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SUMMARY
Recent studies have shown that stimulus history can be decoded via the use of broadband sensory im-
pulses to reactivate mnemonic representations.1–4. However, memories of previous stimuli can also be
used to form sensory predictions about upcoming stimuli.5,6 Predictive mechanisms allow the brain to
create a probable model of the outside world, which can be updated when errors are detected between
the model predictions and external inputs. 7–10 Direct recordings in the auditory cortex of awake mice es-
tablished neural mechanisms for how encoding mechanisms might handle working memory and predictive
processes without ‘‘overwriting’’ recent sensory events in instances where predictive mechanisms are trig-
gered by oddballs within a sequence.11 However, it remains unclear whether mnemonic and predictive
information can be decoded from cortical activity simultaneously during passive, implicit sequence pro-
cessing, even in anesthetized models. Here, we recorded neural activity elicited by repeated stimulus
sequences using electrocorticography (ECoG) in the auditory cortex of anesthetized rats, where events
within the sequence (referred to henceforth as ‘‘vowels,’’ for simplicity) were occasionally replaced with
a broadband noise burst or omitted entirely. We show that both stimulus history and predicted stimuli
can be decoded from neural responses to broadband impulses, at overlapping latencies but based on in-
dependent and uncorrelated data features. We also demonstrate that predictive representations are
dynamically updated over the course of stimulation.
RESULTS

In the present experiment, we adapt recent techniques for de-

coding auditory working memory traces1,3,4 to simultaneously

probe both memory and predictive processes. Electrocorticog-

raphy (ECoG) was recorded from the auditory cortex (AC; Fig-

ure S1A) of anesthetized rats (n=8) while repeated stimulus

streams of vowels were presented, with vowels occasionally

omitted or replaced with a broadband noise burst (Figure 1A).

Two types of blocks were employed. In ‘‘predictable’’ blocks,

vowels were grouped into one of six triplets (AAO, AOO, AAI,

AII, OOI, or OII) with each triplet presented at least 25 times in

a given block of identical triplets before being replaced with

another triplet (see STAR Methods). In control blocks, we pre-

sented the vowels in a pseudo-randomized order while keeping

the position of bursts and omissions fixed (relative to their corre-

sponding predictable block) to tap into mnemonic processing

without predictive components (Figure 1B). In both types of

blocks, 5% of vowels were replaced with omissions and 5%

with bursts.
Univariate analyses: Only vowel-evoked activity
differentiates between vowels
To test whether vowel identity influences average neural

activity, we tested for the effects of a vowel (A, I, or O) and a block

(predictable vs. random) on vowel-evoked ECoG activity (event-

related potentials). We observed that vowel-evoked activity dif-

ferentiates between the three vowels, both in predictable blocks

(Figure S2A; 13–260 ms; Fmax = 58.56; pFWE < 0.001) and in

random blocks (Figure S2B; 13–207 ms; Fmax = 58.21;

pFWE < 0.001). The main effect of block (predictable vs. random)

on vowel-evoked activity was not significant (all pFWE > 0.05).

We then tested whether burst-evoked and/or omission-

evoked activity also differentiates between the (preceding)

vowels at different ‘‘positions’’ in the sequence, relative to the

burst/omission (N-1 position: the immediately preceding vowel;

N-2 position: two stimuli before the burst/omission; or N-3

position: three stimuli before the burst/omission). This analysis

revealed that, similarly to the vowel-evoked responses, burst-

evoked responses did not significantly differentiate between

predictable and random blocks (Figure S2C; all pFWE > 0.05).
Current Biology 32, 1–8, June 6, 2022 ª 2022 Elsevier Inc. 1

mailto:drew.cappotto@my.cityu.edu.hk
https://doi.org/10.1016/j.cub.2022.04.022


Figure 1. Stimulus sequences

(A) An example of an AOO predictable stimulus sequence, where one vowel of the triplet has been randomly substituted by a noise burst (or alternately omitted

entirely [data not shown]) following aminimum of three triplet repetitions. In paired random blocks, the relative position of the burst/omission substitution remains

unchanged, while the surrounding vowels are randomized. Vowel positions relative to the burst/omission are denoted as N-1, N-2, and N-3.

(B) Segment of an example predictable sequence in which vowel tokens are omitted or replacedwith a noise burst after three repetitions (top) and the randomized

version of that sequence where vowel tokens from the full sequence are presented pseudo-randomly while burst and omission tokens remained in the same

relative positions (bottom).
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However, unlike the vowel-evoked activity (which was modu-

lated by vowel identity), noise-burst-evoked activity was not

significantly modulated by (preceding) vowel identity when neu-

ral activity was analyzed in a mass-univariate manner. Specif-

ically, neither the effect of the immediately preceding vowel on

burst responses (N-1: all pFWE > 0.05; Figure S2D) nor of the pre-

vious vowels (N-2 or N-3: all pFWE > 0.05) were significant.

Omission-evoked responses peaked relatively early (83–

93 ms) with a rising activity visible already prior to expected

stimulus onset, possibly marking the offset response to the inter-

rupted stimulus train rather than a true omission.12 Nevertheless,

just like burst-evoked activity, omission-related activity was also

not significantly modulated by block type (Figure S2E; all

pFWE > 0.05) or preceding vowel identity (Figure S2F; N-1, N-2,

or N-3: all pFWE > 0.05).

Multivariate analysis: specific decoding boost for
predictable vowels
Although in the univariate analysis burst-evoked activity did not

differentiate between preceding vowels, based on our previous

study, 1 we hypothesized that preceding stimuli can be decoded

in a multivariate analysis. Specifically, by analyzing the spatio-

temporal pattern of activity evoked by noise bursts, which did

not carry overt information about the preceding vowels given

that noise tokens were always identical and presented after

vowel-evoked responses had returned to baseline (400 ms after

stimulus offset), we sought to determine if activity evoked by

noise bursts contained information about the preceding vowels

(separately for N-1, N-2, and N-3 vowels). This analysis revealed

significant decoding of vowels up to N-3 in predictable blocks

and up to N-2 in random blocks (Figure 2A; Table S1). Overall,

immediately preceding stimuli could be decoded better than

previous stimuli (Table S2) but not as well as currently processed

stimuli (Table S3).

