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Abstract

Accurate pitch perception of harmonic complex tones is widely believed to rely on temporal

fine structure information conveyed by the precise phase-locked responses of auditory-

nerve fibers. However, accurate pitch perception remains possible even when spectrally

resolved harmonics are presented at frequencies beyond the putative limits of neural phase

locking, and it is unclear whether residual temporal information, or a coarser rate-place

code, underlies this ability. We addressed this question by measuring human pitch discrimi-

nation at low and high frequencies for harmonic complex tones, presented either in isolation

or in the presence of concurrent complex-tone maskers. We found that concurrent complex-

tone maskers impaired performance at both low and high frequencies, although the

impairment introduced by adding maskers at high frequencies relative to low frequencies dif-

fered between the tested masker types. We then combined simulated auditory-nerve

responses to our stimuli with ideal-observer analysis to quantify the extent to which perfor-

mance was limited by peripheral factors. We found that the worsening of both frequency dis-

crimination and F0 discrimination at high frequencies could be well accounted for (in relative

terms) by optimal decoding of all available information at the level of the auditory nerve. A

Python package is provided to reproduce these results, and to simulate responses to acous-

tic stimuli from the three previously published models of the human auditory nerve used in

our analyses.

Author summary

Pitch, the quality of sound that distinguishes “low” sounds from “high” sounds, is of criti-

cal importance for human hearing. In addition to the role of pitch in defining musical

melodies and harmony, the pitch of the human voice helps us identify talkers, attend to a

particular talker in a noisy acoustic environment, and understand a talker’s intent and

emotional state. Prevailing theories posit that the auditory system relies on the stimulus-

driven timing of spikes in the auditory nerve, termed phase locking, to estimate pitch.

Recent behavioral results, however, suggest that pitch can still be perceived at high fre-

quencies, where phase-locked information should be highly degraded or nonexistent. To
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address this discrepancy, we combined behavioral testing methods with computational

models of the early auditory system to probe how listeners can achieve accurate pitch dis-

crimination at high frequencies. Optimal decoding of all available auditory-nerve infor-

mation resulted in a pattern of predictions that matched (but greatly outperformed)

human perceptual performance. Understanding how pitch is coded across the frequency

range may help in the quest to restore accurate pitch perception in people with impaired

hearing and cochlear implants.

Introduction

Pitch is a primary perceptual dimension of sound. It plays a key role in the perception of

music, where it constitutes the basis of melody and harmony [1], as well as in the perception of

speech, where it has important suprasegmental functions and conveys information about

talker identity [2–4]. Pitch also facilitates auditory scene analysis, helping listeners to segregate

simultaneous harmonic sounds [5,6] or to understand speech in complex backgrounds [7].

Although sensitivity to pitch and regular harmonic structure has been demonstrated in audi-

tory cortex of humans [8–10] and other mammals [11,12], theories of the neural basis of pitch

perception diverge as early as the auditory nerve. “Place” or “rate-place” theories contend that

pitch is derived by analysis of the spatial pattern of average firing rates of auditory-nerve fibers,

in which information about the frequency content of a stimulus is encoded via the basilar

membrane’s frequency-to-place (or tonotopic) mapping [13,14]. “Temporal” theories suggest

instead that pitch is derived from temporal information, including temporal fine structure

(TFS) information encoded in inter-spike intervals by the phase-locking properties of audi-

tory-nerve fibers and other temporal information, such as envelope modulation [13,15,16].

“Spatiotemporal” or “spectrotemporal” theories, motivated by the fact that neither place nor

temporal theories account well for all pitch phenomena, propose that both the frequency-to-

place mapping and TFS information play crucial roles in pitch perception [13,17–20].

The simplest pitch-evoking stimulus is the pure tone, and it is well known that frequency

discrimination of pure tones degrades as the stimulus frequency increases beyond 2–3 kHz

[21,22]. Because phase locking in the auditory nerve also weakens with increasing stimulus fre-

quency beyond 2–3 kHz [23–26], it has often been argued that frequency discrimination relies

on a temporal code. Ideal-observer analysis of simulated auditory-nerve responses suggests

that the rolloff of phase locking in the auditory nerve can account well for the dependence of

pure-tone frequency discrimination on stimulus frequency in humans [27,28]. However, no

direct evidence regarding the lowpass characteristic of phase locking is available in humans,

with estimates based on comparative studies, electrophysiology, and psychophysics of the

“upper limit” of useful phase locking ranging quite widely from 1.5 kHz up to 8–12 kHz

[21,23,25,29]. In addition, new behavioral results [30] have resulted in considerable uncer-

tainty surrounding the extent to which the deterioration of frequency discrimination at high

frequencies truly reflects the underlying rolloff of auditory-nerve phase locking to TFS. Never-

theless, at a sufficiently high (although unknown) frequency, no usable phase-locked informa-

tion should be available in the auditory nerve. At such a point, it is generally believed that a

rate-place code for frequency becomes dominant [21].

Harmonic complex tones (HCTs), which are comprised of pure tones whose frequencies

are integer multiples of a common fundamental frequency (F0), are a more complicated but

more natural pitch-evoking stimulus. Voiced speech and musical instrument sounds are

examples of HCTs. Rate-place information is generally thought to be available for lower-
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ranked harmonics, but not for higher-ranked harmonics, due to the filtering that occurs in the

cochlea. The transition between these lower, spectrally resolved, harmonics and the higher,

spectrally unresolved, harmonics is also subject to debate but, depending on the definition, is

thought to occur somewhere between the 7th and 10th harmonic, at least for F0s of 100 Hz and

above [13,31–35]. Behaviorally, F0 discrimination is best when some harmonics lower than

the 10th are present [31–34]. For this reason, we concentrate on HCTs that are restricted to a

limited number of harmonics in the range from the 6th to 10th.

Whereas the link between coding of TFS information in the auditory nerve and frequency

discrimination of pure tones is relatively straightforward, the link between coding of temporal

information and F0 discrimination of HCTs is considerably more complicated. Here, we use

the term “temporal information” to refer both to TFS at the harmonic component frequencies

and to other (slower) periodicities, primarily at the F0, evoked by peripheral interactions

between components. Discrimination thresholds of such HCTs composed of harmonics from

the 6th to 10th are typically poorer by approximately a factor of 5 if the component frequencies

are all above ~8 kHz than if they are at lower frequencies [33,36–38]. Qualitatively, this effect

is consistent with temporal theories of pitch, which predict that performance should degrade

as phase locking to component frequencies (and thus the availability of TFS information about

component frequencies) degrades at higher frequencies. Conversely, this effect is qualitatively

inconsistent with rate-place theories of pitch. In relative terms, cochlear filters remain sharp at

high frequencies; thus, the pattern of average auditory-nerve firing rate across the tonotopic

axis should be informative about F0 at both low and high frequencies. For spectrotemporal

theories of pitch, predictions are less clear because loss of phase locking to TFS may be coun-

terbalanced by relatively sharper auditory filters at high frequencies. Although the difference

in performance at low and high frequencies is qualitatively consistent with temporal theories,

the magnitude of degradation in F0 discrimination performance at high frequencies (about a

factor of 5) is surprisingly small, given that phase-locked responses to TFS above 8 kHz seem

unlikely to convey sufficient information to derive accurate estimates of F0 in HCTs [13]. In

the absence of TFS information at high frequencies, listeners must instead be relying on tem-

poral-envelope periodicities at the F0, evoked by peripheral interactions between stimulus

components, or they must switch to a rate-place code [38,39]. However, it is generally believed

that listeners cannot perform pitch discrimination by comparing rates of temporal-envelope

cues for high F0s/rates above about 700 Hz [38–42].

If a rate-place code is used at high frequencies, then the presence of spectrally resolved har-

monics ought to be a necessary condition for accurate F0 discrimination at high frequencies.

Consistent with this prediction, listeners do not achieve accurate F0 discrimination for stimuli

at high frequencies when all stimulus harmonics are unresolved [33]. Another way to reduce

access to resolved harmonics is to present target HCTs in the context of spectrally overlapping

masker HCTs [43–47]. In cases where a sufficient number of harmonics are presented simulta-

neously in the same frequency region, rate-place cues for resolved harmonics may be reduced

or eliminated, insofar as any peaks in an average rate profile would not unambiguously reflect

the presence of a single target component, even though the harmonic numbers of the target

remain the same. Such stimuli should result in particularly poor F0 discrimination thresholds

at high frequencies if listeners are using a rate-place code for F0 discrimination, as compared

to F0 discrimination at low frequencies where a temporal code with access to TFS information

may be more robust to the presence of HCT maskers.

In the present study, we tested the hypothesis that high-frequency F0 coding is based on a

rate-place code using a mixture of behavioral and computational modeling methods. First, we

present simulations of auditory-nerve responses to HCTs at low and high frequencies to

develop a better understanding of the types of temporal and rate-place cues available for F0
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discrimination at low and high frequencies. Next, we present behavioral data that were col-

lected to test the hypothesis that mixtures of HCTs should result in particularly poor F0 dis-

crimination at high frequencies–a pattern of results that would be consistent with the use of a

rate-place code at high frequencies. Finally, we combine the auditory-nerve models with ideal-

observer analysis to generate optimal frequency difference limens (FDLs) and F0 difference

limens (F0DLs) for isolated pure and complex tones, over a wide range of frequencies, and

compare these predictions to behavioral thresholds from the literature.

Results

Peripheral representation of HCTs at high frequencies

Although many studies have recorded auditory-nerve responses to the types of HCT stimuli

used in pitch experiments [13,20,48,49], these have not included HCTs at the very high fre-

quencies used in recent human psychophysical work [36–38]. Moreover, recent work has

revealed significant differences in peripheral coding between humans and the smaller mam-

mals commonly used in auditory physiology experiments [29,50,51], raising questions as to

how useful auditory-nerve recordings of pitch-evoking stimuli in animals such as guinea pigs

or chinchillas are in understanding how pitch stimuli are represented in the human auditory

periphery. To develop a better understanding of the availability and quality of different

F0-related cues at high frequencies as compared to low frequencies in the human auditory

periphery, we simulated human auditory-nerve responses to HCTs at low and high frequencies

using a modern phenomenological model of the auditory nerve [52], with parameters adjusted

to match what is known about human cochlear tuning. This was done after first validating that

the cat version of the model could qualitatively replicate key data from relevant studies in cat

(S1 Text).

Low-numbered harmonics were at least partially resolved by the model filterbank (emu-

lating the mechanical filtering of the basilar membrane) at both low and high F0s, as reflected

by prominent peaks in the pattern of average firing rates over characteristic frequency (CF) in

the auditory-nerve population (Fig 1A and 1B, right panel). At low F0s, model fibers tuned to

resolved components also demonstrated robust phase locking to the underlying TFS, whereas

fibers tuned to unresolved components instead responded with a prominent modulation at F0

(Fig 1A, bottom panel). At high F0s, component frequencies were too high to produce phase-

locked responses in the model auditory nerve. As a result, model fibers tuned to resolved com-

ponents showed responses with little in the way of temporal structure, whereas fibers tuned to

unresolved harmonics showed strong modulations at F0 (Fig 1B, bottom panel). At both low

and high frequencies, model fibers tuned between resolved components showed responses

modulated at F0 (Fig 1A and 1B, bottom panel).

