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Listeners can reliably perceive speech in noisy conditions, but it is not well understood what spe-

cific features of speech they use to do this. This paper introduces a data-driven framework to iden-

tify the time-frequency locations of these features. Using the same speech utterance mixed with

many different noise instances, the framework is able to compute the importance of each time-

frequency point in the utterance to its intelligibility. The mixtures have approximately the same

global signal-to-noise ratio at each frequency, but very different recognition rates. The difference

between these intelligible vs unintelligible mixtures is the alignment between the speech and

spectro-temporally modulated noise, providing different combinations of “glimpses” of speech in

each mixture. The current results reveal the locations of these important noise-robust phonetic fea-

tures in a restricted set of syllables. Classification models trained to predict whether individual mix-

tures are intelligible based on the location of these glimpses can generalize to new conditions,

successfully predicting the intelligibility of novel mixtures. They are able to generalize to novel

noise instances, novel productions of the same word by the same talker, novel utterances of the

same word spoken by different talkers, and, to some extent, novel consonants.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4964102]
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I. INTRODUCTION

Normal-hearing listeners are remarkably good at under-

standing speech in noisy environments, much better than

hearing-impaired listeners (e.g., Festen and Plomp, 1990;

Alc�antara et al., 2003) and automatic speech recognition sys-

tems (e.g., Scharenborg, 2007). A better understanding of

the robustness of normal hearing and an ability to reproduce

it in machine listeners would likely enable improvements in

theory as well as hearing aids and conversational interfaces.

One theory of the mechanism underlying this process

hypothesizes that listeners detect relatively clean “glimpses”

of speech in the acoustic signal and assemble them into a

percept (Cooke, 2006; Brungart et al., 2006; Li and Loizou,

2007; Apoux and Healy, 2009). The current study is

designed to reveal the locations of the glimpses that are most

useful for correctly identifying particular utterances in noise,

yielding a determination of “where” in the speech signal lis-

teners find noise-robust phonetic information.

The techniques developed in this paper characterize the

importance of individual time-frequency (T-F) points of a

particular speech utterance by measuring its intelligibility

when mixed with many different instances of a special

“bubble” noise process. Auditory bubbles are designed to

provide glimpses of the clean speech and to allow the mea-

surement of importance of different glimpses of the same

utterance. T-F points that are frequently audible in correctly

identified mixtures and frequently inaudible in incorrectly

identified mixtures are likely to be important for understand-

ing that utterance in general. Because it is data-driven,

results from this procedure can be compared across various

conditions to compare listener strategies.

Two analyses are introduced to characterize these rela-

tionships, a correlational analysis and a predictive analysis.

First, the correlational analysis identifies individual T-F points

where audibility is correlated with overall intelligibility of the

target word, or conversely, where noise is most intrusive or

disruptive. This technique tends to identify a small number of

such T-F points arranged in compact groups. Second, the pre-

dictive analysis uses information at each T-F point in a

speechþnoise mixture to predict whether that mixture will be

intelligible or not. The goal is an ability to generalize to new

mixtures, predicting better than chance the intelligibility of

mixtures involving both new noise instances and new utteran-

ces. Figure 1 shows an overview of the bubble technique.

This work is inspired by methods from several fields.

Healy et al. (2013) measured the band importance function

for different speech corpora, and found that these functions

were very consistent across listeners, but differed depending

on the particular word/sentence material employed.

However, traditional examinations of speech-band impor-

tance like ANSI (1997) and Healy et al. (2013) typically

consider only differences across frequency bands and have
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generally neglected the temporal aspect of these patterns.

Ma et al. (2009) showed that ad hoc time-frequency weight-

ing functions can improve the performance of objective pre-

dictors of speech intelligibility and Yu et al. (2014) showed

that such weighting functions based on course groupings of

speech and noise energy were similarly helpful. The data-

driven importance values derived here should improve these

predictions even further. Li et al. (2010) adopted the idea of

measuring the intelligibility of the same utterance under a

variety of modifications, including truncation in time and

frequency and the addition of uniform noise. Because this

technique involves truncation in time, it can only be applied

to initial and final phonemes of utterances. In contrast, the

currently proposed technique can be applied to phonemes in

any position in a word, even in the context of running

sentences.

Cooke (2009) found that certain combinations of speech

and noise are recognized by multiple human listeners consis-

tently as the same incorrect word, but that these mis-

recognitions were sensitive to the exact alignment of the

speech and noise samples in time, fundamental frequency,

and signal-to-noise ratio, suggesting that the localized time-

frequency alignment of speech and noise can have large

effects on intelligibility. The current “auditory bubbles” lis-

tening test methodology is based on the visual bubbles test

(Gosselin and Schyns, 2001), which uses a visual discrimina-

tion task to identify the regions of images important for view-

ers to identify expressivity, gender, and identity.1 The current

predictive analysis is based on work such as Cox and Savoy

(2003), in which classifiers are trained to predict the object

classes seen by subjects from fMRIs of their brains obtained

during the task.

The current study extends to time-frequency importance

functions (TFIFs) methods that have been used in speech per-

ception research to measure the importance of frequency

bands averaged across many utterances (Doherty and Turner,

1996; Turner et al., 1998; Apoux and Bacon, 2004;

Calandruccio and Doherty, 2007; Apoux and Healy, 2012).

These studies have been valuable in identifying the impor-

tance of various frequency bands of speech, averaged over

time. Varnet et al. (2013) take this approach further by identi-

fying time-frequency importance in the task of discriminating

/b/ from /d/. Their results showed that the transition of the

second formant was key for performing this task, in agree-

ment with traditional views of speech cues, and furthermore

identified that this estimation was performed relative to the

same formant in the previous syllable. Their use of white

Gaussian noise as the corruption signal, however, required an

order of magnitude more trials than the technique proposed

here, which uses noise with larger time-frequency

modulations.