Crucially, if burst-evoked activity can reactivate not only

mnemonic representations (irrespective of the currently pro-

cessed stimulus) but also predictive representations (tokens

that would have been predicted but are replaced by a noise

burst), we would expect a specific decoding improvement

for N-3 (but not N-2 or N-1) vowels presented in predictable

blocks vs. random blocks. The decoding results were
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consistent with this hypothesis. Specifically, decoding was

significantly improved for the N-3 vowels presented in

predictable blocks relative to the random blocks (paired

t test, early cluster: 77–103 ms, tmax = 3.45, cluster-level

pFWE = 0.010; late cluster: 227–270 ms, tmax = 3.79, cluster-

level pFWE < 0.001; Figure 2A), suggesting that we could ac-

cess a predictive representation of the vowel replaced by a

noise burst. In a follow-up analysis using representational

dissimilarity matrices, we found that this predictive represen-

tation contained information not only about the specific N-3

vowel replaced by the burst but also about the entire triplet

preceding the burst (Figure S3).

While mnemonic and predictive representations could be

decoded based on burst-evoked activity, decoding stimulus his-

tory based on omission-evoked activity did not yield any signifi-

cant results (Figure 2B; all pFWE > 0.05). This suggests that, at

least in this experimental protocol (vowel triplets) and in ECoG

recorded under anesthesia, a stronger activation of the network

(e.g., burst presentation) is necessary to makemnemonic and/or

predictive representations observable.

Multivariate analysis: Decoding of predicted vowels
gradually improves over time
Having established that decoding of the predicted vowel (N-3)

shows a specific improvement in predictable vs. random blocks,

we sought to determine whether this boost shows features of a

predictive representation. We reasoned that, in predictable

blocks, predictions should be learned over time and, conse-

quently, the decoding of the N-3 vowel should gradually improve

within and across blocks containing identical triplets (Figures 3A

and 3E). To test this, we performed a linear regression analysis

on single-trial decoding estimates, using two ‘‘learning’’ regres-

sors—one quantifying possible gradual improvements of decod-

ing within each sequence containing identical triplets (within

blocks) and one quantifying possible gradual improvements of

decoding over the course of the entire recording session (across

blocks). We treated the random blocks as a control for passage

of time (including gradual suppression of activity due to habitua-

tion, short-term plasticity to repeated presentations of stimuli,

and changes in stimulus-related and baseline activity due to pro-

longed anesthesia), since no learning was expected in this



Figure 2. Multivariate analyses

(A) Time courses of decoding of preceding vowels based on burst-evoked activity. Left/middle/right panel: decoding N-1/N-2/N-3 vowel (blue, predictable

blocks; red, random blocks; shaded area, SEM across recording sessions; blue/red horizontal line, decoding in predictable/random blocks significantly different

from zero, pFWE < 0.05; black horizontal line, decoding significantly different between predictable and random blocks, pFWE < 0.05); shaded area, SEM across

recording sessions. See also Tables S1–S3.

(B) Decoding based on omission responses. Legend as above.
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condition. This analysis revealed that, for the early time window

in which we observed a decoding boost in the predictable vs.

random condition (77–103 ms), the ‘‘within-blocks’’ learning ef-

fect was significantly higher in the predictable than in random

blocks (Wilcoxon sign rank test, Z21 = 2.485, p = 0.013;

Figures 3B–3D), although significance testing of regression coef-

ficients within conditions against zero did not yield significant ef-

fects (predictable: Z21 = 1.477, p = 0.139; random: Z21 =�1.825,

p = 0.068). No significant learning effects across blocks were

observed for the early time window (all p > 0.5). Conversely, for

the later time window in which we observed a decoding boost

(227–270 ms), the ‘‘across-blocks’’ learning effect (Figures 3F–

3H) showed borderline significance in the predictable condition

against zero (Z21 = 2.033, p = 0.042; uncorrected), but not in

the random condition (Z21 = 0.122, p = 0.903), although a direct

comparison of learning coefficients between conditions did not

yield a significant effect (Z21 = 1.303, p = 0.192). The ‘‘within-

blocks’’ learning effect did not yield any significant effects in

the later time window (all p > 0.5). An additional analysis of N-2

and N-1 stimuli decoding revealed neither significant learning

at either time scale nor a significant difference in learning coeffi-

cients between predictable and random blocks (all p > 0.1).

Taken together, these results provide evidence that the early

N-3 decoding in predictable blocks improves at faster time

scales (within blocks) relative to randomblocks, but the evidence

for any decoding improvement at longer timescales (across

blocks) is weak.
Multivariate analysis: Predictive and mnemonic
representations rely on uncorrelated data features
While the decoding boost observed for the N-3 vowel in predict-

able blocks, and its gradual improvement over time, bears the

hallmarks of a predictive representation, we have also accessed

mnemonic representations by decoding previous vowels (N-1

and N-2) in random blocks. To test whether the decoding of pre-

dictive andmnemonic representations rely on the same data fea-

tures, we performed three further analyses. First, we repeated

decoding using a searchlight, where each decoding estimate

was based on a subset of channels. While no significant N-3 de-

coding was found in random blocks based on all channels and

correcting for multiple comparisons across time points, a

searchlight could, in principle, uncover channels more sensitive

to N-3 vowel identity. We then correlated the spatial maps of de-

coding estimates between the predictable and random blocks.