The model simulations suggest that if temporal information is utilized at high frequencies,

then it is likely to be based on the envelope modulations at F0, rather than on the phase-locked

responses to individual harmonics (an observation further reinforced by our ideal-observer

modeling below). However, several lines of evidence suggest that humans cannot utilize that

envelope information effectively. First, studies using HCTs composed of unresolved harmon-

ics (i.e., all harmonics above the 10th) or modulated noises show that the pitch of such stimuli,

which is conveyed exclusively by temporal-envelope cues, is weak, yields poor F0 discrimina-

tion, and is non-existent for F0s above about 700 or 800 Hz [32–34,40,42]. Second, melody dis-

crimination is possible at very high frequencies (> 7.5 kHz) for HCTs with F0s between 1 and

2 kHz, but when the harmonics are shifted to produce inharmonic tones, performance drops

to near chance, even though the temporal-envelope cues are maintained [39]. Third, both mel-

ody perception and F0 discrimination remain accurate at high frequencies when odd and even
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harmonics are presented to opposite ears, even though the temporal-envelope repetition rate

in each ear is thereby doubled [38,39]. These lines of evidence, which we evaluate and recon-

sider further in light of our own results below, suggest that at least some information in the

temporal response pattern of the auditory nerve at high frequencies may not be utilized

perceptually.

F0 discrimination is affected by HCT maskers at low and high frequencies

If listeners are not using temporal information to perform F0 discrimination at high frequen-

cies, then they must be relying on rate-place information, which in turn relies on the presence

of some spectrally resolved harmonics. We tested this idea by attempting to restrict the avail-

ability of resolved harmonics via the addition of concurrent HCT maskers. We hypothesized

that this stimulus manipulation would yield particularly poor performance at high frequencies

(where resolved harmonics are necessary due to the use of a rate-place code) as compared to

low frequencies (where resolved harmonics may not be necessary, due to the additional avail-

ability of TFS cues, even in the presence of the masker).

Experiment 1. We began by measuring F0 discrimination at both low and high frequen-

cies and by determining how a single HCT masker impaired F0 discrimination. Experiment 1

measured F0 discrimination thresholds for bandpass-filtered HCTs at low frequencies

(F0 = 280 Hz, frequency range = ~1.5–3.0 kHz) and high frequencies (F0 = 1400 Hz, frequency

range = ~8–14 kHz). Two conditions were tested: ISO, in which test tones (target and refer-

ence) were presented in isolation (except for masking noise in the background), and GEOM,

in which target tones with masking noise were presented concurrently with a spectrally over-

lapping HCT masker with an F0 that was geometrically centered between the F0s of the

Fig 1. Representation of complex tones in a simulated auditory nerve. (A). Simulated responses of a population of high-spontaneous-rate

auditory-nerve fibers [52] for five periods of a sine-phase HCT composed of harmonics 4–13 at a level of 50 dB SPL per component and an F0 of 280

Hz. The middle panel shows a “neurogram”, or a plot of instantaneous firing rate as a function of time and characteristic frequency. In the

neurogram, color (from purple [low] to yellow [high]) indicates the instantaneous firing rate analogous to color indicating intensity in a spectrogram.

The top and left panels show the temporal waveform and spectrum, respectively, of the acoustic stimulus. In the left panel, the yellow box highlights

the frequency ranges used in the behavioral experiments. The bottom two panels and right panels show the responses of individual nerve fibers over

time and the response profile averaged over time, respectively, of the simulated neural response. The bottom two panels show responses for auditory-

nerve fibers tuned to component frequencies (4F0, purple; 12F0, blue) or tuned between component frequencies (5.5F0, pink; 9.5F0, maroon). (B).

Same as A, except for an F0 of 1400 Hz.

https://doi.org/10.1371/journal.pcbi.1009889.g001
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reference (lower-F0) and the target (higher-F0) tone. The masking noise was broadband

threshold-equalizing noise (TEN) [53] with a level within the estimated equivalent rectangular

bandwidth (ERB) of the human auditory filter around 1 kHz [54] that was 10 dB below the

level per component of the HCTs. Two stimulus variants were tested. In the first variant

(Experiment 1a), the test tones contained only harmonics 6–10 of the F0. To help rule out the

possibility that listeners were using the spectral edge of the stimulus, rather than the F0, to

complete the task, a second variant (Experiment 1b) was tested, in which the test tones con-

tained all harmonics of the F0 up to the Nyquist frequency (i.e., half the sampling rate), but

were bandpass filtered with a zero-phase 12th order Butterworth bandpass filter passing har-

monics 6–10 of the nominal F0.

The results of Experiment 1 are plotted in Fig 2. An analysis of variance (ANOVA) revealed

significant main effects of F0 (low or high) [F(1, 22.98) = 54.57, p<0.001] and masker (present

or absent) [F(1, 22.46) = 149.37, p<0.001] as well as significant two-way interactions between

F0 and masker [F(1, 22.29) = 44.71, p<0.001] and between masker and experiment (Experi-

ment 1a or Experiment 1b) [F(1, 130.42) = 9.02, p = 0.013]. No other model terms reached sig-

nificance. The significant main effects reflected the trends observed in Fig 2 that listeners

achieved better (lower) F0 discrimination thresholds at low frequencies than at high frequen-

cies both for the ISO condition [estimated ratio = 5.14, F(1, 22.82) = 63.41, p<0.001] and the

GEOM condition [estimated ratio = 2.14, F(1,22.82) = 29.80, p<0.001] and that they achieved

better F0 discrimination thresholds in the absence (ISO) than in the presence (GEOM) of the

masker for both low frequencies [estimated ratio = 3.70, F(1, 22.69) = 210.15, p<0.001] and for

high frequencies [estimated ratio = 1.54, F(1, 22.49) = 17.00, p<0.001].

Our initial hypothesis was that the addition of a masker (i.e., the GEOM condition) would

reduce the availability of rate-place cues and so would result in particularly poor F0 discrimi-

nation at high frequencies. In fact, contrary to our hypothesis, an interaction contrast test

revealed that the difference in performance between the ISO and GEOM conditions was larger

at low frequencies than at high frequencies [estimated ratio of ratios = 2.40, F(1, 22.29) =

42.71, p<0.001]. There are many possible explanations as to why the GEOM masker worsened

Fig 2. Behavioral results from Experiment 1. The left panel (Exp1a) shows results with only harmonics 6–10 present in the target; the right panel

(Exp1b) shows results with the bandpass filtered target, with harmonics 6–10 in the passband. Large filled circles and error bars indicate the average F0DL

and ±1 standard error of the mean (SEM). The small filled circles and error bars indicate individual F0DLs and ±1 SEM for each participant.

https://doi.org/10.1371/journal.pcbi.1009889.g002
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performance more at low frequencies than at high frequencies. One possibility is that the

smaller effect of the GEOM masker at high frequencies reflects a ceiling effect for pitch dis-

crimination in our task. That is, for large F0 differences, listeners may have relied on changes

in gross spectral cues instead of on TFS information or spectral details. As a result, there may

have been an upper limit to how poor F0DLs could be in our stimulus conditions, and if listen-

ers reached such a limit in the high-frequency GEOM condition, the ISO-GEOM ratio in the

high-frequency condition may have underestimated the true impact of the GEOM masker at

high frequencies. Another possibility is that the GEOM masker did not achieve its intended

goal of eliminating representations of resolved harmonics in the neural response to the stimu-

lus; this possibility is explored further via modeling described below.

Somewhat different stimuli were used in Experiment 1a and Experiment 1b. Specifically,

the strong spectral edges cues present in the stimuli for Experiment 1a (which were systemati-

cally related to the F0 on each trial) were replaced with sloping spectral edges in Experiment

1b (which were not systematically related to the F0 on each trial) by using a bandpass filter. As

indicated by the significant interaction between masker and experiment, this difference

affected performance, with the effect of the masker being approximately 1.4 times larger on

average in Experiment 1a than in Experiment 1b [estimated ratio of ratios = 1.4, F(1, 130.42) =

9.02, p = 0.016]. From visual inspection of Fig 2, the difference between Experiments 1a and

1b appears constrained to the high-frequency GEOM condition. However, the three-way

interaction between F0, masker, and experiment was not significant, and a series of pairwise

contrasts between Experiments 1a and 1b for each of the conditions did not reveal any signifi-

cant differences after correction for multiple comparisons (all p>0.054). Collectively, the small

size of the observed differences between Experiment 1a and Experiment 1b, and the fact that

performance was, if anything, better in Experiment 1b than in Experiment 1a, suggests that lis-

teners were not using spectral edge cues in Experiment 1a.

Experiment 2

It is possible that the GEOM masker may not have achieved its intended goal of eliminating

rate-place representations of resolved target harmonics in the neural response. Experiment 2

attempted to address this possibility by measuring the target-to-masker ratio (TMR) that lis-

teners required to discriminate the F0 of HCTs presented concurrently with two spectrally

overlapping HCT maskers. The test tones (reference and target) had F0s that were separated

by 1.5 or 2.5 times the F0DL measured for each participant individually without a masker. The

masker tones had F0s that were below and above the F0 of the test tones (by between 5.25–7.25

semitones, selected randomly on each trial with a uniform distribution), and auditory-nerve

simulations (see below) confirmed that the target harmonics were unlikely to be spectrally

resolved at a TMR of 0 dB (equal-amplitude target and masker components). The targets and

maskers were both synthesized in the same way as the tones in Experiment 1b (i.e., containing

all harmonics of their F0 but bandpass filtered to attenuate all but harmonics 6–10 of the target

or 5–11 of the maskers).

The results of Experiment 2 are shown in Fig 3. An ANOVA revealed significant main

effects of F0 (low or high) [F(1, 10.00) = 11.78, p = 0.013] and interval size (1.5 or 2.5 F0DL) [F
(1, 10.00) = 17.43, p = 0.0057] as well as a significant interaction between F0 and interval size

[F(1, 10.00) = 6.77, p = 0.026]. Listeners achieved considerably lower TMRs in low-frequency

conditions than in high-frequency conditions [estimated difference = −3.66 dB, F(1, 10.00) =

11.78, p = 0.019]. This frequency effect was present even though the difference in F0 was set

for each listener based on their own F0DLs from the corresponding ISO condition in Experi-

ment 1, thus nominally equating difficulty across low- and high-frequency conditions in the
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absence of the masker. In other words, the presence of two HCT maskers interfered more with

pitch discrimination at high frequencies than at low frequencies. Under the assumption that

rate-place cues for F0 were successfully eliminated by the DBL masker, this finding is qualita-

tively consistent with our hypothesis that F0 discrimination at high frequencies is based on a

rate-place code and so should be more strongly disrupted by the reduction or elimination of

spectrally resolved harmonics. This conclusion, and the assumptions underlying it, are consid-

ered in more detail in the following section.

