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SUMMARY

Humans can easily focus on one speaker in a multi-
talker acoustic environment, but how different areas
of the humanauditory cortex (AC) represent the acous-
tic components of mixed speech is unknown. We ob-
tained invasive recordings from the primary and non-
primary AC in neurosurgical patients as they listened
to multi-talker speech. We found that neural sites in
the primary AC responded to individual speakers in
themixtureandwere relativelyunchangedbyattention.
In contrast, neural sites in the nonprimary ACwere less
discerning of individual speakers but selectively repre-
sented the attended speaker. Moreover, the encoding
of the attended speaker in the nonprimary AC was
invariant to the degree of acoustic overlap with the
unattendedspeaker. Finally, this emergent representa-
tion of attended speech in the nonprimary ACwas line-
arlypredictable fromtheprimaryACresponses.Our re-
sults reveal the neural computations underlying the
hierarchical formation of auditory objects in human
AC during multi-talker speech perception.

INTRODUCTION

In multi-talker acoustic environments, humans can easily focus

their attention on one speaker even in the absence of any spatial

separation between the talkers (Cherry, 1953). In such scenarios,

the spectrotemporal acoustic components of the speakers are

highly mixed at a listener’s auditory periphery (Brungart et al.,

2001). Successful perception of a particular speaker in this con-

dition requires identifying and separating the spectrotemporal

features of that speaker from the background and regrouping

the acoustic components into a coherent auditory object that

is unaffected by the variable acoustic overlap with other

speakers (Bizley and Cohen, 2013; Shinn-Cunningham, 2008).

The required neural computations that underlie this cognitive

task in the human auditory system remain speculative, and this
Neur
task has proved extremely challenging to model algorithmically

(Luo and Mesgarani, 2019; Luo et al., 2018).

Studies on sound encoding in the mammalian auditory

pathway have postulated the existence of a hierarchical, feedfor-

ward processing framework that starts from the auditory nerve

and continues to primary and nonprimary auditory cortex (Hickok

and Poeppel, 2007; Rauschecker, 1997). Neurons in this

ascending auditory pathway have increasingly complex and

multi-featured tuning properties (King and Nelken, 2009; Miller

et al., 2002; Santoro et al., 2014). This encoding hierarchy results

in a multidimensional and multiplexed representation of stimulus

features in primary auditory areas that can facilitate auditory

scene analysis (Patel et al., 2018; Walker et al., 2011). In parallel,

substantial evidence indicates the existence of descending con-

nections throughout the entire auditory pathway (Rasmussen,

1964). These task-dependent feedback connections modulate

the tuning properties of auditory neurons, which likely support

the extraction of target sound sources from the background

acoustic scene (Fritz et al., 2003; Kilian-H€utten et al., 2011; Mes-

garani et al., 2009a). The interaction betweenbottom-up and top-

down mechanisms is particularly critical when attending to a

target speaker in multi-talker acoustic conditions as the target

and interfering sound sources overlap substantially in both time

and frequency. Previous studies on multi-talker speech percep-

tion in the human auditory cortex have confirmed the emergence

of a selective andenhanced representation of attended speech in

higher auditory areas, such as superior temporal gyrus (STG;

Mesgarani and Chang, 2012; Zion Golumbic et al., 2013). Addi-

tionally, noninvasive studies have shown that attended and unat-

tended talkers are co-represented in early components of neural

responses, with distinct responses to the attended speaker ap-

pearing in only late response components and in only nonprimary

auditory areas (Ding and Simon, 2012; Kerlin et al., 2010; Petkov

et al., 2004; Power et al., 2012; Puvvada and Simon, 2017).

Although these findings suggest a progressive and hierarchi-

cal emergence of target speech from the mixed sound, how

the primary and nonprimary auditory cortical areas represent

mixed speech and how they interact to selectively enhance the

target speech relative to the acoustic background remains un-

known. In addition, whether these auditory cortical areas repre-

sent an attended speaker as an auditory object remains unclear
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(Bizley and Cohen, 2013; Shinn-Cunningham, 2008). An auditory

object representation implies invariance to the degree of spec-

trotemporal overlap with unattended speech, similar to the

response permanence to partially occluded visual objects

(Gibson, 2014). Although previous studies have shown a selec-

tive representation of attended speech in STG (Mesgarani and

Chang, 2012), the difference between the neural responses to

masked and unmasked spectrotemporal features of the

attended speaker in primary and nonprimary areas is unknown.

To shed light on the encoding of mixed speech in primary and

nonprimary auditory areas,we recorded from invasive electrodes

implanted in patients undergoing neurosurgery as they focused

on specific speakers in a multi-talker speech perception task.