The purposes of the current study are to establish the

bubbles technique for measuring the TFIF, to examine time-

frequency regions of importance, both positive and negative—

those that support the identification of specific consonant

sounds and those that are potentially misleading to accurate

identification, and to determine if a machine classifier can pre-

dict human performance based on the specific information

spared disruption by bubble noise.

II. EXPERIMENTS

A. Method

1. Subjects

Subjects were 13 volunteers having normal hearing as

defined by audiometric thresholds on day of test �20 dB

hearing level (HL) at octave frequencies from 250 to

8000 Hz (ANSI, 2004, 2010). They were females aged

18–22 years and participated for extra course credit.

2. Stimuli

The speech material was selected from the corpus

described by Shannon et al. (1999) and consisted of several

pronunciations of six vowel-consonant-vowel (VCV) non-

sense words. The nonsense words were of the form /aCa/:

/AtSA/, /AdZA/, /AdA/, /AtA/, /AfA/, /AvA/. This limited stimu-

lus set was selected for the current initial test of the bubble

technique, to allow focus on optimizing the method and to

ensure interpretable patterns of results. Three productions of

each word came from a single female talker (number W3).

The longest- and shortest-duration versions of each utterance

were selected from approximately 10 versions along with one

of an intermediate duration, designated “v1,” “v2,” and “v3”

from shortest to longest. Three more productions of the same

words came from three different talkers, numbers W2, W4,

FIG. 1. (Color online) Overview of the proposed time-frequency importance function technique. The intelligibility is measured of an utterance mixed with

many instances of noise with randomly placed “bubbles” excised from it. Correlation of the audibility of each point in the spectrogram with intelligibility

across mixtures estimates the importance of each spectrogram point to the utterance’s intelligibility in noise.
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and W5. These talkers were selected because their recordings

were of the highest apparent quality and they showed large

variation in speaking style. Talkers of the same gender were

selected so that they had similar voice pitches and formant

positions. Female talkers were selected because they had fewer

pronunciation errors than the male talkers. The stimuli were all

2.2 s in duration including surrounding silence. The plots show

the central 1.2 s, which is sufficient to include all of the speech

content. The various productions were roughly centered within

the stimuli, but were not temporally aligned in any way

beyond that (except during the machine learning analysis

methodology, as described in Sec. II B 3). The signals were

sampled at 44.1 kHz and 16 bits.

Each utterance was mixed with multiple instances of

“bubble” noise. This noise was designed to provide glimpses

of the speech only in specific time-frequency bubbles. This

noise began as speech-shaped noise with an SNR of –27.5 dB,

sufficient to make the speech completely unintelligible. The

noise was then attenuated in “bubbles” that were jointly para-

bolic in time and ERBN-scale frequency (Glasberg and Moore,

1990) with a maximum suppression of 80 dB. The center

points of the bubbles were selected uniformly at random loca-

tions in time and in ERBN-scale frequency, except that they

were excluded from a 2–ERBN buffer at the bottom and top of

the frequency scale to avoid edge effects (no frequency limits

were imposed outside of Nyquist). Mathematically, the attenu-

ation applied to the speech-shaped noise, M(f, t), is

B f ; tð Þ ¼
XI

i¼1

exp � t� tið Þ2

r2
t

� E fð Þ � E fið Þð Þ2

r2
f

( )
;

M f ; tð Þ ¼ min 1;
10�80=20

B f ; tð Þ

 !
;

(1)

where Eðf Þ ¼ 21:4 log10ð0:00437f þ 1Þ converts frequen-

cies in Hz to ERBN, and fðfi; tiÞgI
i¼1 are the randomly

selected centers of the I bubbles. The scale parameters rt

and rf were set such that the bubbles were fixed in size to

have a half-amplitude “width” of 90 ms at their widest and

a half-amplitude “height” of 1 ERBN at their tallest, the

smallest values that would avoid introducing audible arti-

facts. For the full 80-dB dynamic range, this corresponds to

350 ms wide at their widest and 7 ERBN high at their high-

est. Future experiments could explore the use of lower max-

imum suppression values along with smaller bubbles,

which should increase the resolution of the method, but

might require more mixtures per token. The number of bub-

bles was set such that listeners could correctly identify approx-

imately 50% of the mixtures from the six-alternative forced

choice. Pilot experiments showed that approximately 15 bub-

bles per second achieved this level of identification, which led

to a final overall SNR of �24 dB. Figure 2 displays spectro-

gram images of this bubble noise. Figure 2(b) shows a noise

having only two bubbles and Fig. 2(c) shows the utterance in

FIG. 2. (Color online) Example bubble-noise instances and mixtures with the word /AdA/. (a) Spectrogram of clean utterance. (b) An example instance of bub-

ble noise with two bubbles only. (c) The mixture of the utterance in (a) with the noise in (b). (d) Three mixtures of the utterance with bubble noise having 15

bubbles per second.
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(a) mixed with this noise. In Fig. 2(d), the same utterance is

mixed with three instances of bubble noise having 15 bubbles

per second and randomly determined bubble locations.

3. Procedure

Subjects were seated in a double-walled IAC sound booth

in front of a computer running a custom MATLAB presentation

interface. Sounds were presented diotically via Echo D/A

converters (Santa Barbara, CA) and Sennheiser HD280 PRO

headphones (Wedemark, Germany). Sound presentation lev-

els were calibrated via a Larson Davis (Depew, NY) sound

level meter and coupler so that mixtures were presented at 75

dBA. One mixture at a time was selected for presentation at

random from those assigned to the listener. The listener then

selected the word that they heard from the closed set of six

using a textual MATLAB interface. Testing began with two 5-

min training periods. The first used the clean utterances and

the second used bubble-noise utterances. Feedback was pro-

vided during training, but not during the formal testing.

a. Experiment 1. Intra-subject consistency was measured

through repeated presentation of mixtures. Five subjects partici-

pated in this experiment. Five specific speechþnoise mixtures

for each of the six medium-rate words spoken by talker W3

were presented 10 times to each listener. Thus, each listener per-

formed 300 labelings for this experiment. The proportion of

those 10 presentations in which each mixture was correctly iden-

tified was then computed, leading to 30 proportions per listener.

b. Experiment 2. Inter-subject consistency was measured

through repeated presentation of different mixtures. This

experiment was performed by the same five subjects as

experiment (exp.) 1 using the same six clean utterances.

