and was again not significant (r¼ 0.25, p> 0.05). Thus, for

the comparisons for which the overall preferences were sig-

nificant (RNN vs NP and RNN vs SS), the judgments of

quality and intelligibility were at least somewhat

independent.

The preferences were mostly rather small. On a scale

that went from �3 to þ3, the median preferences for condi-

tion RNN over condition NP were about 0.25 to 0.4. This

partly reflects the reluctance of participants to use the

extremes of a rating scale (Poulton, 1979). It also probably

reflects the fact that both signal-processing methods have

undesired side effects. While they both resulted in a reduc-

tion of the babble, this came at the expense of some audible

artifacts; participants reported hearing some “gurgling”

effects and musical noise and these tended to be more pro-

nounced for the SS than for the RNN. Some of the artifacts

probably arose from the fact that the original noisy phase

was used in reconstructing the signal. This would make the

speech sound somewhat noisy even if the IRM were esti-

mated perfectly. It may be possible to reduce the artifacts by

setting a limit to the attenuation applied by the RNN or the

SS or by limiting the speed of the gain changes across

frames, as is done in the noise-reduction systems of some

commercial hearing aids (Launer et al., 2016). It may also

be possible to reduce musical noise using processing that

attempts to enhance both the magnitude and the phase

(Krawczyk and Gerkmann, 2014; Williamson et al., 2016).

Further research is needed to assess the benefits of such

modifications.

Despite the small magnitude of the preferences, RNN

processing did significantly improve subjective speech

FIG. 3. Box plots of preference scores for speech intelligibility for each

SBR and each pairwise comparison. The lower and upper edges of each box

represent the second and third quartiles, the line inside each box shows the

median value, the � shows the mean value, and the lines on either side of

the rectangle show the lower and upper quartiles. Each panel shows results

for a different comparison, as indicated in the key: RNN: recurrent neural

network; SS: spectral subtraction; NP: no processing.

FIG. 4. As Fig. 3, but for sound quality.
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intelligibility and quality relative to NP for the speech in

babble, while SS processing had no beneficial effects. The

beneficial effects of RNN processing and the lack of benefi-

cial effects for the SS processing are consistent with the

objective evaluations of speech intelligibility using the three

metrics. These showed little difference in predicted intelligi-

bility between SS and NP but higher predicted intelligibility

for RNN. It should be acknowledged, however, that while a

relationship between subjective and objective intelligibility

has been observed for speech in steady noise (Cienkowski

and Speaks, 2000), it has not to our knowledge been demon-

strated that such a relationship occurs for speech in babble.

Hence further evaluation of the RNN based on real measures

of intelligibility is desirable.

In contrast to the predictions of the HASQI, condition

RNN was slightly preferred over condition NP for sound

quality. The HASQI is strongly influenced by spurious

amplitude modulation introduced by any signal processing,

and this probably accounts for why it predicted lower quality

for all conditions with signal processing relative to NP. It

appears that our participants were influenced by the consid-

erable reduction in the level of the babble produced by the

RNN processing, and this outweighed the deleterious effects

of spurious amplitude fluctuations introduced by the RNN

processing.

The RNN processing was deliberately designed to oper-

ate with a short time delay to make it applicable in hearing

aids. The frame duration was 5 ms and the frame overlap

was 50%, which would lead to an inherent delay of about

7.5 ms; this corresponds to one whole frame that is needed to

perform spectral analysis for that frame and half a frame that

is needed for the overlap-add procedure (Allen, 1977). This

is within the range that is acceptable for hearing aids (Stone

and Moore, 1999; 2005; Goehring et al., 2018). For imple-

mentation in a hearing aid, the RNN processing could make

use of the frequency analysis that is often performed in hear-

ing aids for dynamic range compression and directional

processing, in which case the RNN processing would not

increase the overall time delay produced by the hearing aid.

The RNN used here was trained using sentences from a

large number of talkers and it showed good generalization to

speech from the other talkers used for testing. However, it

was trained and tested using only a single type of back-

ground babble. For a practical application in hearing aids or

cochlear implants, the RNN would need to be trained using

other types of background noises, including babble with dif-

ferent numbers of talkers and babble mixed with other types

of noises, such as the clinking of glasses and cutlery. To

make the RNN effective for many different talkers and many

types of background sounds would require a very large set of

training materials, and training might take a considerable

time. However, this is not a problem in principle, because

the training would be done offline. Also, it is not known how

many units would be required in each layer of a multi-layer

RNN to achieve good generalization across talkers and back-

ground types. Nevertheless, our results offer a proof of prin-

ciple that an RNN can be effective in improving the

subjective intelligibility and quality of speech in a babble

background for speech produced by talkers who were not

used for training the RNN.

V. SUMMARY AND CONCLUSIONS

Subjective intelligibility and sound quality were com-

pared for conditions NP, SS, and RNN. The sentences used

for testing were spoken by different talkers than those used

for training. Eight hearing-impaired participants were tested

and frequency-dependent linear amplification was provided

to compensate for their hearing loss on an individual basis.

RNN processing was significantly preferred over SS process-

ing and NP for both subjective intelligibility and sound qual-

ity. SS processing was not significantly preferred over NP.

Objective measures of intelligibility based on three metrics

gave results consistent with the subjective evaluations: pre-

dicted intelligibility was higher for RNN than for SS or NP,

and did not differ for SS and NP. However, an objective met-

ric of sound quality, the HASQI, predicted poorer quality for

condition RNN than for condition NP, except for the lowest

SBR, whereas the participants rated the quality as higher for

condition RNN than for condition NP.

The results provide a proof of concept that RNN proc-

essing can improve the subjective intelligibility and sound

quality of speech in babble for speech produced by talkers

who were not used for training. However, further work is

required to assess whether an RNN can be trained to work

effectively for speech from many talkers in a variety of types

of background sounds.
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