As expected, listeners generally performed better with the larger interval size (2.5

F0DL) than with the smaller interval size (1.5 F0DL), as confirmed by a contrast test [esti-

mated difference = −1.52 dB, F(1, 17.43) = 17.43, p = 0.0076]. However, an unexpected

interaction between F0 and interval size revealed that the larger interval size yielded better

performance at low frequencies [estimated difference = −2.60 dB, F(1, 1.00) = 21.21,

p = 0.0049] but not at high frequencies [estimated difference = −0.44 dB, F(1, 10.00) =

0.68, p = 0.43]. An interaction contrast test comparing the size of the interval effect at low

and high frequencies was, after correction, marginally significant [estimated difference of

differences = 2.16 dB, F(1, 10.00) = 6.77, p = 0.053], providing modest evidence that the

size of the interval effect differed between low and high frequencies, although in both

cases the trend was in the same direction, with a larger interval producing a lower TMR at

threshold.

Fig 3. Behavioral results from Experiment 2. Results from Experiment 2. Large filled circles and error bars indicate

the average TMR and ±1 standard error of the mean (SEM). The small filled circles and error bars indicate individual

F0DLs and ±1 SEM for each participant.

https://doi.org/10.1371/journal.pcbi.1009889.g003
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Auditory-nerve modeling highlights the complexities of HCT mixtures

In the development and interpretation of Experiments 1 and 2, we assumed that the addition

of concurrent HCT maskers would reduce or eliminate rate-place cues for target components

in the auditory-nerve response. Under this assumption, we expected that the HCT maskers

would impact performance more at high frequencies (where we hypothesized that rate-place

cues are necessary for good performance) than at low frequencies (where TFS information

might still convey useful information even in the presence of the maskers). Instead, we found

that the maskers had a larger negative effect at low frequencies in Experiment 1 and a larger

negative effect at high frequencies in Experiment 2. Our observed pattern of data can be quali-

tatively explained by assuming that (1) rate-place cues were not eliminated by the GEOM

masker in Experiment 1 (resulting in better-than-expected performance at high frequencies),

(2) rate-place cues were eliminated (or heavily degraded) by the DBL masker in Experiment 2

(resulting in poorer than expected performance at high frequencies), and (3) temporal cues

were relatively less affected by the maskers than were rate-place cues (explaining why the DBL

masker had less effect at low than at high frequencies). To explore the validity of these assump-

tions, we simulated auditory-nerve responses to our HCT mixture stimuli from Experiments 1

and 2 and visualized the availability of different cue types for each masker type and F0.

For Experiment 1, we simulated responses to the targets in alone and in the presence of the

GEOM masker for populations of high-spontaneous-rate and low-spontaneous-rate auditory-

nerve fibers and visualized the average-rate responses (i.e., excitation patterns). As can be seen

in Fig 4, for high-spontaneous rate fibers, resolved harmonics were only barely visible in the

average-rate response for ISO stimuli at both low and high frequencies, as the sound levels

were high enough to saturate most simulated high-spontaneous-rate fibers). However, for

low-spontaneous-rate fibers, resolved harmonics were more clearly visible in the average-rate

Fig 4. Comparison of the availability of spectrally resolved harmonics at low and high frequencies in an excitation

pattern simulation. Excitation patterns (average firing rate versus CF) for high-spontaneous-rate (HSR) auditory-

nerve fibers (left) and low-spontaneous-rate (LSR) auditory-nerve fibers (right) responding to the stimuli in

Experiment 1b based on a computational model of the auditory periphery [52]. The solid curve indicates the average

excitation pattern while the filled area around the curve indicates ±1 standard deviation (over 10 simulations with

different samples of masking noise and level roving). Vertical dashed lines indicate the frequencies of target harmonics.

The F0 difference between the target and masker was 3%. See Materials and Methods for more details on the

simulations.

https://doi.org/10.1371/journal.pcbi.1009889.g004

PLOS COMPUTATIONAL BIOLOGY Discrimination and modeling of high-frequency complex tones

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009889 March 3, 2022 9 / 34

https://doi.org/10.1371/journal.pcbi.1009889.g004
https://doi.org/10.1371/journal.pcbi.1009889


response to the ISO stimulus at both low and high frequencies, with responses at high frequen-

cies in particular showing strong peaks and valleys corresponding to the frequencies of the tar-

get harmonics (this difference at low and high frequencies is consistent with sharper relative

tuning in the model at high frequencies, in line with estimates from humans and other species;

[50,51]).

At least for the low-spontaneous-rate fibers, the GEOM masker seems to have elicited

broad peaks reflecting a combination of target and masker components. These combined

peaks evoked by pairs of target and masker harmonics may still be useful for coding F0, insofar

as they are still systematically related to the target component frequencies. F0 discrimination

based on identifying peaks in excitation patterns might worsen only to a small extent when

using these blurred peaks instead of using sharper peaks associated with target components

alone [45]. Regardless, the central insight from Fig 4 is that the GEOM masker likely did not

achieve its intended goal of eliminating rate-place cues at high frequencies, making interpreta-

tion of the resulting behavioral results challenging. Future psychophysical studies could

attempt to overcome these limitations in part by exploring other types of maskers, such as

(possibly inharmonic) complex tones or filtered noise stimuli tailored to “fill in” the gaps

between resolved target components in each interval. Such maskers could also potentially

overcome other limitations of the present masker stimuli, such as the potential for strong beats

between the harmonics of the target and the harmonics of the maskers (which were often very

close in frequency for listeners that achieved good thresholds).

For Experiment 2, the key uncertainty in interpreting the results is whether the DBL masker

achieved its intended goal of eliminating rate-place cues for resolved target components, and

to what extent the masker impacted temporal cues at low frequencies. To probe these ques-

tions, we simulated auditory-nerve responses to the DBL stimulus as a function of TMR and

visualized the availability of temporal and rate-place cues. Fig 5 shows autocorrelograms (i.e.,

autocorrelations of auditory-nerve responses over a range of CFs; [48]) of auditory-nerve

responses (temporal coding) at both low and high frequencies while Fig 6 shows excitation pat-

terns (rate-place coding) at both low and high frequencies for the DBL stimulus.

In Fig 5, strong evidence for the target F0 consists of vertical ridges at lags corresponding to

the F0 (integers on the x-axis) spanning along the range of CFs (y-axis). As can be seen, tempo-

ral coding of the target F0 was weak at 0 dB TMR at both low and high frequencies. At low fre-

quencies and at 0 dB TMR, vertical ridges in the autocorrelogram often reflected

synchronization to masker components instead of target components (Fig 5B). At more favor-

able TMRs, vertical ridges corresponding clearly to the target period emerged and the most

prominent peaks in the summary autocorrelation (sACF) were located at integer multiples of

the target period. By 10 dB TMR, the low-frequency autocorrelogram closely resembled the

autocorrelogram for the stimulus without maskers. Coding of the target F0 was much weaker

at high frequencies, consistent with the loss of phase locking to the TFS of individual compo-

nents at high frequencies. Even at 10 dB TMR, temporal coding of the target F0 was consider-

ably less salient than in the absence of the maskers. Fibers tuned near stimulus components

conveyed little temporal information about F0 (because they are saturated and do not phase

lock to the high-frequency TFS; Fig 1). Fibers tuned between stimulus components still con-

veyed some temporal information (because they respond to modulations at F0 elicited by beat-

ing between adjacent target components in the stimulus; Fig 1), but the resulting

autocorrelation peaks were broad and shallow (Fig 5C).

In Fig 6, strong evidence for the target F0 would consist of prominent peaks at each target

harmonic (integers on the x-axis). High-spontaneous-rate fibers showed few prominent peaks

at any TMRs at either low or high frequencies because the sound levels used in the simulations

saturated the high-spontaneous-rate fibers. In contrast, low-spontaneous-rate fibers showed
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Fig 5. Comparison of simulated autocorrelograms at low and high frequencies for the DBL stimulus. (A) Autocorrelograms for simulated high-

spontaneous-rate auditory-nerve-fiber responses [52] for the low-frequency DBL stimulus (left column) and the high-frequency DBL stimulus (right

column). Here, one masker F0 was set to 5.5 ST below the target F0 while the other masker F0 was set to 6 ST above the target F0. The figure was

constructed by fixing the target F0 and then varying the simulated CF (y-axis) linearly over a fixed range. For each CF, the instantaneous firing rate of

the auditory-nerve model was computed and then the autocorrelation of that response was computed. Color (from purple/blue [low] to yellow/green
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many prominent peaks in the excitation patterns. At 0 dB TMR, these peaks corresponded to

masker components or mixtures of target and masker components. At more favorable TMRs,

these peaks more clearly reflected target frequencies. However, even with masker components

attenuated by 10 dB (i.e., 10 dB TMR), the peaks elicited by target components still had smaller

peak-to-valley ratios than corresponding peaks in the excitation pattern without maskers (bot-

tom row), masker components outside the stimulus passband still elicited strong peaks, and

peaks near masker components within the stimulus passband still influenced the shape of

peaks near target components. This simulation demonstrates that the notion of “resolved har-

monics” in the context of mixtures of HCTs, where auditory neurons are responding to mix-

tures of components in complicated ways, is problematic and lacks a clear definition [44].

[high]) indicates the autocorrelation value at each lag-CF point, analogous to color indicating intensity in a spectrogram. In each column, the first four

panels show autocorrelograms for varying TMRs and the bottom panel shows the summary autocorrelation function (sACF; the sum of the

autocorrelograms along the CF axis). Red boxes and labels indicate the zoomed-in views plotted in the following subfigures. (B) A zoomed-in view of

autocorrelograms and the sACF for 0, 5, and 10 dB TMR at low frequencies for lags of 3.5 to 4.5 times the period of the target F0. Vertical lines indicate

lags corresponding to the periods of each tone in the stimulus or to multiples of those periods (marked using the shorthand “2F0” to refer to the lag

twice as long as the period of the tone). Lags corresponding to multiples of the target period are indicated with “XF0”, while lags corresponding to

multiples of the masker periods are indicated with “XF0L” and “XF0U” for the lower and upper maskers, respectively. (c) A zoomed-in view of

autocorrelograms and the sACF for 5 and 10 dB TMR and without maskers at high frequencies for lags of 1.5 to 2.5 times the period of the target F0.