We reasoned that if predictive and mnemonic representations

rely on similar data features, the N-3 maps should be correlated

across blocks. This analysis revealed significant correlations be-

tween spatial decoding maps in predictable and random blocks

only for the N-1 vowel (Figure 4A; 33–70 ms; tmax = 5.72; cluster-

level pFWE < 0.001), but not for the earlier vowels (N-2 or N-3: all

pFWE > 0.05). Specifically, while for the N-1 vowel the spatial

maps of decoding obtained in predictable and random blocks

were similar (t test Bayes Factor: 865.33, indicating extremely

strong evidence for a correlation) and showed the strongest

contribution of the anterior/inferior channels, for the N-3 vowel,
Current Biology 32, 1–8, June 6, 2022 3



Figure 3. Learning effects

(A) A trial-by-trial regressor of learning within blocks (faster time scale) was quantified as the (log) burst number in a block of identical triplets.

(B) Regression coefficients (‘‘within-blocks’’ learning) for two time windows with significant N-3 decoding boost (see Figure 2A [right]). Error bars denote SEM

across recording sessions. Asterisk denotes a significant Wilcoxon sign rank test.

(C) Normalized decoding per trial within a block of identical triplets: early time window. Error bars denote SEM across recording sessions.

(D) Normalized decoding per trial within a block of identical triplets: late time window.

(E) A trial-by-trial regressor of learning across blocks (slower timescale) was quantified as the block number in a recording session, binned into six bins.

(F–H) Learning effects across blocks, figure legend as in (B)–(D).
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they were more orthogonal (t test Bayes Factor: 0.2569, indi-

cating moderate evidence against correlation; cf. N-2: Bayes

Factor 0.3558), showing an inferior-superior gradient in pre-

dictable blocks and an anterior-posterior gradient in random

blocks (Figures 4B and 4C). This contrasted with correlations be-

tween decoding maps obtained for odd vs. even trials, which

were significant for each vowel position (N-1: rmax = 0.27; N-2:

rmax = 0.13; N-3: rmax = 0.11; all significant at pFWE < 0.05 correct-

ing across time points). While the latter correlation coefficients

were moderate to low, likely due to a decreased signal-to-noise

ratio as a result of splitting the dataset in half, this finding sug-

gests that N-3 decoding maps are relatively stable across trials

(odd vs. even) but uncorrelated across conditions (predictable

vs. random).

Second, we repeated the decoding of vowels in each position,

this time training on trials drawn from one type of blocks (e.g.,

random) and testing on trials from the other type of blocks

(e.g., predictable). This analysis (Figure S4A) revealed that only

N-1 decoding generalized across block types (train on random,

test on predictable: Tmax = 12.92, pFWE < 0.001; train on pre-

dictable, test on random: Tmax = 13.39, pFWE < 0.001), with no dif-

ferences observed between blocks (all paired t test pFWE > 0.05).

Conversely, for N-2 and N-3 decoding, no significant cross-

block decoding was observed in either direction (all pFWE > 0.05).

Third, we performed a cross-temporal generalization analysis

(Figures 4D and 4E), training on one vowel position (e.g., N-1)

and testing on another (e.g., N-3). This analysis revealed that

while decoding generalizes across time points within each vowel

position (e.g., training on neural activity 100 ms and testing on
4 Current Biology 32, 1–8, June 6, 2022
150 ms after vowel onset; cf. Cappotto et al., 20211), it does

not generalize across vowel positions (e.g., training on N-1 and

testing on N-3) except for a temporally limited interference effect

between N-1 and N-2 vowels (Table S4).

These results suggest that the decoding boost observed for

N-3 vowels in predictable blocks (reflecting a predictive repre-

sentation) relies on data features that are specific to these blocks

and are not generalizable to the random blocks or to other

vowels.

DISCUSSION

In the present study, we demonstrated that stimulus history

(sensory memory traces of token values up to N-3) can be de-

coded from neural responses to broadband noise bursts in

both repeated triplet and randomized blocks, expanding on

previous research.1,3,4 Crucially, we also provide evidence

for the decoding of predictive mechanisms by linking

increased N-3 decodability to predictable blocks, further es-

tablished through the presence of learning effects as the num-

ber of triplet pattern repeats increases. This demonstrates

that neural responses to noise bursts tap into predictive

mechanisms, establishing a novel method for decoding both

phenomena simultaneously and independent of attentional

tasks. Our results suggest that mnemonic and predictive de-

coding rely on largely uncorrelated data features—specif-

ically, decoding N-3 stimuli in predictable blocks cannot be

generalized to decoding other stimuli in the same blocks or

to the data features present in random blocks.



Figure 4. Spatial topography of predictive and mnemonic representations

(A) Time courses of correlation coefficients between decoding topographies in predictable vs. random blocks. Left/middle/right panel: decoding N-1/N-2/N-3

vowel (shaded area, SEM across recording sessions; black horizontal line, correlation coefficients significantly different from zero, pFWE < 0.05).

(B) Decoding topographies based on the 0–100 ms decoding time window, predictable blocks. Left/middle/right panel: decoding N-1/N-2/N-3 vowel.

(C) Decoding topographies based on the 0–100 ms decoding time window, random blocks. Figure legend as in (B).

(D) Cross-temporal generalization averaged across conditions (predictable + random). Rows: test data; columns: remaining data used for estimating decoding

matrices. Each panel shows a cross-temporal decoding matrix with each time point representing decoding based on the Mahalanobis distance between a

particular vowel position (N-1, N-2, or N-3) and latency of neural activity and another vowel position and latency of neural activity. Unmasked areas represent

significant cross-temporal decoding generalization at pFWE < 0.05, cluster-level corrected. Only one (symmetric) side of the diagonal is plotted.

(E) Cross-temporal generalization: differences between conditions (predictable vs. random). Figure legend as in (D).