Two hundred mixtures of each of the six utterances were

generated. Each of these 1200 mixtures used a unique bubble

noise. Every mixture was presented to each listener once and

the agreement between listeners on each mixture was quanti-

fied using Cohen’s j (Cohen, 1960).

c. Experiments 3a and 3b. Eight listeners who were not

involved in exps. 1 and 2 participated in an experiment to

assess importance. Four listeners participated in exp. 3a

involving the 18 utterances from talker W3 described in Sec.

II A 2 (six words� three utterances). The other four listeners

participated in exp. 3b involving the 18 utterances from talk-

ers W2, W4, and W5 (six words� three utterances). Results

from these experiments were analyzed together. Each lis-

tener was assigned 50 unique mixtures of each of their 18

utterances. Testing to identify all 900 mixtures (18 utter-

ances� 50 mixtures) took approximately one hour. Thus,

together, exps. 3a and 3b included 7200 unique mixtures,

distinct from those used in exps. 1 and 2. Listeners

responded to each mixture by selecting the word heard from

the six choices. Because each mixture was only heard a sin-

gle time, it was considered to be intelligible if it was cor-

rectly identified and unintelligible if not.

B. Analytical approaches for importance assessment

The extraction of importance information from the current

listening tests involved a correlational approach to identify

compact important regions in the spectrogram of utterances

and a predictive approach to predict whether novel mixtures

will be intelligible to human listeners based on the particular

arrangement of speech and noise in time and frequency.

1. Correlational: Point-biserial correlation

The first analysis involved an examination of the correla-

tion between the audibility at each individual T-F point and the

correct identification of the word in the corresponding mixture.

Audibility was quantified as the difference between the level of

the original speech-shaped noise and that of the bubble noise,

i.e., the depth of the “bubbles” in the noise at each T-F point.

Following Calandruccio and Doherty (2007), the point-biserial

correlation was used for this calculation, which computes the

correlation between a dichotomous variable (correct identifica-

tion of mixture) with a continuous variable (audibility at a

given T-F point). The significance of this correlation can also

be tested using a one-way analysis of variance with two levels,

with p-value denoted p(f,t). The degree to which the audibility

of a particular T-F point is correlated with correct identification

of the word should indicate the importance of that T-F point to

the intelligibility of that word. In contrast, points where audibil-

ity is not significantly correlated with correct identification are

likely not as important to its intelligibility.

Figure 3 shows several visualizations of the correla-

tional analysis for one utterance of the nonsense words /AdA/

and /AtSA/. Figure 3(a) shows the spectrogram of the clean

utterance. Figure 3(b) shows the correlation between audibil-

ity at each T-F point across mixtures involving this utterance

and the intelligibility of each mixture, with positive correla-

tions in red and negative correlations in blue. Figure 3(c)

shows the quantity Mvðf ; tÞ¼ exp[�p(f,t)/0.05] a visualiza-

tion of the significance of this correlation at each T-F point.

And Fig. 3(d) reveals the original clean spectrogram through

the portions of Mvðf ; tÞ that show positive correlations

between audibility and intelligibility.

2. Predictive machine learning

The second method employed to compute an intelligibil-

ity map used a linear classifier, in this case a support vector

machine (SVM). This machine learning method is predictive

because, in contrast to the correlational method, it allows the

quality of the fit to be measured on data not used in the train-

ing process via the prediction accuracy of the model.

All of the mixtures involving a given clean recording

constituted a single learning problem. The features used

were Gmðf ; tÞ, the amount that the speech-shaped noise had

been suppressed by its bubbles as a function of frequency

and time in the mth mixture. The machine learning task is to

predict whether the mth mixture was intelligible, denoted ym.

Because all of the features considered in a single problem

corresponded to the same clean recording, these features

implicitly represented the speech and did not need to explic-

itly represent it.

Because of the large number of dimensions of the

Gmðf ; tÞ (513 frequencies� 64 frames¼ 32 832 dimensions),

the first stage of analysis was a dimensionality reduction using

principal components analysis (PCA), which resulted in 5 to

120 dimensions. Computing PCA on the features directly
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gave too much weight to the high-frequency bubbles, because

the same number of ERBN’s contained a larger bandwidth in

Hz and so many more short-time Fourier transform (STFT)

frequency channels in the high-frequency bubbles relative to

the low-frequency bubbles. The features were thus reweighted

before performing PCA to counteract this effect. The weight

used was the cube root of the incremental ERBN frequency

change between adjacent STFT frequency channels. This fre-

quency weighting method is similar to frequency warping

methods like those used in computing mel frequency cepstral

coefficients (Davis and Mermelstein, 1980), but without the

loss of information caused by combining many high-

frequency channels together before the analysis.

Experiments to reconstruct individual bubble-noise instan-

ces from this PCA approximation showed that two PCA dimen-

sions per bubble in the instance led to accurate reconstructions.

This makes sense, as since bubbles are a fixed size, each bubble

effectively encodes two independent dimensions of informa-

tion: the frequency and time of its center. Thus bubble noise

instances occupy a very low-dimensional, relatively linear sub-

space of the much higher dimensional spectrogram space.

The SVM classifier used here is known to be sensitive

to an imbalanced number of positive and negative examples

in its training data (Rehan Akbani et al., 2004), so training

points from the over-represented class were discarded to

achieve balance, as is typical. Thus, if listeners achieve accu-

racy greater than 50%, the predictive analysis will only be

able to utilize a number of training examples equal to twice

the number of incorrectly identified mixtures (and vice

versa). Note that in contrast to the listeners’ task of selecting

the correct word of six, which has a chance level of 16.7%,

the classifier is predicting whether a particular utterance was

correctly identified or not, which has a chance level of 50%,

because of our tuning of the number of bubbles per second.