We used a combination of depth (stereotactic electroencephalo-

gram [EEG]) and surface (subdural electrocorticography)

recording techniques to reach both STG and Heschl’s gyrus

(HG). These speech-responsive areas (Khalighinejad et al.,

2019; Mesgarani et al., 2014; Steinschneider et al., 2013) are

easily identifiable from the macroscopic landmarks and are

consistently present in all subjects, as opposed to the functional

organization of auditory cortical fields which remains debated

(Hackett et al., 2001;Moerel et al., 2014) and has a large intrasub-

ject variability (Rademacher et al., 1993). While these regions are

heterogeneous and each contain multiple auditory fields (Hamil-

ton et al., 2018; Nourski, 2017), HG includes mostly the primary

auditory cortex, and STG is considered mostly a nonprimary

auditory area (Clarke and Morosan, 2012). Therefore, measuring

the neural activity from both HG and STG areas allowed us to

determine the encoding properties and functional relationship

between these regions. Our results revealed significant differ-

ences between the representation ofmulti-talker speech in these

two areas, a finding that contributes to a more complete func-

tional and anatomical understanding of speech processing and

auditory object formation in the human auditory cortex.

RESULTS

Eight subjects participated in this study, with varying amounts of

electrode coverage over their left and right auditory cortices.

Two subjects had high-density electroencephalography (ECoG)

grids implanted over their left temporal lobe with coverage of

STG, and one of these subjects also had a stereotactic EEG

(sEEG) depth electrode implanted in left HG. Depth electrodes

with coverage over the left and right HG, as well as other auditory

cortical regions, were implanted in the remaining 6 subjects. Fig-

ure 1A shows the electrodes from all subjects displayed on an

average brain along with their corresponding measure of effect

size (Cohen’s D; Cohen, 2013) resulting from the comparison of

the responses to speech versus silence (STAR Methods). Out of

624 electrodes, 230were responsive to speech (effect size greater

than 0.2), with 67 and 56 of these electrodes located in HG and

STG, respectively. Further analyses were restricted to these elec-

trodes in HG and STG (all electrodes are shown in Figure S1A).

Stimuli and Example Responses
The subjects listened to stories read by a male speaker and

female speaker, hereafter referred to as Spk1 and Spk2, respec-

tively. The stimuli were presented in isolation (single-talker) and
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mixed together (multi-talker) with no spatial separation between

them. The multi-talker condition was split into 4 blocks, and the

subjects were instructed to pay attention to either Spk1 or Spk2

at the beginning of each block. The stories were intermittently

paused, and the subjects were asked to repeat the last sentence

of Spk1/2 in the single-talker condition or to repeat the last sen-

tence of the attended speaker in the multi-talker condition to

ensure that the subjects were engaged in the task. The perfor-

mance for all subjects in the multi-talker condition was high

(mean = 90%, STD = 8%, minimum = 80%).

Figure 1B shows portions of the stimuli and corresponding neu-

ral responses from 2 example electrodes in 1 subject, with one in

STG (E1) and the other in HG (E2). By ‘‘response’’ here and in the

rest of the manuscript, we are referring to the envelope of the

high-gamma band (70–150 Hz; STAR Methods). The left panel

shows a stimulus from the multi-talker condition (displayed as

the superposition of the 2 speakers for visualization purposes).

Qualitatively, the response of the neural site in STG (E1) changes

depending on who is being attended, even though the stimulus is

identical in both cases. Comparing the multi-talker responses

with those obtained in the single-talker condition (middle and right

panels) shows that the responseof thissite to theattendedspeaker

is similar to the response to that speaker in isolation. Conversely,

the neural site in HG (E2) responds similarly to the sound mixture

irrespective of whether the subject is attending to Spk1 or Spk2.

Comparing these responses with those in the single-talker condi-

tion suggests that the response of this site is the same as the

response to Spk1 alone evenwhen attending to Spk2. This visual-

ization demonstrates the following response types: (1) sites that

are modulated by attention to represent the attended speaker,

and (2) sites that preferentially respond to a specific speaker

evenwhen not attending to that speaker. Motivated by this obser-

vation, we examined the extent to which each site wasmodulated

by attention or was more responsive to one of the speakers.