See also Figure S4A and Table S4.
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Previous work has established the use of broadband noise im-

pulses indecodingsensorymemory tokens3,4mediatedbymech-

anisms that function under anesthesia in animal models.1 Here,

we expandon these findings by decoding further stimulus history,

showing that it is possible to decode memory representations of

both sequences and individual tokens up to N-3. We also expand

onanother recent study13 showing that sequencecontentscanbe

preferentiallydecoded fromauditory-cortical activity in ratmodels

but that this decoding benefit is only observed for rats with prior

training. Similarly, previous work in the visual system of awake

mice found that prior training elicits predictive representations

that can be decoded.14 Unlike these studies, which used several

interleaved sequences in a continuous stream during prior
exposure blocks, we used a protocol in which a sequence (triplet)

was repeated and then replaced, without prior training. This sug-

gests that for such repetitive sequences, decoding can be

achieved in naive and anesthetized rats. In contrast to the previ-

ous study,14 our results did not reveal any significant decoding

on the omission responses. One possible explanation is that, in

anesthetized brains that had not undergone prior training, predic-

tive representations require a stronger activation (e.g., broadband

noise bursts) to become observable than would be the case for

awake brains of trained participants. In both the present and pre-

vious studies,1 we have demonstrated that univariate analysis

was not sufficient to decode memory tokens and multivariate

methods provided significant decoding.
Current Biology 32, 1–8, June 6, 2022 5
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The present literature on animal models of predictive process-

ing is largely within the context of stimulus-specific adaptation

(SSA), making it difficult to separate predictive from adaptive

mechanisms. Our findings in the AC are not likely to be explained

by a simple SSA explanation, given that we observed the decod-

ability of randomly substituted tokens within repeated se-

quences as well as within non-repeating triplets. If adaptation

were responsible for decodability, this effect would be unlikely

to increase with overall triplet repetition, as pattern sensitivity

and resulting deviance detection has been shown to rely on hier-

archical and contextual error detection.15 Our results, suggest-

ing that decoding N-3 tone identity and triplet identity may occur

at different latencies (Figure S3), are also consistent with the

latter hypothesis, as they suggest that predictive processing of

single elements might be more short-lived than the encoding

of entire sequences.

Importantly, by contrasting responses to noise bursts in pre-

dictable vs. random sequences, we tapped into both predictive

and mnemonic representations. This goes beyond recent find-

ings in humans showing that predictive neural activity can be ex-

plained by memory of past stimuli but that could not access

mnemonic representations independently of predictive process-

ing.16 Interestingly, a recent study on auditory associative

learning in awake mice showed that neural activity evoked by a

predicted stimulus contains information both about its most

likely predictor and its actual past but that this information relies

on orthogonal neural codes, suggesting that mnemonic and pre-

dictive representations coexist within sensory cortices.11

Although our paradigm did not test for this explicitly, our obser-

vation of uncorrelated data features enabling decoding in pre-

dictable vs. randomblocks and a lack of decoding generalization

across blocks and across vowels (N-1 vs. N-3) suggest that such

mechanisms are not dependent on active processes, and they

can also be observed indirectly over broad neural populations.

It is important to note that the spatial resolution of ECoG makes

it difficult to identify discrete neural populations due to changes

in spatio-temporal representation, and finer recording tech-

niqueswith single-cell resolution would be required to accurately

discern if mnemonic and predictive representations decoded in

our paradigm rely on unique neural populations or are multi-

plexed within the same population.

Importantly, we also establish that the decodability of predict-

able N-3 tokens gradually increases with repeated triplet presen-

tations (relative to random blocks), implicating passive learning

effects as a measure of predictive mechanisms. Recent studies

have successfully paired concepts of statistical learning and pre-

dictive coding by investigating neural correlates of melodic

expectation to naturalistic music, observing that neural re-

sponses to less statistically likely notes elicit markers consistent

with their level of statistical predictability.17 Human fMRI studies

in the visual domain have further established the role of temporal

regularity in sequence learning and their resultant effects on the

decodability of predictable stimuli.18 However, studies employ-

ing animal models and different attention states to investigate

predictive mechanisms have been lacking.19 Although further in-

vestigations would be required to clearly verify the role of

learning effects at multiple timescales, our results provide an

indication of prediction formation at a relatively fast timescale

(prediction updating following a presentation of a new triplet).
6 Current Biology 32, 1–8, June 6, 2022
While it is intrinsically interesting that anesthesia did not

abolish the emergence of predictive representations in our

study, one must acknowledge that this raises questions about

the extent to which our results are representative of neural

functions in a normal, awake state. Different types of anesthetic

agents (e.g., ketamine, equithesin, or pentobarbital) have been

shown to affect various features of neuronal activity—such as

spontaneous rate, response threshold, or oscillations—in the

AC to a greater or lesser extent.20–22 However, experiments un-

der anesthesia are still considered an efficient and useful tool in

identifying neural mechanisms when carefully controlled. We

selected urethane as our main agent for controlling the anes-

thesia, as it has been widely used for memory-related studies

as an agent with minimal effect on spectral tuning, neural dis-

criminability, and information processing.23–26 Importantly, a

comparable hierarchical gradient across subcortical and cor-

tical regions observed for prediction error signaling bet-

ween urethane-anesthetized and awake rodents27 supports

the notion of preserved predictive processing even under

anesthesia.