Nested cross-validation was used to select the PCA

dimensionality on the training data of each cross-validation

fold that led to the best classification performance. In partic-

ular, the data were partitioned into five approximately equal

collections of examples. Models using different parameters

(dimensionality in this case) were trained on three of these.

The model that performed best on the fourth, the develop-

ment set, was selected to be officially evaluated on the fifth,

the test set. This procedure was then repeated five times,

using each set as the test set in turn, and averaging the results

on all of the test sets together. In this way, model parameters

can be selected in a data-driven way that is still independent

of the test set, giving a fair evaluation. The dimensionality

selected was generally between 12 and 31, with 31 being the

most common by a small margin. If the linear classifier is

ŷm ¼ bþ
X

k

wk

X
f ;t

Bkðf ; tÞGmðf ; tÞ; (2)

where Bkðf ; tÞ is the kth PCA basis, then the corresponding

intelligibility map is Msðf ; tÞ ¼
P

kwkBkðf ; tÞ.

3. Alignment: Dynamic time warping

Some processing was necessary in order to permit gener-

alization between different utterances. This is because the fea-

tures used in the various analyses only represent the clean

speech implicitly. In cross-utterance experiments, one utter-

ance was selected as the reference and the others were continu-

ously warped in time to match it. This is true both for

experiments across different productions of the same word and

for experiments across different words. Specifically, a time

warp for a source utterance was computed using the MATLAB

code of Ellis (2003) to minimize the sum of squared errors

between its mel frequency cepstral coefficients and those of

the target utterance, with no penalty for insertions or deletions.

This warp was then applied to the features of the source utter-

ance’s mixtures before performing the predictive analysis. In

general, additional transformations could be used, including

the alignment of pitch and vocal tract length across utterances,

but such transformations were not used in the current studies.

FIG. 3. (Color online) Example of correlational analysis for /AdA/ (top panels) and /AtSA/ (bottom panels) from talker W3. (a) Original spectrogram. (b)

Correlation between noise level at each point and consensus intelligibility of the mixture. (c) Significance of this correlation, with significant positive correla-

tions in red and negative in blue. (d) Positive significance from (c) translated to transparency in a mask and overlaid on original spectrogram.

2546 J. Acoust. Soc. Am. 140 (4), October 2016 Mandel et al.

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  38.104.189.46 On: Thu, 13 Oct 2016 17:07:36



III. RESULTS

A. Experiment 1: Intra-subject consistency

Figure 4 shows the intra-subject consistency results

from exp. 1. Recall that this experiment measured the pro-

portion of 10 presentations of the same mixture that each lis-

tener was able to correctly identify. These 150 proportions

(30 proportions� 5 listeners) are displayed in the histogram

in Fig. 4(a). Proportions at or below chance are grouped

together into the lowest bin. The U-shaped curve indicates

that most mixtures were either highly intelligible or unintel-

ligible, and that listeners were consistent in this ability or

inability to identify the word.

Figure 4(b) shows the same data broken down by listener.

The plots on the diagonal of the matrix show the same kind of

histogram as in Fig. 4(a), but for each listener individually.

They again show a good deal of intra-subject consistency. Off

of the main diagonal, the scatter plots address inter-subject

consistency. They show the proportion correct for one listener

versus the proportion correct for another listener, on the same

mixtures. These plots show modest agreement on intelligibil-

ity between subjects, especially on correct identifications, i.e.,

mixtures that were intelligible to one listener tended to be

intelligible to the others. Note that the y-axis proportions cor-

respond to those of the scatter plots and not the histograms,

although all of the histograms use a consistent scale.

B. Experiment 2: Inter-subject consistency

Figure 5 displays the inter-subject consistency results

from exp. 2. It is similar to Fig. 4(a), except that it shows the

proportion of listeners who were able to correctly identify

each of the 1200 mixtures in exp. 2. Similarly to Fig. 4(a),

the slight U shape to the curve indicates that mixtures tended

to be either intelligible (most cases) or unintelligible.

Analysis of the results from exp. 2 using Cohen’s j
(Cohen, 1960) are shown in Table I. Cohen’s j measures

agreement between two subjects normalized for chance levels

of agreement due to the marginal distribution of each response.

We measure j for the six-way responses of the listeners (i.e.,

whether two listeners agree on the selected word for a given

mixture). In general, j values between 40% and 60% are con-

sidered to be moderate and those between 60% and 80% are

considered substantial (Landis and Koch, 1977). Table I shows

the value of j for each pair of listeners on the 1200 mixtures

in exp. 2. These results again show a large amount of agree-

ment between subjects, although subjects 2–5 tend to agree

more with each other than with subject 1.

FIG. 4. Results of exp. 1: intra-subject consistency. (a) Intra-subject consis-

tency. The U-shaped curves show that most mixtures were either highly

intelligible, or unintelligible. (b) Inter-subject consistency of proportion cor-

rect for each of the 30 repeated mixtures, showing a good deal of agreement

between subjects 2–5, especially on correct identifications.

FIG. 5. Results of exp. 2: inter-subject consistency, measured as the propor-

tion of subjects who correctly identified each of the 1200 mixtures in exp. 2.

The slight U-shape to the curve indicates that mixtures tended to be either

intelligible (most cases) or unintelligible.
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Figure 6 shows time-frequency importance functions

(described in Sec. II B 1) of the word /AdA/ computed for each

of the five listeners using the same exp. 2 mixtures used to

construct Fig. 5. The sixth TFIF is derived from the consensus

intelligibility results. In this consensus, a mixture was consid-

ered to be intelligible if all five listeners correctly identified it

and was considered unintelligible if at least two listeners

could not correctly identify it. Mixtures that were correctly

identified by all but one listener were ignored for the purposes

of the consensus analysis. This grouping of “votes” resulted

in approximately equal numbers of mixtures categorized as

intelligible and unintelligible. These plots show that the TFIFs

derived from the responses of each listener are quite similar.