Selective Responses of Neural Sites to Specific
Speakers
To study the preferential response of sites to the speakers across

HG and STG, we examined the responses to the speakers in the

single-talker condition. To compare the responses, we calculated

the distribution of the normalized magnitude of the electrodes’

response to Spk1 and Spk2. Figure 2A shows the response histo-

grams for twoexample sites inHG.Thedifferencebetween theme-

dians of the distributions in Figure 2A confirms that these sites

respond more strongly to Spk1 (left) or Spk2 (right). We quantified

the preference for either speaker (the degree of the difference

between the response distributions) by calculating the effect size

(Cohen’s D) of the difference. We term this metric the speaker-

selectivity index (SSI); positive and negative values indicate a

preference for Spk1 and Spk2, respectively. Evaluating the SSI

(absolute values) across all electrodes revealed significantly more

speaker-selective neural sites in HG than in STG (Figure 2B; un-

paired t test, p < 0.001). This difference is also demonstrated by

the wider distribution of the SSI in HG (SD of the SSI in HG and

STG=0.2and0.07, respectively). FigureS1Bshows thespatialdis-

tribution of the SSI across the brain.

To examine the extent to which the observed preferred

response to one speaker over the other can be explained by
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Figure 1. Example of Neural Responses in Single- and Multi-talker Conditions

(A) Electrode coverage and speech responsiveness. Electrodes from all 8 subjects were transformed onto an average brain. The left panel shows the left

hemisphere, with HG (containing primary auditory cortex) highlighted in green, and STG (nonprimary auditory cortex) highlighted in orange. Middle and right

panels show the inflated left and right hemispheres to assist visualization. The color of each electrode corresponds to the effect size (Cohen’s D), measuring its

response to speech versus silence. Only electrodes with an effect size >0.2 are shown.

(B) Stimuli. Portions of the stimuli (spectrograms) in themulti-talker (left) and single-talker (middle and right) panels. In themulti-talker condition, the spectrograms

of Spk1 (male) and Spk2 (female) are superimposed for visualization purposes.

(C) Example neural responses from 2 electrodes in 1 subject: one in STG (e1) and the other in HG (e2). The response of e1 changes depending onwhich speaker is

being attended, resembling the response to that speaker in isolation. Conversely, e2 responds similarly when attending to Spk1 and Spk2, as if it was responding

to Spk1 alone, even when Spk2 is attended. This visualization demonstrates two response types: (1) sites with a modulated response to represent the attended

speaker, and (2) sites that preferentially respond to one speaker irrespective of attention.
spectrotemporal tuning properties (Steinschneider et al., 2014),

we first calculated the spectrotemporal receptive field (STRF)

of each neural site. A STRF is a linear mapping between a stim-

ulus (spectrogram) and the evoked response to that stimulus

(Theunissen et al., 2000) that estimates the spectrotemporal fea-

tures to which a neural site is tuned. The STRFs were calculated

from the responses to the single-talker stimuli. Figure 2C dis-

plays the average STRFs from all electrodes that had an SSI

either greater than +0.2 or less than �0.2 (selective for Spk1 or

Spk2, respectively). To relate these tuning properties to the

acoustic features of the speakers, we calculated the average

acoustic spectrum of each speaker (labeled Spk1 and Spk2

Acous.; STARMethods). To directly compare the acoustic spec-
trum of the speakers with each site’s frequency tuning, we

removed the temporal component of the STRFs by obtaining

their 1st principal component (PC) along the spectral dimension.

Therefore, we will abbreviate STRFs as spectral receptive fields

(SRFs). The correlation (Pearson’s r) between the SRFs that are

selective for Spk1/2 and the spectral profile of Spk1/2 are 0.72

and 0.67, respectively (p < 0.001 for both; Figure 2D). The corre-

lation between the difference in the SRFs and the difference in

the spectral profile of the speakers is 0.82 (p < 0.001). These

large correlation values suggest that the observed speaker

selectivity of a neural site is largely due to a match between

the spectral profile of the speakers and the frequency tuning of

that site.
Neuron 104, 1195–1209, December 18, 2019 1197
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Figure 2. Selective Responses of Neural Sites to Specific Speakers

(A) The distribution of the responses to Spk1 and Spk2 in the single-talker condition from 2 example electrodes in HG. Electrodes 1 and 2 respond preferentially to

Spk1 and Spk2, respectively. The dashed lines indicate the median of each distribution. The speaker selectivity index (SSI) is the effect size (Cohen’s D) of the

difference in the response to the 2 speakers. Positive numbers indicate a preference for Spk1, and vice versa.

(B) The distribution of the SSI in HG (green) and STG (orange) shows significantly more speaker-selective sites in HG (p < 0.001).