In summary, the present study observed concurrent mne-

monic and predictable representations under anesthesia, indi-

cating mechanisms at work in passive preparations and thus

providing a new model for investigating simultaneous memory

and predictive mechanisms independent of attentional state.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Adult female Wistar rats Chinese University of Hong Kong RGD_13525002

Software and algorithms

MATLAB Mathworks SCR_001622

Python Python SCR_008394

SPM12 University College London SCR_007037

Deposited data

Code and Processed Data Zenodo https://doi.org/10.5281/zenodo.6407267
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Drew Cap-

potto (drew.cappotto@my.cityu.edu.hk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Pre-processed data and code for generating results figures are publicly available via the following online repository: https://doi.org/

10.5281/zenodo.6407267.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
Eight young adult femaleWistar rats, acquired from the Chinese University of Hong Kong, were used in the experiment. The rats were

‘‘naive’’, i.e. had no experience or training with the stimulus sets prior to recording, were aged between 8 and 13 weeks (median

age = 10.5 weeks), and weighed between 216 and 289 g (median weight = 238 g). Normal hearing was ascertained by measuring

auditory brainstem response at thresholds < 20 dB sound pressure level (SPL) to broadband click trains.

Anesthesia and surgical procedures
Anesthesia was induced with an intraperitoneal (i.p.) injection of ketamine (80 mg/kg) and xylazine (12 mg/kg), and maintained

throughout the experiment via 20% urethane injections. A first dose of 0.25 ml/kg of the urethane solution was administered

one hour after the induction with ketamine and xylazine, and further 0.25 ml/kg doses were delivered as required, based on pe-

riodic assessments of anesthesia depth via the toe pinch withdrawal reflex. Dexamethasone (0.2 mg/kg, i.p.) was delivered before

surgery as an anti-inflammatory. This protocol, based on previous rodent studies,1,28 allowed for fast induction of anesthesia via

the initial administration of ketamine and xylazine, while avoiding later NMDA-specific inhibitory effects of ketamine through the

use of urethane to maintain anesthesia for ECoG recordings. The anesthetized animal was placed in a stereotaxic frame, and

the animal’s head was fixed with hollow ear bars to allow sound delivery. An isothermal heating pad and a rectal thermometer

were used to maintain body temperature at 36 ± 1�C throughout the experiment. The skin and muscle tissue over the temporal

lobe of the skull were removed, and a craniotomy was performed to expose a 534 mm region over the right AC, leaving the dura

intact. The anterior edge of the craniotomy was 2.5 mm posterior from Bregma, and the dorsal edge was 2 mm ventral from

Bregma (Figure S1A, adapted from1).

Experimental apparatus
The ECoG array was placed on the exposed cortex and a cotton roll was placed between the remaining skin and the array to hold the

array securely in place and ensure a stable, low impedance contact between the recording sites and the dura. A hole was drilled

through the skull anterior to the Bregma on the animal’s left to place a small stainless steel screw which served as ground and refer-

ence electrode for the electrode array and headstage amplifier. Correct placement of the ECoG array was verified by recording a set
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of Frequency Response Areas (FRAs; Figure S1B) from each site by collecting responses to 100 ms pure tones varying in sound level

(30 - 80 dB SPL) and frequency (500 - 32,000 Hz, ¼ octave steps). Each tone was presented 10 times, in a randomly interleaved

fashion, with an onset-to-onset ISI of 500 ms.

METHODS DETAILS

Stimulus design
The artificial vowels were generated using custom Python scripts. Consecutive vowels were separated by 350 ms of silence (500 ms

onset to onset ISI). We deemed artificial vowels preferable to tones as they activate larger parts of the tonotopic array and they

resemble many types of natural sounds, including many vertebrate vocalizations or insect sounds, making them arguably more

ecologically valid than pure tones. These generated pulse trains which were subsequently passed through a cascade of two 2nd-or-

der Butterworth bandpass filters with a bandwidth equal to 20% of the center (formant) frequency (scipy.signal functions butter() and

lfilter() ). The formant frequencies for these artificial vowels were chosen to lie between 900 and 9000 Hz to bring them well into the

auditory range of rats, and the fundamental frequencies (F0s) of the vowels were relatively low, between 260 and 420 Hz, to generate

a large number of closely stacked harmonics under each formant. Stimulus sequences consisted of combinations of three possible

artificial vowels, one we refer to as ‘‘A’’ with formants and 3000 and 5400 Hz and an F0 of 420 Hz, an ‘‘O’’ with formants 900 and

2700 Hz and F0 260 Hz, and an ‘‘I’’ with formants 1050 and 9000 Hz and F0 300 Hz. On occasion, as described further below,

one of the vowels in the sequence could be replaced by either a 150ms frozen pink noise burst computed according to the algorithm

described in https://github.com/python-acoustics/python-acoustics/blob/master/acoustics/generator.py, or by a silent pause. The

artificial vowel and pink noise tokens were loaded onto a Tucker Davis Technologies (TDT) RZ6 digital sound processor which was

programmed using custom written software to present the tokens in a predefined order at a sample rate of 48,828 Hz through head-

phone drivers connected to the hollow ear bars via 3D printed adapters.

Experimental paradigm
Two types of blocks were employed. In ‘‘predictable’’ blocks, vowels were grouped into triplets, which repeated at least 25 times

(range 25-100, mean 30) before being replaced with another triplet (e.g., AOOAOOAOO.AAIAAIAAI.). In ‘‘random’’ blocks, vowels

were presented in a random order, while keeping the base frequency of each vowel constant and comparable to the predictable

block (e.g., AOIOIAIOAOOAIIA.). Each session contained �72 such blocks (amounting to a total of 2100 triplets per session), pre-

sented in a different order per session. Triplets were selected to prevent redundant combinations from occurring during presentation

(e.g., AOO, OAO, and OOA would result in identical sequences with different starting points, and thus only AOO was used). The trip-

lets were then concatenated to form the long stimulus sequences presented in the experimental sessions. In these sequences, 5%of

stimulus events were replaced with omissions, and 5% were similarly replaced with a burst of pink noise. The vowels that were re-

placedwith noise bursts or silent pauseswere chosen pseudo-randomly, subject to the constraint that aminimumof three repetitions

of a given triplet had to have occurred before a vowel could be replaced. In a control condition (‘‘random’’ sessions), vowels were

presented randomly, rather than in predefined triplets. The positions of omissions and noise bursts within the stimulus sequences

were kept the same across the predictable and random blocks.