Table II shows the percentage of mixtures correctly

identified for each clean utterance in exp. 2. Note that many

of these percentages are above the target value of 50%. As

discussed in Sec. II B 2, the effect of this is to reduce the

number of mixtures per utterance that can be utilized in

some of the analyses. There is some variation in intelligibil-

ity across different listeners, especially listener 1, which

might explain some of the inter-subject differences identified

by Cohen’s j and shown in Table I.

C. Experiment 3: Assessing importance

The importance assessment of exps. 3a and 3b employed

more clean utterances (six productions of each word) and

presented each mixture to only a single listener. Table III

shows the percentage of mixtures correctly identified for

each clean utterance, averaged across subjects. Note that, as

in Table II, many of these percentages are above the target

value of 50%. Note also that there is a large degree of varia-

tion in intelligibility across different utterances, and across

talkers. Talker W2 appears to be less intelligible than the

others at this particular number of bubbles per second.

1. Correlational analysis

Figure 7 shows the time-frequency importance functions

for all of the utterances used in exps. 3a and 3b. Each impor-

tance function was derived from 200 mixtures involving

each word (4 listeners� 50 mixtures each). Of these 36

TFIFs, 18 were derived from the same-talker utterances in

exps. 3a and 18 from the different-talker utterances in exp.

3b. Each row shows a different word and each column a dif-

ferent utterance. The spectrogram of the original utterance is

shown in color, with the importance represented as the level

of the “value” in the hue-saturation-value color model, i.e.,

the colors are darkened in unimportant regions.

2. Predictive analysis

The first analysis involved a baseline in which the

machine-learning classifiers were trained and tested on the

same utterance (a given production of a given word by a

given talker) and had to generalize to only new bubble-noise

mixtures. Table IV shows the accuracy of the classifiers

when trained and tested on mixtures from exp. 3 involving

the same clean speech utterance, using fivefold cross-

validation. The classifiers were trained on 80% of the mix-

tures and tested on the remaining 20%, with the training and

testing divisions rotated through the five possibilities and the

accuracies averaged. Approximately half of the accuracies

for individual mixtures in Table IV are significantly above

chance levels of 50% at a 0.05 level according to a one-sided

binomial test. The averages across talkers, however, are sig-

nificantly above chance for each word according to the same

test. This analysis shows the accuracy that classifiers can

achieve when required to generalize only across noise

instances and not across speech utterances.

Table V shows the cross-utterance classification accu-

racy of the classifiers. In contrast to Table IV, the accuracy

of these classifiers is measured when predicting the intelligi-

bility of novel mixtures that include both noise instances and

TABLE I. Cohen’s j (as a percentage) measuring consistency between pairs

of subjects (subj.) on responses (six-way) on the 1200 mixtures from exp. 2.

These results again show a large amount of agreement between subjects,

especially among subjects 2–5, with subject 1 only showing moderate agree-

ment with the others.

Subj. 1 2 3 4 5

1 46.3 52.6 50.9 51.1

2 46.3 58.3 56.1 56.8

3 52.6 58.3 64.0 68.8

4 50.9 56.1 64.0 61.2

5 51.1 56.8 68.8 61.2

FIG. 6. (Color online) Time-frequency importance functions [as in Fig. 3(d)] of /AdA/ computed for five different listeners, each hearing the same mixtures in

exp. 2, and computed from the consensus intelligibility estimate.

TABLE II. Percent of mixtures correctly identified by listeners in exp. 2—

inter-subject consistency.

Subject /AtSA/ /AdZA/ /AdA/ /AtA/ /AfA/ /AvA/ Avg.

1 49.5 54.0 67.5 62.5 64.5 65.0 60.5

2 67.0 66.0 59.5 65.0 65.5 69.0 65.3

3 79.5 70.5 79.5 79.5 84.5 74.5 78.0

4 68.5 65.5 65.0 77.5 77.0 71.5 70.8

5 72.0 65.5 64.5 75.0 90.5 83.0 75.1

Consensus 67.3 64.3 67.2 71.9 76.4 72.6 69.9
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utterances that were not used in the training of the classifier,

thus measuring its ability to generalize to both new noise

instances and new utterances. In each case, a model was

tested on the 200 mixtures involving a single utterance from

exp. 3 after being trained on the mixtures involving the other

utterances of the same nonsense word from exp. 3. This pro-

cedure was repeated, rotating through each of the utterances

for testing, with the accuracies averaged together. The same-

talker conditions used the utterances and results from exp.

3a, in which only talker W3 was employed. The different-

talker conditions used the utterances and results from exp.

3b (talkers W2, W4, W5) plus the “v1” utterances from exp.

3a, which represent a fourth unique talker. Thus, in the

same-talker condition, the classifiers were trained on the 400

mixtures involving two utterances of each word from talker

W3 and tested on the 200 mixtures involving the third utter-

ance from that talker. In the different-talker condition, the

classifiers were trained on the 600 mixtures involving three

productions of each word, each from a different talker, and

tested on the 200 mixtures involving the fourth production

from the fourth talker. Table V shows these results with and

without the time alignment described in Sec. II B 3 per-

formed to W3 v3 for the single-talker condition and W4 for

the multiple-talker condition. It shows that these classifiers

are able to generalize across different utterances of the same

word spoken by both the same and different talkers, and that

they are better able to do so when the utterances are time-

aligned to a reference. Subsequent cross-utterance results

will therefore only be reported with the use of time warping.

Careful examination of Tables IV versus V indicates

that the accuracy of the classifiers was lower when they were

required to generalize only across noise instances than when

they were required to generalize across noise instances and

utterances. This is even true for five of the six words in the

TABLE III. Percent of mixtures correctly identified by listeners in exps. 3a

and 3b—Importance assessment.

Talker /AtSA/ /AdZA/ /AdA/ /AtA/ /AfA/ /AvA/ Avg.