Vertical lines indicate the same as in the previous subfigure. Only vertical lines corresponding to the target period are plotted in the last subpanel

because this simulation was conducted without the maskers. See Materials and Methods for more details on the simulations.

https://doi.org/10.1371/journal.pcbi.1009889.g005

Fig 6. Comparison of excitation patterns at low and high frequencies for the DBL stimulus. Excitation patterns (average firing rate versus CF) for simulated

high-spontaneous-rate and low-spontaneous-rate auditory-nerve fibers [52] responding to the low-frequency DBL stimulus (left column) and the high-

frequency DBL stimulus (right column) in Experiment 2. The solid curve indicates the average excitation pattern while the filled area around the curve

indicates ±1 standard deviation (over 10 simulations with different samples of masking noise and level roving). Vertical dashed lines indicate the frequencies of

target components and masker components. Color of the lines indicates which F0 they corresponding to (orange for the lower masker F0, gold for the target

F0, and pink for the upper masker F0). See Materials and Methods for more details on the simulations.

https://doi.org/10.1371/journal.pcbi.1009889.g006
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Figs 5 and 6 emphasize the complexities inherent in interpreting the results of Experiment

2. Both temporal and rate-place cues were likely strongly impacted by the presence of the DBL

masker. If we assume that the same mechanism is used at low and high frequencies to decode

the target F0, then predictions are relatively clear. If a temporal code is used at low and high

frequencies, thresholds with the DBL masker ought to be better at low frequencies than at high

frequencies, because temporal cues at low frequencies are much more robust to the presence

of the DBL masker than are temporal cues at high frequencies (Fig 5). If instead a rate-place

code is used at low and high frequencies, thresholds with the DBL masker ought to be better at

high frequencies than at low frequencies, because sharper relative tuning at high frequencies

leads to clearer rate-place cues for F0 at high frequencies than at low frequencies (Fig 6). In

our behavioral data, we observed that performance was better at low frequencies than at high

frequencies with the DBL masker (Fig 3), a pattern of results that is nominally consistent with

the temporal-code prediction. However, if different mechanisms are used at low and high fre-

quencies to decode target F0, then predictions are less clear because comparing the relative

fidelity of temporal and rate-place cues is non-trivial.

Predicting performance with an ideal-observer model

The behavioral experiments provide novel data on how concurrent and spectrally overlapping

HCT maskers affect pitch discrimination at both low and high frequencies. However, the

results are equivocal in their support of the hypothesis that pitch discrimination is based on a

rate-place code at high frequencies. In Experiment 1, adding a single HCT masker impaired

pitch discrimination more at low frequencies than at high frequencies (contrary to our hypoth-

esis), whereas in Experiment 2, adding a double HCT masker impaired pitch discrimination

more at high frequencies than at low frequencies (consistent with our hypothesis). Moreover,

the simulations illustrated in Figs 4–6 emphasize that adding HCT maskers to an HCT target

is likely to affect both temporal and rate-place cues for F0 in complicated ways, making it diffi-

cult to interpret the effect of masker in terms of either set of cues.

An alternative approach to probing the neural underpinnings of high-frequency F0 dis-

crimination is to focus on the difference in performance at low and high frequencies for iso-

lated HCTs (which evoke less complicated responses than HCT mixtures) and attempt to

determine whether the magnitude of that difference is consistent with the predictions of either

temporal or rate-place models of pitch. To this end, we employed three existing computational

models of the human auditory periphery [27,52,55] to predict FDLs for pure tones and F0DLs

for the isolated HCTs from Experiment 1a using ideal-observer analysis. Simulations of pure-

tone FDLs were included to provide direct comparisons with prior work using similar meth-

ods [27,28,56]. Thresholds were based on simulated responses from high-spontaneous-rate

fibers at 40 CFs spanning a 1.5-octave range around the target frequency (FDLs) or 40 CFs

spanning a ~1.1-octave range around the stimulus passband (F0DLs; see Materials and Meth-

ods for details). Thresholds were generated for two observer types: an all-information observer

and a rate-place observer. Whereas the all-information observer utilized all information in the

simulated auditory-nerve response optimally, the rate-place observer averaged the simulated

auditory-nerve response over time and then utilized that time-averaged information optimally

(see Materials and Methods for details). These two observers allowed us to establish an optimal

bound on performance in the modeled tasks (all-information observer) and to determine how

much predicted performance was affected by discarding all temporal information from the

simulated auditory-nerve responses (rate-place observer).

Frequency discrimination. Ideal-observer predictions for pure-tone frequency discrimi-

nation are shown in Fig 7. The predicted FDLs generally align well with those from previous
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Fig 7. Ideal-observer predictions for pure-tone frequency discrimination. Results of the frequency discrimination simulations. (A)

Simulated FDLs versus frequency for a pure tone in each auditory-nerve model. Simulations in this panel include no parameter roving.

Points indicate the simulated FDLs at a particular frequency while lines indicate a locally estimated scatterplot smoothing (LOESS) fit to

the simulated FDLs. The solid black line indicates the predicted FDLs from Micheyl et al. [58] scaled by a factor of 0.002 (to roughly match

the low-frequency side of the curve to the best-performing model predictions from the present study). The axis on the right-hand side
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work using similar methods [27,28,56]. All-information FDLs are best near 2 kHz and then

steadily degrade as the tone frequency increases (Fig 7A) due to degraded coding of TFS. How-

ever, the rate at which performance degraded with increasing frequency varied between the

underlying nerve models (Fig 7C). For example, between 2 and 8.5 kHz, the Verhulst et al.

[55] model predicted a factor of 5 decrease in performance, whereas the Zilany et al. [52]

model predicted a factor of 25 decrease in performance, and the Heinz et al. [27] model pre-

dicted a factor of 17 decrease in performance. The onset and slope of the degradation in per-

formance with increasing frequency in each model was directly related to the cutoff frequency

and slope of phase-locking roll-off in each model’s nerve fibers (Fig 7B and S1 Text). Higher

levels generally resulted in lower (better) thresholds for the all-information model. As demon-

strated quantitatively over a wider range of levels in prior work [27], this trend is consistent

with trends in behavioral data for frequency discrimination in quiet [57].

In contrast to the all-information observer, the rate-place observer predicted thresholds

that were poorer overall and were relatively flat, or improved slightly with frequency, as

expected based on sharper tuning at high frequencies (Fig 7A and 7B and S1 Text). Changes in

level over the tested range appeared to have minimal impact on the rate-place observer (except

at the highest frequencies in the Zilany et al. [52] model, where increased levels resulted in

somewhat poorer performance). At much higher levels, rate-place thresholds degraded signifi-

cantly (S3 Text). The poorer performance of the rate-place observer at high levels is not consis-

tent with behavioral data for pure-tone frequency discrimination in quiet, which shows

improved performance at high levels [57]. Consistent with expectations, performance of the

rate-place observer was correlated with the sharpness of tuning in the underlying auditory-

nerve model, with sharper tuning resulting in better FDLs (Fig 7B). The Zilany et al. [52] and

Verhulst et al. [55] models had slightly better rate-place thresholds than the Heinz et al. [27]

model, consistent with these models having sharper peripheral tuning, particularly at high

frequencies.

Consistent with behavioral data [59] and the simulations of Heinz et al. [27], level roving

(i.e., randomizing the level from stimulus to stimulus) had little impact on frequency discrimi-

nation for either the all-information or rate-place observers (S2 Text). In contrast, phase ran-

domization (i.e., randomizing the starting phase from stimulus to stimulus) appeared to

impair the all-information observer by a small but consistent amount (approximately a factor

of two) at least up to approximately 10 kHz (S2 Text). This increase in thresholds by a factor of

two closely matches the theoretical predictions made by Siebert [28] but is not observed in

humans, who are insensitive to the starting phase of pure tones or the phase relationships

between spectrally resolved components [60].

We compared the model results to existing behavioral data, using a function derived from

multiple studies of pure-tone frequency discrimination [58]; this function’s FDLs were always

larger (poorer) than the predictions of both the rate-place and all-information observers, sug-

gesting that both models contained sufficient information to explain human behavior. How-

ever, the dependence of FDLs on frequency was better captured by the all-information model,

corresponds to the unscaled FDLs predictions from Micheyl et al. [58]. (B) Simulated all-information FDLs and vector strength (top row)

and simulated rate-place FDLs and Q10 (bottom row) versus frequency with a double y-axis. To choose the warping on the y-axis for

vector strength and Q10, linear models were fit to predict log-transformed FDLs as a function of log-transformed reciprocals of vector

strength (Q10) for the all-information FDLs (rate-place FDLs). The fitted regression equations were then used to warp the y-axes. In other

words, we warped the y-axes for vector strength and Q10 to maximize overlap with the FDL predictions (across all three models) in order

to visually demonstrate the relationship between vector strength and Q10 and the simulated FDLs. (C) Ratio of simulated FDLs at 8.5 kHz

and 2.0 kHz in the non-roved simulation at 30 dB re: threshold for each model (left) and ratio of behavioral estimates of FDLs at 8.5 kHz

and 2.0 kHz from various studies (right). Simulated FDLs were interpolated using LOESS while behavioral FDLs were linearly interpolated

on log-log coordinates.

https://doi.org/10.1371/journal.pcbi.1009889.g007
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as shown by the black curves in Fig 7A, which were scaled down by nearly three orders of mag-

nitude in order to more closely match the absolute values of the all-information observer. In

addition, we extracted FDLs from four individual behavioral studies that tested a sufficiently

wide range of frequencies [21,22,36,38] and then estimated the FDL ratio between 8.5 kHz and

2 kHz for each study (Fig 7C; see Materials and Methods for details). Using the ratio of two

FDLs emphasizes the effect of frequency in each dataset rather than absolute differences in

FDLs between datasets or between behavioral data and the ideal-observer thresholds.

Both the behavioral data and the computational results showed a wide range in ratios of

performance between 8.5 kHz and 2 kHz. Some insights can nevertheless be gained. Notably,

with the exception of the Moore and Ernst [21] results, the ratios from the behavioral studies

are essentially bound below by the all-information observer predictions from the Verhulst

et al. [55] model (which has the smallest ratio between 8 kHz and 2.5 kHz and the slowest roll-

off of phase locking) and above by the Zilany et al. [52] model (which has the largest ratio

between 8 kHz and 2.5 kHz and the fastest rolloff of phase locking). In other words, despite

variations in both the behavioral results and model predictions, the degradation in behavioral

performance with increasing frequency is in relatively good quantitative agreement with

trends observed in optimal frequency discrimination.

F0 discrimination

Ideal-observer predictions for F0DLs with harmonics 6–10 are shown in Fig 8. The all-infor-

mation observer predicted that F0 discrimination should be best for F0s in the range of 200–

500 Hz (with the precise range depending on the underlying auditory-nerve model) and then

steadily worsen with increasing F0 before plateauing around 600–1000 Hz (Fig 8A), at least in

the Heinz et al. [27] and Zilany et al. [52] models. For the present stimuli, the 6th harmonic

was the lowest present, so that an F0 of 600 Hz corresponded to a lowest harmonic of 3600 Hz,

whereas an F0 of 1000 Hz corresponded to a lowest harmonic of 6000 Hz. The model fibers do

not phase lock strongly to frequency components above about 4 kHz (S1 Text); thus, this pat-

tern of results is suggestive of a transition from more accurate TFS-based coding at lower F0s

to less accurate envelope-based coding at higher F0s in the all-information observer (see no-

masker simulations in Fig 5C).