Neural data acquisition and pre-processing
An 8 x 8 Viventi ECoG electrode array with 400 mm electrode spacing29 was used to acquire ECoG recordings, employing three

ground channels located in the corners of the array, and a common reference. A (TDT) PZ5 neurodigitizer was used to record signals

from the array via a RZ2 processor. FRA responses were recorded with BrainWare software at a sampling rate of 24,414 Hz, and

responses to the vowel sequences were recorded using custom Python code at a sampling rate of 6104 Hz. The recorded electrode

signals were first low-pass filtered at a cutoff frequency of 90 Hz using a 5th order Butterworth filter, and downsampled to 300 Hz to

extract neural activity evoked by acoustic stimuli. The pre-processed signals were re-referenced to the average of all channels,30 and

segmented by extracting 500 ms long voltage traces from �100 ms to +400 ms relative to the onset of each token. Epoched traces

were baseline-corrected by subtraction of the mean pre-stimulus voltage values, and linearly detrended.31

QUANTIFICATION AND STATISTICAL ANALYSIS

Univariate analysis: Summarizing vowel-evoked, omission-evoked, and frozen noise burst-evoked activity
Univariate analysis was performed to assess whether vowel types (A, I, O) modulated vowel-evoked, burst-evoked, and omission-

evoked activity on a channel-by-channel basis (Figure S2). Additionally, in the analysis of burst-evoked and omission-evoked activity,

we tested whether it is modulated by the preceding sounds at different ‘‘positions’’ relative to the burst/omission (N-1 position: the

immediately preceding vowel, N-2 position: two stimuli before the burst/omission, N-3 position: three stimuli before the burst/omis-

sion). Epoched data were separated per vowel, position, and condition, and then averaged across trials. First, to visualize the evoked

responses, trial-averaged ECoG responses were concatenated across sound types/positions/conditions/animals, resulting in 2 two-

dimensional matrices per condition with single channels along one dimension and concatenated time points along the second

dimension. A principal component analysis using singular value decomposition was performed on the resulting matrices. The output

provided spatial principal components describing channel topographies, and temporal principal components describing voltage
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time-series concatenated across vowels/positions and animals, sorted by the ratio of explained variance. A weighted average was

calculated to summarize the top principal components explaining 95% of the original variance, weighted by the proportion of vari-

ance explained. These resulting voltage time-series were averaged per vowel across animals. Frozen noise burst-evoked and omis-

sion-evoked single-trial data were similarly averaged across trials, separately for each preceding vowel and position, and subject to

the same principal component analysis described above.

The above principal component analysis was used only for the purposes of visualizing the data. In order to test if any time points

and channels showed significant amplitude modulations by vowel (in case of vowel-evoked responses) or preceding vowel in each

position (in case of burst-evoked and omission-evoked responses), single-subject trial-average ECoG data in the original electrode

grid were converted into three-dimensional matrices containing two spatial dimensions and one temporal dimension. Thesematrices

were then converted to 3D images and entered into a repeated-measures ANOVAwith onewithin-subjects factor (vowel; three levels)

and one repeated-measures factor (rat), implemented in SPM12 (University College London) as a general linear model (GLM). This

was done separately for each stimulus type (vowel-evoked responses, burst-evoked responses, and omission-evoked responses).

The effects of preceding vowels on burst-evoked and omission-evoked responses were analyzed in separate ANOVAs per position.

To test for the effect of vowel on evoked activity amplitude, an omnibus F test across 3 vowels was used. The resulting statistical

parametric maps were thresholded at p < 0.005 (two-tailed) and corrected for multiple comparisons across spatiotemporal voxels

at a family-wise error (FWE)-corrected pFWE = 0.05 (cluster-level).32

Univariate analysis: Oscillatory activity
To test whether sequence processing is associated with spectral peaks in the neural response spectrum at the syllable and triplet

rate33, we analyzed phase coherence of neural activity (Figure S4B). Specifically, for each rat and recording session, we split the

continuous single-channel ECoG data into 175 chunks of 12 triplets, and, for each chunk, calculated the Fourier spectrum of neural

activity measured during that chunk. Inter-trial phase coherence (ITPC) was calculated according to the following equation34:

ITPCf =
��
SNcos4f

�2
+
�
SNsin4f

�2�.
N ;

where 4f denotes the Fourier phase at a given frequency f and N = 175 chunks. In the initial univariate analysis, phase coherence

estimates were averaged across channels. To test for the presence of statistically significant phase coherence peaks, coherence

values at the token rate (2 Hz) and triplet rate (0.667 Hz) were compared against the mean of coherence values at their respective

neighboring frequencies (single token rate: 1.944 and 2.056 Hz; triplet rate: 0.611 and 0.722 Hz) using Wilcoxon’s signed rank tests.

Multivariate analysis: Decoding sensory, mnemonic, and predicted vowel information
Data were subjected to multivariate analyses to test if information about vowel type could be decoded from the pattern of burst-

evoked and omission-evoked activity observed across multiple channels and time points. To this end, we adapted methods estab-

lished in previous multivariate decoding research, which has demonstrated decodability in similar data and experimental

contexts.1,3,4,35,36

Prior to decoding, single-trial omission or frozen noise burst-evoked responses were sorted by the preceding vowel, separately for

each vowel position. While the randomized order of vowel presentation in relation to noise bursts (see experimental paradigm and

stimulus design) effectively equalized the ratio of vowels presented at each position, we imposed an additional constraint on trial se-

lection to ensure that decoding N-3 vowels is not confounded by the vowels presented immediately before the noise burst (N-1).