W3 v1 72.0 70.5 60.5 75.0 60.0 70.5 68.1

W3 v2 72.0 69.5 64.5 72.0 64.5 76.5 69.8

W3 v3 74.0 64.5 67.5 50.0 57.0 69.5 63.8

W2 32.0 49.5 52.5 58.5 32.0 75.0 49.9

W4 75.0 54.5 75.5 77.0 64.0 56.0 67.0

W5 52.5 47.0 62.5 73.5 51.0 67.5 59.0

Avg. 62.9 59.3 63.8 67.7 54.8 69.2 62.9

FIG. 7. (Color online) Time-frequency importance functions derived from exps. 3a and 3b data, overlaid on spectrograms of each of the 36 utterances.

Utterances from talker W3 v2 were used in exps. 1 and 2.
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different-talker conditions. This apparent anomaly may be

related to the different amounts of data available to train the

classifiers. Table VI shows the accuracy of cross-utterance

classifiers trained on the same number of examples as the

within-utterance classifiers as in Table IV. The number of

training points, averaged across utterances, is shown in the

Ntr column. Note that Ntr for the within-utterance rows is

lower than 160 examples because of the balancing of the

number of examples between the positive and negative clas-

ses of the training data. These results show that the increase

in accuracy of the cross-utterance classifiers over the within-

utterance classifiers is essentially eliminated when the num-

ber of training examples is reduced to that of the within-

utterance classifiers.

Table VII compares the ability of these classifiers to

generalize across different versions of the same word with

their ability to generalize across different words. It includes

results for both the same talker and different talkers.

Significance is tested using a one-sided binomial test com-

paring against a baseline of 50% accuracy with a signifi-

cance level of 0.05. In the different-word condition, each of

the classifiers trained in the same-word condition (in the

same way as for Tables V and VI) is tested on three ran-

domly selected utterances of different words. These random

words come from the same talker in the same-talker condi-

tion and from different talkers in the different-talker condi-

tion. The bottom half of the table compares various pairs of

rows from the top half, with significant differences in bold.

The significance test used in this case is a two-sided two-pro-

portion z-test with a significance level of 0.05. These results

show that cross-utterance classifiers are able to correctly pre-

dict intelligibility of individual unseen mixtures at better

than chance levels for all conditions, but especially when

training and testing on mixtures from the same word.

IV. DISCUSSION

A. Listener consistency

The U-shaped histogram in Fig. 4(a) indicates that most

speechþnoise mixtures were either highly intelligible, or unin-

telligible, and that there were not many that were in-between.

Thus, on repeated presentations, listeners tended to repeatedly

identify a given mixture correctly or incorrectly. This supports

the idea that certain combinations of glimpses allow a particu-

lar word to be correctly identified, whereas others do not. The

plots along the diagonal of Fig. 4(b) confirm the results dis-

played in Fig. 4(a), by showing that mixtures tend to have high

intelligibility or low intelligibility for each listener.

The off-diagonal plots in Fig. 4(b) show the relationship

between the proportion correct of given mixtures when heard

by different listeners. Each panel shows one pair of listeners.

The clustering of points in the upper-right corner of each

panel indicates that listeners tend to find the same mixtures

intelligible, but seem to find different mixtures unintelligi-

ble. This could be a result of the slight skew toward correct

identification.

Figure 5 shows that many of the mixtures can be cor-

rectly identified by all of the listeners, and mixtures incor-

rectly identified by many listeners are less frequent. This

result agrees to some extent with the intra-subject consis-

tency result in Fig. 4(a), but it is less definitively U-shaped.

TABLE IV. Machine learning classification accuracy (using 5-fold cross-

validation) within individual utterances. Data were from exp. 3. Bold entries

are significantly above chance performance (50%) at a 0.05 level according

to a one-sided binomial test.

Talker /AtSA/ /AdZA/ /AdA/ /AtA/ /AfA/ /AvA/ Avg.

W3 v1 54.5 65.3 58.9 49.0 53.8 54.2 55.9

W3 v2 58.0 68.0 65.5 62.5 58.5 59.6 62.0

W3 v3 64.4 66.2 58.5 66.5 64.0 56.6 62.7

W2 57.8 49.5 73.2 62.7 52.3 55.0 58.4

W4 60.0 61.0 54.1 71.7 57.6 58.5 60.5

W5 59.5 61.2 56.7 64.2 52.6 53.8 58.0

Avg. 59.0 61.9 61.1 62.8 56.4 56.3 59.6

TABLE V. Cross-utterance classification accuracy on mixtures involving a

novel utterance. Data were from exp. 3. Same-talker models were trained on

two utterances, different-talker models on three. Results are shown with (þ)

and without (�) aligning the clean utterances to a reference. All results are

significantly better than chance at a 0.05 level according to a one-sided bino-

mial test.

Talker Warp /AtSA/ /AdZA/ /AdA/ /AtA/ /AfA/ /AvA/ Avg.

Same þ 65.2 62.7 74.1 74.4 67.0 63.5 67.8

Same � 63.6 63.9 63.4 74.0 57.2 64.5 64.4

Diff. þ 62.3 58.7 69.3 73.9 59.9 61.6 64.3

Diff. � 55.7 58.9 66.8 63.1 61.6 59.9 61.0

TABLE VI. Accuracy of cross-utterance classification and cross-validation

within utterances showing the effect of increasing the amount of training

data. Data were from exp. 3. Abbreviations: Talker (T), utterance (U), same

(S), and different (D). In the case of the different-utterance condition, all

utterances were still of the same word. Bold entries are significantly better

than chance at a 0.05 level according to a one-sided binomial test.

T U Ntr /AtSA/ /AdZA/ /AdA/ /AtA/ /AfA/ /AvA/ Avg.

S S 104.9 59.0 66.5 60.9 59.3 58.7 56.8 60.2

S D 105.1 57.6 62.0 69.5 63.7 56.5 60.0 61.5

S D 262.2 65.2 62.7 74.1 74.4 67.0 63.5 67.8

D S 114.3 57.9 59.2 60.7 61.9 54.1 55.4 58.2

D D 114.1 50.7 49.6 54.8 59.0 55.1 53.9 53.8

D D 464.7 62.3 58.7 69.3 73.9 59.9 61.6 64.3

TABLE VII. Cross-utterance accuracy for various combinations of same

and different talker and test word, along with comparisons between them

(D). Data were from exp. 3. Bold entries are statistically significant.