As expected, and consistent with the results for frequency discrimination, the rate-place

observer thresholds were higher than the all-information observer thresholds. Nevertheless, as

with the pure-tone FDL predictions, the rate-place thresholds were still better than the average

behavioral thresholds, suggesting that, in principle, sufficient rate-place information is avail-

able at the level of the auditory-nerve to account for the accuracy of behavioral F0 discrimina-

tion at both low and high frequencies. Performance for the rate-place observer was generally

flat with frequency or slightly improved with higher frequencies, depending on the exact

model in question. These inter-model differences are a direct result of differences in peripheral

tuning between the models (Fig 8B and S1 Text). The rate-place observer tended to be more

sensitive to changes in level than the all-information observer (Fig 8A). Generally, rate-place

thresholds were poorer at higher levels, consistent with the fact that higher levels degrade rep-

resentations of stimulus harmonics in the average rate responses of auditory-nerve fibers [61].

At much higher levels, rate-place thresholds worsened significantly, consistent with saturation

of the simulated high-spontaneous-rate fibers at high levels (S3 Text). There is some evidence

that F0 discrimination (in noise) worsens with increasing level [62]; however, this effect was

observed at higher levels behaviorally than those tested in the present model simulations.

Both the all-information observer and the rate-place observer models were affected by

parameter roving. Level roving typically had a negative impact on the rate-place observer at
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Fig 8. Ideal-observer predictions for F0 discrimination. Results of the F0 discrimination simulations. (A) Simulated F0DLs versus F0 of

the ISO HCT stimulus in each auditory-nerve model. Simulations in this panel include no parameter roving. Points indicate the simulated

F0DLs at a particular F0 while lines indicate a locally estimated scatterplot smoothing (LOESS) fit to the simulated F0DLs. (B) Simulated

all-information F0DLs and vector strength (top row) and simulated rate-place F0DLs and Q10 (bottom row) versus frequency with a

double y-axis. To choose the warping on the y-axis for vector strength and Q10, linear models were fit to predict log-transformed F0DLs as
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higher frequencies but little impact on the all-information observer (S2 Text). In comparison,

phase randomization (i.e., randomizing the relative phases of the components from stimulus

to stimulus instead of always synthesizing components in sine phase) had no impact on the

rate-place observer but had a negative impact on the all-information observer (S2 Text). Gen-

erally, across a fairly wide range of levels and frequencies, phase randomization elevated all-

information thresholds by a factor of two, consistent with the predictions of Siebert [28] and

the frequency discrimination results. In behavioral data, phase randomization only affects

thresholds when all the stimulus components present are unresolved, as expected [31,32].

To compare the model results to behavioral data, we extracted discrimination thresholds

from three behavioral studies that tested the same F0s as in our study [36–38] and then calcu-

lated the ratio between F0 discrimination thresholds for F0s of 1.4 kHz and 0.28 kHz for each

study as well as the present study (Fig 8C; for the present study, data was pooled across Experi-

ment 1a and Experiment 1b, see Materials and Methods for details). In contrast to the varying

stimuli and methods of the selected pure-tone frequency discrimination studies, the selected

F0 discrimination studies all used essentially the same stimuli and methods. The ratios

between F0 discrimination thresholds at 1.4 kHz and 0.28 kHz for each study ranged from

approximately 3 [36] to approximately 5 [37]. These values are within a range that can be plau-

sibly explained by the degradation of the all-information observer with increasing frequency,

with the same ratio for the all-information observer ranging from approximately 3 for the Ver-

hulst et al. [55] model to over 10 for the Heinz et al. [27] model. In contrast, the rate-place

observer model again predicted threshold ratios of around 1, which is outside the range

observed in behavioral data.

As was the case for frequency discrimination, the all-information observer provided the

best overall match to human data in terms of relative performance at low and high frequencies.

The plateau in the predicted F0 discrimination thresholds of the all-information observer

above about 600 Hz in the Heinz et al. [27] and Zilany et al. [52] models (in contrast to the pro-

gressive degradation of predicted pure-tone frequency discrimination thresholds at high fre-

quencies; Figs 7 and 8) suggests that, at higher F0s once phase locking to TFS becomes

unavailable, the all-information observer relies on temporal cues produced by peripheral inter-

action between adjacent harmonics rather than phase locking to TFS at the component fre-

quencies (Fig 1B).

The correspondence between all-information trends and human behavior could be inter-

preted as support for the use of temporal-envelope cues at high F0s by humans. However, as

discussed earlier, several lines of evidence from pitch psychophysics pose challenges to this

interpretation. Specifically in the case of the high-F0 HCTs with harmonics in the range of the

6th to the 10th, pitch perception is robust to manipulations in which the even and odd harmon-

ics are presented to different ears (which would decrease modulation depth and double the

modulation rate in each ear [38]) but is impaired by harmonicity manipulations in which the

frequencies all components are shifted up by a constant amount in Hz (which preserves modu-

lation rates while rendering the tone inharmonic [38,39]). Although beyond the scope of this

paper, auditory-nerve simulations and ideal-observer analysis could help further clarify our

understanding of these conditions. More generally, for HCTs composed of unresolved

a function of log-transformed reciprocals of vector strength or Q10 for the all-information F0DLs or rate-place F0DLs, respectively. The

fitted regression equations were then used to warp the y-axes. In other words, we warped the y-axes for vector strength and Q10 to

maximize overlap with the model predictions (across all three models) in order to visually demonstrate the relationship between vector

strength and Q10 and the simulated F0DLs (C) Ratio of simulated F0DLs at 1.4 kHz and 0.28 kHz in the non-roved simulation at 30 dB re:

threshold for each model (left) and ratio of behavioral estimates of F0DLs at 1.4 kHz and 0.28 kHz from various studies (right). Simulated

F0DLs were interpolated using LOESS while behavioral F0DLs were linearly interpolated on log-log coordinates.

https://doi.org/10.1371/journal.pcbi.1009889.g008
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harmonics and amplitude-modulated noises (for which pitch is thought to be exclusively con-

veyed by temporal-envelope cues), humans are not able to achieve accurate pitch discrimina-

tion for F0s (or modulation rates) beyond about 600–700 Hz [40,42]. These lines of evidence

seem to rule out a class of simple models wherein listeners compare temporal-envelope rates

to discriminate F0 in the present task. However, there are several notable differences between

the present HCT stimuli and the stimuli used to probe temporal-envelope pitch (unresolved

HCTs and modulated noises) that are worth considering further. First, whereas for unresolved

HCTs and modulated noises the only reliable pitch cue is the temporal-envelope rate, the pres-

ent HCT stimuli consist of partially resolved harmonics, which provide rate-place cues in addi-

tion to any temporal cues elicited by peripheral interaction between stimulus components.

Second, whereas for unresolved HCTs and modulated noises, all auditory-nerve fibers tuned

to the stimulus should have strongly modulated responses, in the present HCT stimuli, modu-

lation power varies substantially over the range of CFs, with deeper modulations in channels

tuned between stimulus components (Figs 1 and 5). As a result, for unresolved HCTs or mod-

ulated noises, the auditory system is relegated to comparing temporal-envelope modulation

rates to perform discrimination. In contrast, for the present HCT stimuli, the auditory system

could derive F0 estimates by combining information provided by average ANF rates (the exci-

tation pattern) with information provided by the distribution of envelope modulation power

across CFs (the so-called “fluctuation profile”; [63]). Recent modeling studies suggest that such

a strategy, based on decoding of simulated fluctuation profiles at the level of the midbrain, can

in principle account for behavioral F0 discrimination in stimuli similar to the present low-fre-

quency HCT stimuli [64] as well as performance in other psychoacoustical tasks [65]. At the

same time, these prior modeling studies have focused on midbrain neurons tuned to modula-

tions on the order of around 100 Hz, while stimulus-envelope modulations in the present

high-frequency HCT stimuli are at much higher rates (> 1 kHz) where sensitivity to amplitude

modulations is thought to be limited [66–68]. Further investigation will be needed to deter-

mine whether the fluctuation-profile approach can be successfully extended to our high-fre-

quency stimuli and reconcile the trends in the ideal observer with what is known from pitch

psychophysics.

Effect of maskers

In theory, the ideal-observer model could be applied to the Experiment 1 GEOM stimulus and

the Experiment 2 DBL stimulus to investigate how HCT maskers affect F0 discrimination.

However, this was not done for the present analyses for reasons discussed in Supporting Infor-

mation (S4 Text). The primary issue was that preliminary attempts at modeling these condi-

tions usually resulted in the ideal observer performing better in the presence than in the

absence of a masker (Fig A in S4 Text). Although initially surprising, further consideration of

the nature of the ideal observer makes it clear why this could happen. As shown previously

[27], the lower bound on the precision of estimating a stimulus parameter in our model, as

specified by the Cramér-Rao lower bound, is equivalent to the performance achieved by a

maximum likelihood estimator (at least for the one-parameter case). The maximum likelihood

estimator examines each spike in the auditory-nerve response and determines whether it is

more probable that the spike came from a baseline interval (f) or an incremented interval (i.e.,

f + Δf) and then combines those probabilities across all observed spikes. Intuitively, this means

that the observer has perfect templates of what the baseline and incremented responses should

look like and compares the response against those templates according to an optimal rule. In

the case of stimuli containing maskers, this means that the ideal observer can exploit any fea-

ture of the responses in decoding. As observed previously for noise maskers [69], interactions
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between targets and maskers that would never be usable by human observers (because they are

completely unpredictable from trial to trial) can be exploited by the ideal observer, leading to

unrealistic thresholds. To resolve these limitations of the present ideal-observer model, future

work could explore the application of quasi-ideal observers [69,70], deep neural network mod-

els [71], or other modeling frameworks to our stimuli to better understand how F0 cues may

be more realistically decoded in HCT-mixture stimuli.

Discussion

Our results provide novel insights into F0 coding at high frequencies and in the presence of

competing harmonic sounds. Experiment 1 replicates prior findings to confirm that listeners

can accurately discriminate changes in the F0 of HCTs composed of spectrally resolved com-

ponents even when those HCTs are composed of frequencies entirely beyond 8 kHz [36–38],

and extends them to demonstrate that listeners can maintain accurate discrimination even in

the context of a single spectrally overlapping concurrent HCT masker. However, consistent

with prior results, performance in all conditions of Experiment 1 was worse at high frequencies

than at low frequencies. Experiment 2 revealed that this high-frequency deficit in performance

was compounded by the addition of two spectrally overlapping concurrent HCT maskers. In

this experiment, listeners were often unable to perform F0 discrimination at high frequencies

in the presence of the two maskers, even at large TMRs, whereas at low frequencies many lis-

teners were able to do so at TMRs only slightly above 0 dB. Qualitative visualizations of simu-

lated auditory-nerve responses to our stimuli raised the possibility that resolved target

harmonics were available at high frequencies in masked conditions in Experiment 1 but not in

Experiment 2, potentially explaining differences in the results of these two experiments. How-

ever, these visualizations also highlighted the complexities inherent in interpreting behavioral

responses to HCT-mixture stimuli. Thus, our behavioral results collectively provided limited

support for the notion that accurate high-frequency F0 discrimination is based on a rate-place

code.