Specifically, in decoding N-3 stimuli relative to noise burst X, we excluded trials for which N-3 and N-1 were identical (e.g.,

AAOAAX was included, since vowel N-1 corresponds to A and N-3 to O; however, AAOAXO was excluded, since both vowels

N-1 and N-3 correspond to A). To equalize the number of trials across decoding conditions, the same constraint was imposed on

N-2 stimuli (excluding trials for which N-2 and N-1 were identical) and on random blocks.

Decoding time-courses were estimated using a sliding window approach,1,4 pooling information over multiple time-points and

channels to boost decoding accuracy.37,38 Specifically, for each channel, trial, and time point, we first pooled voltage values within

a 50 ms window relative to a given time point. Then, a vector of 5 average voltage values was calculated per channel and trial by

downsampling the voltage values over 10 ms bins. In other words, a single vector of multivariate data corresponding to the test trial

(multiple channels x 5 time points within a 50mswindow, concatenated into a long vector) is compared against three vectors (one per

vowel), each of exactly the same length as for the test trial but based on the remaining trials. The data were then de-meaned to re-

move the channel-specific average voltage over the entire 50 ms time window from each channel and time bin, ensuring that the

multivariate analysis approach was optimized for decoding transient activation patterns.1,4 For the subsequent leave-one-out

cross-validation decoding, the vectors of binned single-trial temporal data were then concatenated across channels. We used the

Mahalanobis distance39 as a multivariate decoding metric to take advantage of the potentially monotonic relation between vowel

category and neural activity.1,4,40 Responses to dissimilar vowels are expected to yield large Mahalanobis distance metrics, while

responses to similar vowels are expected to yield low Mahalanobis distance metrics. Having been shown to be optimal for decod-

ing,37 a leave-one-out cross-validation approach was used per trial, wherein we calculated 3 pairwise distances between ECoG

amplitude fluctuations measured in a given test trial and mean vectors of ECoG amplitude fluctuations averaged for each of the 3

vowels/positions in the remaining trials. A shrinkage-estimator covariance obtained from all trials, excluding the test trial, was

used to compute the Mahalanobis distances.41 Combining Mahalanobis distance with Ledoit–Wolf shrinkage has been shown to
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have performance advantages over other correlation-basedmethods ofmeasuring brain-state dissimilarity,42 whileMahalanobis dis-

tance-based decoding has known advantages over linear classifiers and simple correlation-based metrics.43

Single-trial relative Mahalanobis distance estimates were averaged across trials, resulting in a 3 x 3 distance matrix for each rat,

time point, relative vowel position (N-1, N-2, N-3), and substitution type (noise vs. omission). To obtain overall decoding quality

traces, the 3 x 3 distance matrices were subject to a subtraction of the averaged off-diagonal elements (mean distance between

vowels) from the averaged diagonal elements (mean distance within vowels). The resulting decoding time-series were entered

into a 2x3 repeated-measures ANOVAwith within-subjects factors Block (predictable vs. random) and Position (N-1, N-2, N-3), sepa-

rately for the two substitution types (noise vs. omission). The resulting statistical parametric maps were thresholded at p < 0.005 (un-

corrected). Across time points, p values were corrected using a FWE approach at a cluster-level pFWE = 0.05 32.

We reasoned that significant decoding of the N-3 vowel in the predictable blocks, but not in the random blocks, would reveal pre-

dictive representations of the expected vowel. However, such representations may be formed both on an element-by-element basis

(e.g., when hearing AOOAOOAOO, an ‘‘A’’ may be predicted because one is heard every 3 tokens), and also for an entire triplet (e.g.,

when hearing AOOAOOAOOX, "X" might also reactivate a representation of the AOO context). In a follow-up analysis, we wanted to

test whether bursts/omissions reactivate representations containing (1) information about the entire preceding triplet, or (2) specific

information about the N-3 vowel, independent of the rest of the triplet. To this end, we ran an additional decoding analysis, this time

using a 18 x 18 stimulus matrix (corresponding to 18 possible triplets, with 3 phase shifts for each of the 6 unique triplets; e.g., for a

unique triplet AAO, the three phase shifts would correspond to AAO, AOA, andOAA), yielding 18 x 18Mahalanobis distancematrices.

This analysis focused on the predictable blocks only and zoomed into two time clusters in which we observed significant N-3 vowel

decoding (see results). To quantify the decoding of the entire triplet, we subtracted themean of all off-diagonal elements of the 18 x 18

stimulus matrix from the mean of all diagonal elements (Figure S3A). To quantify the decoding of information about the N-3 vowel

independent of the entire triplet identity, we subtracted themean of those elements of the 18 x 18 stimulus matrix which did not share

the first vowel from the mean of those elements of the matrix which did share the first vowel (excluding the diagonal elements, cor-

responding to identical triplets). The decoding estimates based on these representational dissimilarity matrices were subject to one-

sample t-tests (two-tailed) across recording sessions (see Figures S3B and S3C for results).

Since vowel decoding was relatively weaker for N-3 and N-2 vowels (see results; Figure 2A), we have performed an additional anal-

ysis aiming at verifying whether spatial maps of decoding sensitivity can be reasonably established for these vowel positions. To this

end, we performed an additional analysis in which we repeated the spatial correlation analysis, but rather than correlating predictable

and random blocks, we correlated decoding based on odd vs. even trials within each block.

In an additional analysis, since we observed univariate differences in vowel-evoked responses (see results), we tested whether

decoding primarily relies on those channels that are also associated with sensory encoding of vowels. To this end, we repeated

the decoding analysis for two subsets of channels - those which strongly differentiated between vowels (with the corresponding F

statistic of the main effect of vowel on the vowel-evoked responses higher than the median across channels) and those which differ-

entiated weakly between vowels (F statistic below median across channels). The resulting decoding time-series were compared be-

tween the two groups of channels using a series of paired t-tests, correcting for multiple comparisons across time points at a FWE-

corrected pFWE = 0.05 (cluster-level).32

While we did not observe univariate differences in spectral peaks at the single vowel rate between condition (and we did not

observe peaks at the triplet level overall; see results), in a further analysis we also tested whether decoding might rely on those chan-

nels which show relatively higher triplet-rate peaks than other channels. Again, we repeated the decoding analysis for two subsets of

channels, this time splitting them based on the single-channel phase coherence estimates for the single vowel rate (2 Hz; above/

below median). The two resulting decoding time-series were compared using a series of paired t-tests, correcting for multiple com-

parisons as above.