Word Talker /AtSA/ /AdZA/ /AdA/ /AtA/ /AfA/ /AvA/ Avg.

Same Same 65.2 62.7 74.1 74.4 67.0 63.5 67.8

Same Diff 62.3 58.7 69.3 73.9 59.9 61.6 64.3

Diff Same 62.2 59.8 61.8 57.5 61.9 56.8 60.0

Diff Diff 64.0 62.0 61.4 58.0 59.9 59.4 60.8

D Same 3.0 2.8 12.3 16.9 5.2 6.7 7.8

D Diff �1.8 �3.3 7.9 15.8 0.0 2.2 3.5

Same D 2.9 4.0 4.9 0.6 7.1 1.9 3.6

Diff D �1.8 �2.1 0.5 �0.5 2.0 �2.6 �0.8
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It is likely that the relatively high overall recognition rate of

70%, as shown in Table II, skewed the U-shape toward more

correct responses.

As can be seen from Table I, the j values are between

46% and 69%, which further indicates that inter-subject

agreement is generally high. Subject 1 has the lowest agree-

ment with other subjects, especially subject 2, while subjects

3, 4, and 5 agree with each other substantially.

All listeners’ TFIFs for the nonsense word /AdA/ in Fig. 6

show significant correlations between intelligibility and audi-

bility in two distinct regions. One region is high in frequency,

generally centered around 5–6 kHz, and corresponds to the

closure and plosive-release burst of the consonant. The other

region is lower in frequency, centered around 1.5 kHz, and

corresponds to the transition of the first and second formants

into and out of the consonant.

B. Correlational analysis

The maps in Fig. 7 display the cues used by listeners

when extracting consonants from noise. They show many

notable properties that agree with traditional theories of

speech perception in many regards, while providing addi-

tional insight into the speech perception process in others.

All utterances appear to have one or two main regions of

importance, focused on similar information across utteran-

ces, but at different time-frequency regions because of idio-

syncratic differences in the utterances. Specifically, there is

a high-frequency region focused on frication and burst

energy, and a low-frequency region focused on the first two

formants and their transition before, during, and especially

after the consonant. The low-frequency region seems to be

present with some consistency, while the high-frequency

region is less consistent, with different productions of the

same word tending to be somewhat consistent in the pres-

ence or absence of the high-frequency region.

The high-frequency importance region is present in all

productions of /AdA/ and /AtA/, in some productions of /AtSA/,

but in fewer productions of /AdZA/, /AfA/, and /AvA/. This

could reflect the listeners adopting a task-specific strategy

for recognizing these words. The words /AfA/ and /AvA/ have

relatively steady second-formant transitions after the conso-

nant, while the other words have falling second-formant

transitions, meaning that hearing a steady second-formant

transition would be sufficient to distinguish these fricatives

from the words with other manners of articulation. Such a

hypothesis is in accord with the lack of importance found for

the initial and final vowels, as they do not aid in discriminat-

ing these nonsense words.

The low-frequency regions are present for almost all of the

words. They are only absent when there is little importance in

an entire utterance, such as for /AtSA/ and /AfA/ from talker

W2, which is likely a result of too few examples of either intel-

ligible or unintelligible mixtures leading to a lack of statistical

power. In the case of those two words, Table III shows that lis-

teners correctly identified only 32% of these mixtures. This is

only slightly above the chance rate of 17%, meaning that these

mixtures were overall very difficult to correctly identify using

the same number of bubbles per second as the other utterances.

For utterances where 200 mixtures provided enough sta-

tistical power to create a reasonable importance map, the low-

frequency importance regions almost always encompass the

formant transitions from the consonant to the final vowel. For

many of the voiced consonants, these regions also encompass

the formants at the end of the initial vowel and span the low-

energy gap in the consonant. Thus, attendance to these regions

could indicate an assessment of voice onset time or, more spe-

cifically, the amount of time between the voicing offset of the

initial vowel and onset of the final vowel. The location of

these areas of importance suggests that consonant offsets are

used by listeners more than consonant onsets when distin-

guishing VCV nonsense words. The fact that this low-

frequency region was important even for consonants that are

typically assumed to contain little phonetic information in this

region (e.g., /f/) has potentially important implications for the

human extraction of speech from noise. One implication of

this finding is that listeners are attending not only to where

information is, but also to where it might occur, in order to

distinguish between possible utterances. If this listening strat-

egy is extrapolated from the task employed currently to one

involving the recognition of open-set utterances (i.e., senten-

ces), it becomes clear that substantial areas of the spectrogram

would have to be monitored.

Whereas the overlays in Fig. 7 only show the regions

where audibility is positively correlated with intelligibility,

there are some utterances for which audibility in certain

regions is negatively correlated with intelligibility—regions of

negative importance. While the positive correlations predomi-

nate, the negative correlations are interesting because they rep-

resent regions of the signal that are misleading to the listener.

Examples of this can be found for the words /AdA/ and /AtSA/

as the blue regions in Figs. 3(b) and 3(c). For /AtSA/, the large

vertical positive correlation is followed by a vertical negatively

correlated region. This region of negative correlation might

represent situations in which the listener notices a dip in high-

frequency energy in the noise (a glimpse) revealing a portion

of the target word in which no energy is present. This lack of

speech energy in that region might be misinterpreted as a lack

of high-frequency energy in the entire word, encouraging the

listener to select a different, incorrect word. Thus it is possible

that this negative correlation is not a function of the speech

energy in that region, but instead a function of the location of

that region relative to other speech energy.

C. Predictive analysis

The ability of the machine learning classifier to accu-

rately predict whether mixtures will be correctly or incor-

rectly identified by human listeners is reflected in Tables

IV–VII. As stated earlier, Tables IV versus V suggest a

counterintuitive conclusion: The ability to accurately clas-

sify mixtures as identifiable or not is better when the classi-

fier is trained and tested on different utterances relative to

when it is trained and tested on the very same utterances.