We next implemented a neural ideal-observer model. This model highlighted a key differ-

ence between optimal frequency discrimination and F0 discrimination as a function of fre-

quency; whereas optimal frequency discrimination based on temporal information should

continue to degrade with increasing frequency until it eventually matches performance based

on average rate cues alone (Fig 7A), the presence of envelope fluctuations in CFs tuned

between stimulus harmonics (or to unresolved stimulus harmonics) results in optimal F0 dis-

crimination that plateaus above a certain frequency even as phase locking continues to degrade

(Fig 8A). If all the information available in responses is used optimally (all-information ideal

observer), predicted thresholds show a dependency on frequency and F0 that is similar to that

found in humans, but predicted thresholds are several orders of magnitude better than human

thresholds. If instead only time-averaged information is considered (rate-place ideal observer),

overall threshold predictions are more comparable in magnitude to human thresholds but do

not show the same dependencies on frequency or F0. In other words, for the all-information

thresholds to explain human data, later processing stages must introduce coding inefficiencies

or noise that are large and uniform across the tonotopic range. In contrast, for the rate-place

thresholds to explain human data, later processing stages must introduce relatively little noise,

and that noise must be greater at high frequencies or F0s.

In summary, our results suggest that human complex pitch perception at low and high fre-

quencies is not principally limited by the information available in the auditory nerve. Further

research integrating psychophysical and physiological data via computational modeling will be

needed to understand how limitations originating in non-peripheral loci contribute to
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complex pitch perception in humans. A wide range of modeling frameworks, including ideal-

observer analysis [27,28], template-based models [64,65], and neural-network models [71],

may all contribute to this endeavor in meaningful ways. For example, whereas neural-network

models excel at shedding light on the links between statistical patterns in natural stimuli and

complex pitch perception, ideal-observer models can help understand tasks (such as the pres-

ent high-F0 pitch discrimination) that employ stimuli with low prevalence among natural

sounds (i.e., stimuli that are sparsely represented in the naturalistic training data needed for

deep neural networks). An improved understanding of pitch coding resulting from these

investigations may aide in the quest to restore normal pitch perception for listeners with hear-

ing loss and cochlear implants [6,72,73].

Materials and methods

Ethics statement

The behavioral data collected for this study was collected according to protocols approved by

the University of Minnesota Institutional Review Board. Informed consent was obtained from

participants in written form prior to initiation of the experimental protocol.

Behavioral data collection

Equipment. All stimuli were presented to listeners diotically over HD650 headphones

(Sennheiser, Old Lyme, CT) in sound-attenuating booths via a Lynx E22 sound card (Lynx

Studio Technologies, Costa Mesa, CA) at a sampling rate of 48 kHz. Listeners completed the

experiment via a graphical user interface implemented in MATLAB (The Mathworks, Natick,

MA) via the AFC framework [74].

Participants

Participants in the present experiments were all students at the University of Minnesota with

audiologically normal hearing. Of the 36 participants that passed the screening procedures

described below (29 female, 7 male), the mean age was 22.8 years (SD = 1.9, minimum = 20,

maximum = 28). Participants were recruited either through a Department of Psychology

research participant pool or through an in-house participant database. Participants were paid

for their participation.

Procedures

All experiments began with a three-stage screening process. The first stage consisted of a stan-

dard audiogram to ensure normal-hearing status (i.e., audiometric thresholds� 20 dB hearing

level [HL] at octave frequencies from 0.25 to 8 kHz). The second stage consisted of measuring

detection thresholds for pure tones embedded in the same broadband TEN used in the main

experiments. The purpose of this stage was to ensure that participants would be able to hear all

the target stimuli in the presence of the masking noise during the experiments. Detection

thresholds were measured using a two-interval two-alternative forced choice (2I2AFC)

method combined with a 3-down 1-up staircase procedure [75]. Both intervals contained the

TEN and one interval, chosen at random on each trial, contained the target tone. The partici-

pants’ task was to select the interval containing the tone. The tones were 350 ms in duration,

including 20-ms raised-cosine onset and offset ramps. The noise was 500 ms in duration,

including with 20-ms raised-cosine onset and offset ramps, and the tones were temporally cen-

tered in the noise. The noise had a level of 40 dB SPL in the estimated ERB of the human audi-

tory filter centered on 1 kHz. The adapted variable was the rms level of the target in dB SPL.
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The starting value of target level was 55 dB SPL. The initial step size of the adaptive procedure

was 3 dB. After two reversals in the direction of the adaptive procedure, the step size was

reduced to 2 dB. After another two reversals this was reduced to 1 dB (the smallest step size

used). The procedure was terminated after 6 reversals at the smallest step size and the thresh-

old was defined as the mean of the target levels at the last six reversals. Tone frequencies of

both 14 kHz and 16 kHz were tested. In order to pass this stage, participants needed thresholds

better than 45 dB SPL at both frequencies, averaged across three runs per frequency. This

value was 2 dB lower than the lowest possible presentation level of individual harmonics in the

experimental stimuli, and so it was thought that participants who could pass this criterion

should be able to detect the stimuli during the experiment. Participants who failed this stage

did not complete any other part of the experiment. Of the 79 participants who attempted the

audibility screening, 44 passed (pass rate = 56%) and were invited to participate in following

stages of screening.

The third stage consisted of measuring F0DLs for the two nominal F0s tested in the experi-

ments described below (280 Hz and 1400 Hz). The purpose of this stage was to ensure that par-

ticipants had the ability to accurately label the direction of a change in F0. The F0DLs were

measured using a 1I2AFC task and a 3-down 1-up adaptive staircase procedure. In each trial,

three isolated HCTs with the same F0 (the reference F0) were presented in sequence as a pre-

cursor, followed by a target HCT with a different F0 (the test F0) with a higher or lower F0

than the precursor tones (selected at random on each trial with equal probability). All the pre-

cursor and target tones were separated from each other by 50-ms silent intervals. The listener’s

task was to judge whether the target F0 was higher or lower than the reference F0. Visual feed-

back was provided immediately after each trial. The starting value of DF0 (the difference

between the reference and target F0s) was 10% of the lower F0. The initial step size was a

change in DF0 by factor of 2. After two reversals this was adjusted to a factor of 1.41. After

another two reversals this was adjusted to a factor of 1.19 (the smallest step size used). The pro-

cedure was terminated after 6 reversals at the smallest step size and the threshold was defined

as the geometric mean of the DF0 at the last six reversals. The maximum permitted DFO was

approximately 30%; if a larger DF0 was called for by the adaptive procedure on more than 6

consecutive trials then the run was terminated early and no threshold was recorded. The refer-

ence and target F0s were geometrically centered around an F0 selected randomly on each trial

from a uniform distribution of either 280 ±10% Hz (low-frequency condition) or 1400 ±10%

Hz (high-frequency condition). Each tone was 350 ms in duration, including 20-ms raised-

cosine onset and offset ramps. The tones were composed of harmonics 6–10, presented in ran-

dom phase (Experiment 1a and Experiment 2) or presented with all harmonics up to the

Nyquist frequency in sine phase and then zero-phase bandpass filtered with a 12th-order But-

terworth filter with cutoffs at 5.5 to 10.5 times the nominal F0 (Experiment 1b). The level of

each harmonic was 50 dB SPL. In order to pass this stage, participants were required to obtain

thresholds better than 6% and 12% for the low- and high-F0 conditions, respectively, averaged

across three runs per nominal F0. Participants who failed this stage were given two additional

chances to pass the screening under an identical procedure. Participants who passed on any

attempt moved on to complete the experiment while participants who failed all attempts did

not complete any other part of the experiment. Of the 44 participants who attempted the pitch

screening, 36 passed (pass rate = 82%) and went on to complete one or more experiments.

Experiment 1. Experiment 1 measured F0DLs using the same procedure as described

above for the F0DL screening. The reference and target F0s were geometrically centered

around an F0 selected randomly on each trial from a uniform distribution of either 280 ±10%

Hz (low-frequency condition) or 1400 ±10% Hz (high-frequency condition). In Experiment

1a, the tones were composed of harmonics 6–10 of their F0 synthesized in random phase. In
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Experiment 1b, the tones were synthesized with all harmonics of their F0 up to the Nyquist fre-

quency in random phase and then zero-phase bandpass filtered with a 12th-order Butterworth

filter with cutoffs at 5.5 and 10.5 times the nominal F0 (either 280 or 1400 Hz). The level of

each harmonic (before filtering) was roved independently by ±3 dB (uniform distribution)

around the nominal level of 50 dB SPL. These stimulus parameters were selected to satisfy two

key criteria. First, by using the same low harmonic numbers for both nominal F0s, harmonic

resolvability was comparable across the nominal F0s. Second, by ensuring that the lowest fre-

quency component of the target was almost always above 8000 Hz when the nominal F0 was

1400 Hz, phase locking cues were likely limited for the higher nominal F0 while remaining

intact for the lower nominal F0 [23,29]. The tones on each trial were embedded in TEN, which

was newly generated in each trial, began 75 ms before and ended 75 ms after the tones, and

had 20-ms raised cosine-ramps. The TEN noise had a level of 40 dB in the ERB of the auditory

filter centered on 1 kHz. This noise was added to ensure that any distortion products generated

by the tones were not audible to listeners [39].

Two masker types were tested in Experiment 1. The first, ISO, consisted of only the precur-

sor and target presented in isolation. The second, GEOM, consisted of the precursor presented

in isolation and the target presented simultaneously with a single concurrent and spectrally

overlapping complex tone masker. The masker had an F0 which was the geometric mean of

the reference and target F0s. In Experiment 1a, the masker was generated in a fashion identical

to that of the target except that it included two additional harmonics (5 and 11). In Experiment

1b, the masker was generated in a fashion identical to that of the target except that the band-

pass filter was slightly broader, extending from 4 to 12 nominal F0 rather than only 5.5 to 10.5

times the nominal F0. Thus, in both cases, the masker bandwidth always exceeded the target

bandwidth. For both Experiments 1a and 1b, seven runs of each condition (ISO Low, ISO

High, GEOM Low, and GEOM High) were measured for each listener in random order.

Experiment 1 took approximately 2–3 hours to complete, and most listeners completed it

in one or two sessions lasting no more than two hours each. In total, 36 listeners took part in

some portion of Experiment 1. Specifically, 12 listeners took part in only Experiment 1a, 16 lis-

teners took part in only Experiment 1b, and 8 listeners took part in both Experiments 1a and

1b.

Experiment 2. Experiment 2 measured TMRs for a fixed interval size at the 79.4% correct

point via a 2I2AFC task with a 3-down 1-up adaptive staircase procedure. The only masker

type tested was the DBL masker, in which two concurrent and spectrally overlapping HCT

maskers were presented simultaneously with the target tone, following the precursor with the

three reference tones. One masker had an F0 5.25 to 7.25 semitones (uniform distribution)

higher than the nominal F0 while the other masker had an F0 –5.25 to –7.25 semitones (uni-

form distribution) lower than the nominal F0. The targets and maskers were synthesized as in

Experiment 1b. The interval sizes used in Experiment 2 were determined individually for each

listener based on their performance in Experiment 1b. For each nominal F0, both 1.5 and 2.5

times the listener’s F0DL were tested. Only listeners for whom 2.5 F0DL at both nominal F0s

was less than 2.6 semitones participated in Experiment 2 (to ensure that the reference F0

would always be further from the masker F0s than from the target F0 for all listeners and inter-

val sizes). The starting value of TMR was 0 dB. The initial step size was 3 dB. After two rever-

sals this was adjusted to a step size of 2 dB. After another two reversals this was adjusted to a

step size of 1 dB (the smallest step size used). This procedure was terminated after six reversals

at the smallest step size and the threshold was defined as the mean of the TMRs at the last six

reversal points. As in Experiment 1, listeners completed seven adaptive runs of each condition.