For completeness, we also performed the decoding analysis on the vowel-evoked responses themselves (see Table S3 for results).

While, given that vowel-evoked responses showed univariate effects of vowel identity, multivariate decoding was expected to be

significant, we could use this analysis to compare the magnitude of decoding mnemonic information (N-1) based on burst-evoked

responses, relative to decoding of vowel identity (N) based on vowel-evoked responses.

Multivariate analysis: Learning effect on decoding
Another question we wanted to address is whether any decoding benefit we might observe in the predictable stimulus condition re-

flects predictive neural processing. In particular, we hypothesized that, if the decoding boost in predictable blocks is related to pre-

dictive processing, it should gradually build up, as the auditory system needs time to detect repeating patterns and learn to use them

for predictions of which sound token is expected when. This can occur at two time scales: first, decoding can improve with each

subsequent vowel token embedded in a block of identical triplets (reflecting learning within blocks); second, decoding can improve

over subsequent blocks (reflecting learning across blocks). To test these hypotheses, we constructed two trial-by-trial learning re-

gressors - a ‘‘within blocks’’ regressor quantifying the vowel position within a block of identical triplets, and an ‘‘across blocks’’ re-

gressor quantifying which block of a particular triplet it is within the entire recording session. To facilitate comparisons between the

two regressors, the ‘‘within blocks’’ regressor only included vowel position from 1 (first burst within a sequence) to 6 (sixth burst),

while the ‘‘across blocks’’ regressor was binned into 6 bins of 2 blocks in each bin (e.g., bin 1 contained the first 2 blocks of a partic-

ular triplet, while bin 6 contained the last 2 blocks of the same triplet). Both regressors were log-transformed to increase the relative

effect of the first bursts/sessions relative to the last bursts/sessions.44 We then repeated the decoding analysis of the N-3 vowel and,
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per recording session and condition, performed a multiple linear regression with a constant term and the two learning regressors on

single-trial decoding estimates. Specifically, for both of the time clusters in which we identified significant differences between de-

coding in predictable vs. random blocks, we selected the single-trial peak decoding within a given time cluster, and then normalized

(z-scored) the trial-by-trial peaks per rat, recording session, and condition. This resulted in 8 sets of learning coefficients: (1) for pre-

dictable vs. random conditions, (2) quantifying learning within vs. across blocks, (3) estimated for early vs. late time window. The re-

sulting regression coefficients (betas) were tested for significant differences between predictable and random blocks (treated as a

baseline condition) using Wilcoxon sign rank test. While we hypothesized that learning effects should be specific to N-3 stimuli, in

an additional analysis we also tested for the same learning effects on the decoding of N-2 and N-1 stimuli.

Multivariate analysis: Similarity between predictive and mnemonic representations
To test whether the predictive and mnemonic representations are shared, we quantified the spatial correlation of decoding topog-

raphies between predictable and random blocks. Our reasoning was that, if predictive and mnemonic representations are shared,

decoding topographies should be similar between predictable and random blocks. On the other hand, if predictive and mnemonic

representations are independent, the decoding topographies should be different between the two types of blocks. To this end, we

repeated the decoding analysis, this time using a searchlight approach. Specifically, rather than using all channels for decoding, we

used subsets of channels, with each subset forming a 3x3 grid. Different subsets overlapped by 1 row or column, resulting in 36 (6x6)

decoding estimates based on the 3x3 grids, separately for each recording session, condition, and time point. We then correlated the

spatial maps obtained for predictable and random blocks, separately for each recording session and time point. The resulting Pear-

son correlation coefficients were entered into a series of one-sample t-tests, correcting for multiple comparisons across time points

at pFWE = 0.05.32

Multivariate analysis: Cross-temporal generalization
In a further analysis, we tested whether decoding a particular vowel generalizes across time points (suggesting that the reinstated

representations rely on a similar neural code, independent of the latency of measured neural activity) and/or across vowel positions

(suggesting that decoding one triplet element relies on a similar neural code as decoding another triplet element). To this end, we

performed a cross-temporal generalization analysis, in which we repeated our multivariate decoding analysis but with an important

modification of the leave-one-out cross-validation approach. First, to quantify generalization across time points, in calculating the

Mahalanobis distance we incrementally shifted the latency of the test data with respect to the remaining trials, in 16 ms time steps

- such that decoding was trained on one latency but tested on another. As a result of this approach, rather than decoding time series,

per recording session and condition (predictable vs. random) we obtained decoding matrices with each matrix element representing

the Mahalanobis distance between data measured at two different latencies. Second, to quantify generalization across vowel posi-

tions, we allowed the test data labels to be replaced by labels corresponding to another vowel than the remaining trials. As a result of

this approach, rather than obtaining 3 decoding matrices (one per vowel position), we obtained 6 decoding matrices with the 3 addi-

tional matrices representing theMahalanobis distance between datameasured at two different vowel positions. The resulting decod-

ing matrices were entered into a series of 6 GLMs (one per vowel position pair), each implementing a paired t-test between decoding

estimates obtained for the predictable and random conditions. The resulting statistical parametric maps were thresholded at

p < 0.005 (two-tailed) and corrected for multiple comparisons across spatiotemporal voxels at a FWE-corrected pFWE = 0.05 (clus-

ter-level).32
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