However, Table VI clarifies this result by providing classifi-

cation accuracy when the number of training examples is the

same in both cases. There, it can be seen that classification

accuracy (the ability of the machine learning model to
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accurately predict whether human listeners will be able to

correctly identify given mixtures) is (i) better than chance in

almost every case. (ii) When the same talker is employed for

training and testing of the SVM, accuracy is similar when

trained and tested on the same utterances as when it is

trained and tested on different utterances. (iii) However,

when different talkers are employed for training and testing,

accuracy is slightly superior when trained and tested on the

same utterances.

The top half of Table VII shows that the classifiers are

able to predict the intelligibility of mixtures significantly bet-

ter than chance for all words in all conditions: All combina-

tions of same and different talker and same and different

word. In the same-word, different-talker condition, the clas-

sifiers achieved an accuracy of 59%–74%, all of which are

significantly better than chance. This is due to the fact that

all talkers share a common phonetic structure when produc-

ing a given word, and that time-alignment across different

utterances was performed. In the two different-word condi-

tions, the classifiers achieved an accuracy of 57%–64%, all

of which are again significantly better than chance. This high

classification accuracy across different training and test

words is likely due to the fact that all of the utterances share

the same general structure (VCV), i.e., the important regions

for distinguishing between these words are all approxi-

mately aligned. However, rows five and six of the table

show that the intelligibilities of mixtures involving the

words /AdA/, /AtA/, and /AvA/ are predicted significantly

better than the pooled cross-word results. This means that

the classifiers for those words capture a significant amount

of utterance-specific information beyond the general struc-

ture shared by all of the words. The bottom two rows show

that /AfA/ is significantly better able to generalize across

utterances from the same talker than from different talkers,

indicating that only those classifiers are capturing a signifi-

cant amount of talker-specific information.

V. SUMMARY AND CONCLUSION

This paper introduces an intelligibility prediction frame-

work that is able to identify, in a data-driven manner, the

importance of individual time-frequency points to the intelli-

gibility of individual utterances. Potentially interesting

observations can be made from these results that may gener-

alize beyond the specific utterances analyzed in the current

experiments. First, the absence of energy may play a larger

role in understanding speech in noise than was previously

assumed. In particular, a lack of energy in a key T-F region

can potentially exclude the possibility of certain alternative

interpretations of an utterance. The current TFIFs show that

listeners focus not just on where energy does occur in choos-

ing between possible interpretations, but also where it might

occur in other interpretations. For example, although /AtA/ is

unvoiced, listeners still attend to the region where voicing

would occur in /AdA/ in order to correctly discriminate

between the two words. While the importance of silence and

targeted listening is clear in the current closed-task set, it

may also transfer to open-set tasks, as the semantic context

provided by the words prior and subsequent to a given target

sound will serve to constrain considerably its possible identi-

ties. Similarly, the observed propensity of listeners to focus

on consonant transitions into following vowels more than

transitions in from preceding vowels may also very well

transfer to open-set recognition.

The current study also introduces a novel intelligibility-

prediction framework and shows that it is able to generalize

not only to novel noise instances, but also to novel utterances

of the same word from the same talker and from different

talkers, and to novel consonants in /aCa/ nonsense words.

These abilities serve as the necessary first steps toward creat-

ing a classifier-based intelligibility predictor. Such a model

could generalize from a finite amount of training data col-

lected from listeners, to predict intelligibility of future

unseen mixtures. Whereas the current study shows that this

generalization is possible across words that share a particular

form, future studies are necessary to determine the extent to

which it is possible for such models to generalize to the

same forms in different phonetic contexts and to entirely dif-

ferent forms.

Going forward, the current technique permits the inves-

tigation of the optimality of listeners’ strategies in various

contexts. Clearly, listeners can focus only on essential dis-

ambiguating cues in more restricted closed-set tasks. Such

optimality is suggested by the absence of high-frequency

importance regions for /AfA/ and /AvA/ in Fig. 7. But less is

known about the extent to which listeners perform this same

type of optimal listening as the set of alternatives becomes

larger. It is reasonable to assume that the number of time-

frequency regions that must be monitored will increase sub-

stantially during open-set recognition. But it is also true that

surrounding context serves to considerably limit the possible

correct responses. This context is widely assumed to guide a

“top-down” process that aids recognition of the bottom-up

acoustic information that is gathered. What is not well

understood is the extent to which listeners take advantage of

this surrounding context to perform targeted (optimal) listen-

ing by modifying the bottom-up cues that are collected.

Such strategies might also help explain the ability of lis-

teners to quickly adapt to adverse conditions such as filtering

(Haggard, 1974; Darwin et al., 1989) and reverberation

(Watkins, 2005). Under these conditions, certain cues are

systematically degraded while others are preserved, and one

would expect to see a corresponding systematic shift away

from degraded and toward preserved cues. The current tech-

nique permits this investigation.

The technique employed here and the resulting ability to

characterize listener strategies could help to characterize def-

icits in noise robustness observed in various populations of

listeners, such as those with dyslexia (Ziegler et al., 2009),

Auditory Processing Disorder (Lagac�e et al., 2010), and chil-

dren with histories of otitis media (Zumach et al., 2009). It

could help characterize the large individual differences in

noise robustness between hearing-impaired listeners

observed even after accounting for differences in audibility

(Akeroyd, 2008), perhaps in combination with detailed mod-

els of impaired hearing (e.g., Zilany et al., 2009). It could be

used to compare differences found between late versus early

second-language learners (Mayo et al., 1997), including
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those of specific languages over the course of their learning

(e.g., Akahane-Yamada and Tohkura, 1990). It could help

characterize the effects of cognitive load on listening strat-

egy (Zekveld et al., 2011). And it could help identify how

musicians achieve greater noise robustness than non-

musicians (Parbery-Clark et al., 2009).
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