Experiment 2 took approximately 2–3 hours to complete, and most listeners completed it in

one to two sessions. A total of 11 listeners completed Experiment 2.
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Behavioral data analysis

Experiment 1a. A total of 20 participants participated in Experiment 1a, but only those

who maintained average performance levels above the screening criteria in the testing phase

were included in the present data analysis (n = 13). Out of a total of 348 measured adaptive

runs, five adaptive runs were terminated early according to the rules described in the methods

above. Thresholds were not recorded for these runs. Data from these terminated runs were not

used in the present data analysis. A generalized linear mixed-effects model (GLMM) was used

to analyze the results from Experiment 1a with the thresholds expressed in units of 10log10(%).

The fixed effects included the masker (ISO or GEOM) and the nominal F0 (280 or 1400 Hz) as

well as their interaction, while the random effects included random intercepts and slopes for

listener (i.e., a maximal random effects structure) [76]. The model was implemented using the

R programming language [77] and the lme4 package [78] via penalized maximum likelihood

estimation. Before proceeding with analysis and interpretation of the model, diagnostic checks

by visual inspection of QQ plots, scale-location plots, a plot of standardized residuals versus fit-

ted values, and of standardized residuals versus experimental conditions were made. Although

the distribution of individual means appeared to be non-normal in some cases (Figs 2 and 3),

the diagnostic plots suggested that nevertheless residual variance in the model was approxi-

mately normal and homoscedastic.

The model was analyzed in two ways. First, the significance of the fixed effects was exam-

ined by likelihood ratio F-tests in a Type III analysis of variance (ANOVA). The F-tests was

calculated using the Kenward-Rogers approximation for the denominator degrees of freedom

via the car [79] and pbkrtest packages [80]. Second, the significance of linear contrasts of

model coefficients was examined by F-tests via the phia package [81]. All p-values in Experi-

ment 1a were jointly corrected using the Holm-Bonferroni method. Corrected p-values were

reported and were compared against a criterion of θ = 0.05 to assess statistical significance.

Experiment 1b. The same general analysis framework used in Experiment 1a was

repeated to analyze the data from Experiment 1b. A total of 24 participants participated in

Experiment 1b, but only those who maintained average performance levels above the screen-

ing criteria in the testing phase were included in the present data analysis (n = 17). Out of a

total of 475 measured adaptive runs, 10 adaptive runs were terminated early according to the

rules described in the methods above without recording a threshold. Data from these termi-

nated runs were not used in the present data analysis. The fixed and random effects structures

from used in the model for Experiment 1a were repeated here, and the same model fitting and

analysis approach was also repeated here.

Experiment 2. The same general analysis framework used in Experiment 1 was repeated

to analyze the data from Experiment 2. A total of 12 participants completed Experiment 2 and

were included in the present data analysis. The fixed effect included the interval size (1.5 or 2.5

F0DL) and the nominal F0 (280 or 1400 Hz) as well as their interactions, while the random

effects included random intercepts and slopes for listener (a maximal random effect structure).

The same model fitting and analysis approach used for Experiment 1 was repeated here to ana-

lyze the present model.

Computational model

We used three previously published auditory-nerve models to conduct our simulations of

auditory-nerve firing rates. The use of multiple nerve models affirmed that the key trends were

not artifacts of assumptions or features that were specific to a particular model. First, we used

the auditory-nerve model described in Heinz et al. [27]. Although simpler and less accurate

than the other nerve models we tested, this model had the advantage of being much faster than
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the other models and it allowed for a more direct comparison between the present results and

previous auditory-nerve ideal-observer results based on this model [27,56]. This model was

implemented in Python and run at a sampling rate of 1250 kHz (higher than the other models

to reduce distortion at high stimulus frequencies and levels). Second, we used the auditory-

nerve model of Zilany et al. [52]. The model was run in an adapted version of the Python inter-

face to the original C implementation of the model provided by the cochlea package [82]. The

model was run with parameters designed to replicate the human peripheral tuning estimates

of Shera et al. [51] at a sampling rate of 200 kHz (for the basilar-membrane and inner-hair-cell

stages) and 50 kHz (for the synapse stage). Finally, we used the auditory-nerve model of Ver-

hulst et al. [55]. The model was run via the authors’ published Python code at a sampling rate

of 300 kHz.

Excitation pattern and autocorrelogram visualizations. Fig 4 shows excitation patterns

at low frequencies and at high frequencies for both the ISO and GEOM stimuli. Each excita-

tion pattern was constructed by simulating instantaneous-rate responses at 200 CFs ranging

from 4F0 to 12F0 for high-spontaneous-rate and low-spontaneous-rate fibers from the Zilany

et al. [52] model. Tones were set to 50 dB SPL per component and TEN was included at a level

of 40 dB SPL in the ERB centered on 1 kHz. Each excitation pattern reflects the average of 10

simulations over fresh samples of level roving (± 3 dB per component, independent) and TEN.

The simulations were conducted at a sampling rate of 100 kHz (for the basilar-membrane and

inner-hair-cell stages) and 20 kHz (for the synapse stage).

Fig 5 shows autocorrelograms for the DBL stimulus and Fig 6 shows excitation patterns for

the DBL stimulus. Autocorrelograms for Fig 5 were calculated based on instantaneous-rate

responses from a population of high-spontaneous-rate auditory-nerve fibers using the Zilany

et al. [52] nerve model. The stimulus was the DBL stimulus with target levels set to 50 dB SPL

per component, masker levels set to 0, 5, or 10 dB below the target levels (or no masker), and

TEN at a level of 40 dB SPL in the ERB centered on 1 kHz. One masker F0 was set to 5.5 ST

below the target F0 and the other masker F0 was set to 6 ST above the target F0. Simulations

were conducted for CFs ranging from 4F0 to 12F0 with F0 set to 280 Hz or 1400 Hz and then

the autocorrelation was calculated at each CF. The simulations were conducted at a sampling

rate of 200 kHz. Excitation patterns for Fig 6B were generated as in Fig 4, except the stimulus

used was the DBL stimulus used for the autocorrelograms in Fig 5. Both low-spontaneous-rate

fibers and high-spontaneous-rate fibers were simulated. The target F0 was set to 280 Hz or

1400 Hz. The simulations were conducted at a sampling rate of 100 kHz.

Threshold estimation. The effective level of stimulation in the present auditory-nerve

models significantly altered predicted thresholds. This effect complicated interpretation of the

relationship between estimated thresholds and stimulus frequency and comparisons between

the models, as the effective presentation level varied with frequency due to differences in simu-

lated middle ear transfer functions and other factors in each model. To ameliorate these issues,

we estimated the rate-level threshold as a function of CF for each auditory-nerve model we

tested and used this information to present stimuli at a constant level relative to these thresh-

olds across stimulus frequency. For each auditory-nerve model, we simulated the average fir-

ing rate in response to 100 ms pure tones presented at each of 25 frequencies spaced

logarithmically from 0.2 to 20 kHz for a high-spontaneous-rate auditory-nerve fiber tuned to

the same frequency. This process was repeated at 25 levels spaced linearly (in dB) from -10 to

40 dB SPL. Next, the rate-level function at each frequency was linearly interpolated and the

minimum level required to evoke a firing rate 5% above the spontaneous firing rate was

recorded as the rate-level threshold for that CF. Finally, the rate-level thresholds at were line-

arly interpolated as a function of CF and saved to disk for later use in adjusting presentation

levels in the simulations.
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Frequency discrimination simulations. Ideal-observer predictions were generated for

discriminating the frequency of pure tones, as in Heinz et al. [27]. Although our study did not

measure FDLs, the simulated FDLs provide a way of validating our ideal-observer analysis

framework against prior results and provide important context to the more complex F0 dis-

crimination results. For each tested frequency, firing rates were simulated for 40 CFs distrib-

uted logarithmically from 0.5 to 1.5 times the frequency. All the simulated fibers were high-

spontaneous-rate fibers. It was assumed that 72 fibers with nearby CFs shared the firing rate

pattern at each simulated CF. Thus, the 40 CFs represented an approximation to an underlying

population of approximately 3000 high-spontaneous-rate fibers in the auditory nerve tuned

near the stimulus frequency. These values were selected under the assumption that, from a

total population of 30,000 auditory-nerve fibers, approximately 60% would be high-spontane-

ous-rate fibers, 20% would be medium-spontaneous-rate fibers, and 20% would be low-spon-

taneous-rate fibers. Increasing the number of CFs and decreasing the number of fibers per CF

would result in a more accurate sampling of the response over the range of CFs and therefore a

more accurate estimate of the optimal threshold; however, it would also result in a correspond-

ing increase in the computational load of the simulations. The choice of 40 CFs was thus a

compromise between computational resources and accuracy (although increases in the num-

ber of simulated CFs in prior testing did not appear to significantly change estimated thresh-

olds beyond a certain point).

The pure tone stimuli used in the simulations were 100 ms in duration, including had 10

ms-raised-cosine ramps. Twenty-four frequencies spaced logarithmically from approximately

1.4 to 14 kHz (corresponding to the frequencies of the 8th harmonic in the F0s tested below)

were tested. Stimuli were presented to the models at nominal levels of 20, 30, and 40 dB re:

threshold. In the simplest simulations, the level and starting phase of the pure-tone stimulus

was fixed (i.e., Eq 2 was used, see below). A starting phase of 0 degrees was used in this case.

Intuitively, this simulation can be conceptualized as one in which the ideal observer “knows”

the starting phase of the stimulus and that starting phase is always 0 degrees. In some simula-

tions, however, either the level or the starting phase of the pure-tone stimulus was treated as a

random variable (i.e., Eq 6 was used, see below). These types of simulations are referred to

using the terms “level roving” and “phase randomization”, respectively. In the simulations,

level was distributed uniformly in a ±3 dB range around the nominal level and phase was dis-

tributed uniformly over a 360-degree range (matching the roving/randomization applied to

individual components in the behavioral experiments). However, when evaluating the model

equations, level was treated as if it were normally distributed with a standard deviation of 6 dB,

while starting phase was treated as if it were normally distributed with a standard deviation of

360 degrees. Normal distributions were used to approximate the uniform distributions used in

the behavioral experiments to ensure the Fisher information would be well defined. The stan-

dard deviations were selected to match the approximation used in prior work [56]. Intuitively,

these simulations can be conceptualized as ones in which the ideal observer does not know the

value of the randomized parameter (level or phase) beforehand but instead infers it in the

same way that it infers the frequency of the stimulus (i.e., optimally at the limit defined by the

Cramér-Rao lower bound; see below).

In Fig 7, data from prior behavioral studies were included for comparison to the simulation

results [21,22,36,37]. We extracted these data visually from the corresponding figures and then

linearly interpolated each dataset on a log-log axis in order to estimate the ratio between FDLs

at 8 kHz and 2.5 kHz in each study. From Moore [22], data from the 200 ms condition were

selected. From Moore and Ernst [21], data from the 20 dB SL condition were selected. From

Gockel et al. [36], data from the short diotic (210ms) condition were selected. Additionally, we

generated FDL predictions from the model of Micheyl, Xiao, and Oxenham [58]. Values of
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free parameters in their model were set according to their posterior mean estimates, the sensa-

tion level was set to 25 dB, and the duration was set to 200 ms.

F0 discrimination simulations. Ideal-observer predictions were generated for discrimi-

nating the F0 of the ISO stimulus from Experiment 1. The simulations were performed in the

same way as the frequency discrimination simulations, except that firing rates were simulated

for 40 characteristic frequencies (CFs) distributed logarithmically from 5 F0 to 11 F0 and that

each CF was assumed to reflect the contribution from 51 nearby fibers.

The HCT stimuli used in the simulations were those from Experiment 1b, except they were

only 100 ms in duration, they were presented without noise, and they were presented at a

wider range of levels and F0s than in the behavioral experiment. F0s spaced logarithmically

from 0.18 to 1.8 kHz were tested. Levels were set such that the nominal level per component

was 20, 30, or 40 dB re: threshold at the 8th harmonic. In the simplest simulations, the levels

and relative phases of the stimulus components were fixed (i.e., Eq 2 was used, see below). The

stimulus components were synthesized in sine phase in this case. In some simulations, how-

ever, either the levels or the relative phases of the components were treated as random vari-

ables (i.e., Eq 6 was used, see below). These types of simulations are referred to using the terms

“level roving” and “phase randomization”, respectively. In the simulations, component levels

were distributed uniformly in a ±3 dB range around the nominal level and relative phases were

distributed uniformly over a 360-degree range (matching the roving/randomization applied to

individual components in the behavioral experiments). However, when evaluating the model

equations, the same approximation used for frequency discrimination above was used here.

In Fig 8, data from prior behavioral studies were included for comparison to the simulation

results [36–38]. These data were extracted visually from the corresponding figures and then

the ratio between F0DLs at 1.4 kHz and 0.28 kHz was calculated for each dataset. From Gockel

et al. [36], we selected the thresholds for the 210-ms tones presented in diotic TEN. Because

performance in the compared conditions did not differ between Experiment 1a and Experi-

ment 1b, data from the present study used in this figure was pooled across both Experiment 1a

and Experiment 1b.

Ideal observer. The general mathematical framework for ideal-observer analysis as

applied to the auditory nerve was described first in Siebert [28], who employed the technique

with a simple analytic model of the auditory nerve. Later authors applied the same approach to

simulated auditory-nerve responses from more realistic computational models of the auditory

nerve [27,56,70]. For convenience, the key derivation steps and insights of this analysis tech-

nique are described briefly below; additionally, a generalization of the technique for cases with

an arbitrary number of stimulus parameters is provided. For a more complete treatment the

reader is referred to the existing literature [27,28,56,69].

We begin by letting ri(t, θ) indicate the firing rate of the i-th auditory-nerve fiber at time t
in response to the stimulus with parameter θ. We assume that xi, the spike times of fiber i
responding to our stimulus, are Poisson distributed with time-varying rate parameter ri. That

is, xi is the stochastic spike data observed from fiber i, while ri is the time-varying instanta-

neous firing rate of fiber and i is a deterministic function of the input stimulus (which is itself

deterministic). We also assume that xi and xj, for all i and j where i 6¼ j, are conditionally inde-

pendent given θ.

X (the joint distribution of spike times from all fibers) contains information about θ, and

observers of X seek to utilize that information to infer the value of θ. We henceforth define an

ideal observer as any such observer that uses the best unbiased estimator of θ (in terms of hav-

ing the lowest variance or, equivalently, the highest precision) to infer θ from X. The Cramér-
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Rao lower bound provides an upper bound on the precision of any such estimator:

1

s2

ŷ

� I yð Þ ð1Þ

where s2

ŷ
is the variance of the estimator for θ based on observing X, and I(θ) is the Fisher

information of θ in X. As noted by Siebert [28] for our unordered spike times from a popula-

tion of auditory nerve fibers X:

1

s2

ŷ

�
P

i

R T
0

1

riðt; yÞ
@riðt; yÞ
@y

� �2

ð2Þ

By simulating auditory-nerve responses to the stimuli to estimate ri and approximating the

partial derivative with respect to θ via the finite differences method, we can arrive a computa-

tional estimate of the inequality [27,56]. This estimate can then be transformed into a thresh-

old at the 70.7% correct point for a theoretical observer that achieves the bound by:

thresholdy ¼
ffiffiffiffiffi
s2

ŷ

q
ð3Þ

However, this solution places a strong constraint on the types of tasks that can be modeled

because it assumes that the stimulus is deterministic [56]. In contrast, our behavioral tasks

include random noise in the acoustic stimulus as well as randomized stimulus parameters

(e.g., level, phase) that may limit an observer’s ability to discriminate changes in θ beyond the

limits imposed by the mapping from acoustic waveform to neural response and by neural

noise. Unfortunately, acoustic noise in the stimulus is not readily addressed and instead must

be handled via approximations or deviations from optimality [69,70]. However, Eq 2 can be

generalized to account for randomness in stimulus parameters in two steps. First, θ can be

treated as a random variable rather than as an unknown constant [56,69,83]. Under suitable

conditions:

1

s2

ŷ

� Ey IðyÞ½ � þ A yð Þ ð4Þ

where

A yð Þ ¼ � E
@2logpðyÞ
@y2

� �

ð5Þ

When θ ~ N(μ, ν2), then A(θ) = 1/ν2 and is equal to the Fisher information of the location

parameter μ in θ. In other words, the precision of the optimal estimator of θ is bounded above

by the sum of average Fisher information of θ, or Eθ[I(θ)] and a priori information about the

location of θ, or A(θ). However, this solution still constrains the types of tasks that can be mod-

eled in that θ is scalar. The second step is to generalize from a scalar-valued θ to a vector-valued

θ [83,84]. The multivariate form of Eq 4 replaces scalar-valued θ with vector-valued θ and sca-

lar-valued s2

ŷ
with variance-covariance matrix varðθ̂Þ to arrive at:

varðθ̂Þ� 1
� Eθ½IðθÞ� þ AðθÞ ð6Þ

θ is an n-dimensional vector where n is the number of stimulus parameters in the discrimi-

nation task. One parameter (e.g., θ1) may be the focus of the task whereas other parameters

may be “nuisance” parameters whose influence the listener is supposed to ignore. varðθ̂Þ is the

variance-covariance matrix of θ̂, the estimator of θ. It can be shown that, for non-
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homogeneous Poisson distributions with rate parameters ri(t, θ), the elements of I(θ) are of the

form:

IðθÞ
a;b
¼
P

i

R T
0

1

riðt; θÞ
@riðt; θÞ
@a

@riðt; θÞ
@b

dt ð7Þ

Eq 7 is the result of direct simplification from the definition of Fisher information and Eq 4.

To calculate JND, we first invert both sides to arrive at:

varðθ̂Þ � ðEθðIðθÞÞ þ AðθÞÞ� 1
ð8Þ

The first element along the diagonal of varðθ̂Þ in Eq 8 indicates the lower bound on the var-

iance of any unbiased estimator of θ1, which can be transformed into a JND for θ1 as in Eq 3.

Eq 8 thus allows for variations in the stimulus due to random fluctuations in stimulus parame-

ters (e.g., level, frequency) to be properly modeled. In our use case, the expectation in Eq 8 is

approximated by taking a simple mean of I(θ) for various sampled values of θ.

For the sake of demonstration, consider the two-dimensional case. Assume that θ is a two-

dimensional vector, where the first element θ1 is an unknown constant to be discriminated

and θ2 is a random variable with θ2 ~ N(μ, ν2). Then, I(λ) will be a 2×2 matrix of zeros except

for the second diagonal element, which will be 1

n2
(the Fisher information for the mean [loca-

tion parameter] of a normal distribution with variance ν2). This encodes our assumption that

θ1 is a fixed (but unknown) parameter and θ2 is a random variable with a normal distribution

[27]. Then, the variance of estimating θ1 is bounded by:

½varðθ̂Þ�� 1

1;1
� Ey

P
i

R T
0

1

riðt; θÞ
@riðt; θÞ
@y1

� �2

dt

 !

�
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0

1
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dt

� �2
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P

i

R T
0

1

riðt;θÞ
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@y2

� �2

dt
� �

þ 1

n2

ð9Þ

As described in Heinz et al. [56], Eq 9 admits an intuitive interpretation. The first term is

the expectation of Eq 2 over θ and reflects changes in firing rate associated with changes in our

parameter θ1. As this term grows, the variance decreases and hence the threshold improves.

The second term can be thought of as a penalty against the first. The numerator of the second

term goes to zero if variations in θ2 produce no change in the firing rate, and in this case the

entire equation reduces to the scalar ideal observer in Eq 2. However, as variations in θ2 pro-

duce larger and larger changes in the firing rate, the second term will grow and the variance

will increase, resulting in a worsening of the threshold. The impact of this term is mitigated in

part by its denominator, which quantifies the extent to which the value of θ2 can be deduced

from changes in firing rate and the amount of a priori information available about the value of

θ2. For example, if ν2 is extremely small, suggesting that the value of θ2 does not vary much,

then even if the firing rate is highly sensitive to changes in θ2 the threshold will only be mini-

mally impacted by the second term due to the contribution of the 1

n2
in the denominator.

Eq 8 can be generalized to an arbitrary number of random continuous stimulus parameters

and can model a range of paradigms [27,28,56,69,70], making it a highly useful tool for analysis

of the auditory nerve in discrimination tasks. However, it still faces two primary issues that

limit its general applicability. First, as was previously mentioned, it is limited in that it cannot

account for the effect of acoustic noise added to the stimulus. We approximated the effect of

masking noise in part by limiting the range of CFs from which information was utilized in the

ideal-observer calculations (under the assumptions that CFs far from stimulus frequencies

would contribute little useful information in the presence of masking noise). However, this is

an incomplete account of how noise could affect optimal thresholds. Future work should seek
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to address this issue, possibly by developing plausible approximations or deviations from opti-

mality [69,70]. Second, it is limited in that the Cramér-Rao lower bound does not guarantee

the existence of an estimator that can achieve the bound. In other words, Eq 8 states that no

system estimating θ in an unbiased fashion from auditory-nerve responses can achieve perfor-

mance better than the bound but offers no insight into whether any real-life system (neural or

otherwise) can instantiate an estimator that achieves the bound. Nevertheless, investigating

how the lower bound varies with stimulus parameters may still provide useful insights into the

link between F0 discrimination and neural coding at the earliest levels, even if no realistic esti-

mator achieves the bound.
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