(C) Comparing the spectrotemporal tuning properties of neural sites with the acoustic profile of each speaker. Left panel: the average spectrotemporal receptive

field (STRF) for all sites showing a preference for Spk1 (SSI >0.2) and the average acoustic spectrum of Spk1 (labeled Spk1 Acous.). Right panel: the average

STRF for all sites showing a preference for Spk2 and the average acoustic spectrum of Spk2.

(D) The correlation between the average STRFs and average acoustics (after removing the temporal component of the STRFs by obtaining their 1st PC). Left panel:

the correlation between the STRFs of Spk1 selective (SSI >0.2) sites (solid line) and the average acoustic spectrum of Spk1 (dashed line). Middle panel: the

correlation between the STRFs of Spk2 selective sites and the average acoustics of Spk2. Right panel: the correlation between the difference in the 2 groups of

STRFs and the difference in the acoustics of the 2 speakers.

(E) Predicting the SSI of a site from its STRF for all sites in HG (green) and STG (orange).
To examine the extent to which the SSI of each site could be

predicted from its SRF, we used linear regression to map all sites

in HG and STG from the SRF to SSI (STAR Methods; Figure S2).

Figure 2E shows that speaker selectivity can be predicted for

HG and STG electrodes with an accuracy of 0.89 and 0.67,

respectively (p < 0.001 for both; Pearson’s r value). The higher

speaker preference prediction in HG indicates amore acoustically

organized representation of the speakers in this area than that in

STG. Together, these results suggest that sites in HG have more

diverse spectral tuning properties, which results in an explicit rep-

resentation of the distinct acoustic features of the two speakers.
AMI = corrðSpk1attend;Spk1aloneÞ--corrðSpk1attend;Spk2aloneÞ
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Attentional Modulation of Neural Responses
We showed that cortical areas have varied preferences for

particular speakers and that sites in HG are more speaker se-

lective than sites in STG. To determine the degree of attentional

modulation of these sites, we compared the multi-talker and

single-talker responses to measure how much the neural

response to the mixed speech changed to resemble the

response to the attended speaker in the single-talker condition

(see Figure 1B, electrode e1 for an example). Therefore, we

define the attentional modulation index (AMI) of neural sites

as follows:
+ corrðSpk2attend;Spk2aloneÞ� corrðSpk2attend;Spk1aloneÞ
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Figure 3. Attentional Modulation of Neural

Sites

(A) The anatomical distribution of the AMI.

(B) The distribution of AMI in HG (green) and STG

(orange) compared with a null distribution of the

AMI (gray line). A significant AMI was defined as 3

times the standard deviation of the null distribution

(3s). Significantly more sites in STG (60%) than in

HG (0.06%) are modulated by attention.

(C) The AMI of each site in HG compared with its

distance from posterior HG. The positive correlation

(r = 0.4, p < 0.001) demonstrates a gradient of

attentional modulation emanating from this area.

(D) The response latency of the responses in HG

(green) and STG (orange; mean ± SE) with respect

to the attended (solid) and unattended (dashed)

speakers. These plots were obtained by averaging

the STRFs across frequency to obtain the temporal

response profile for each site. This result demon-

strates that STG sites respond later than do HG

sites and shows greater suppression of the unat-

tended speaker.
where SpkX refers to the response to speaker X either in the

single-talker condition (alone) or when they are attended in

the multi-talker condition (attend).

Larger AMI values indicate more attentional modulation of a

neural site. Figure 3A displays the AMI across all neural sites

that showed a significant response to speech. Figure 3B com-

pares the AMI between HG, STG, and a null distribution obtained

by randomly shuffling the trial order (gray line; STAR Methods).

Figure 3B shows that a higher number of sites in STG are modu-

lated by attention than those in HG, with 34 out of 56 sites in STG

possessing an AMI significantly above chance (3s; STAR

Methods) compared with only 4 out of 67 sites in HG. This result

shows that the representation in STG is more dynamic than that

in HG and that the attentional state of the listener changes the

representation in STG more than in HG. Notably, the population

of HG sites as a whole had a distribution of AMI significantly

above that of the null distribution (unpaired t test; p < 0.001), sug-

gesting a weak but significant effect of attention in HG. In addi-

tion, Figure 3C shows a linear increase in the AMI with increasing

distance from posterior HG (MNI coordinates: x = 35, y = �30

and z = 18; r = 0.4, p < 0.001). This finding reveals a gradient

of attentional modulation from posterior HG toward STG. Fig-

ure 3D shows the latency of the responses in HG and STG

(mean ± SE) with respect to the attended (solid) and unattended

(dashed) speakers. These response latencies were obtained by

averaging the STRFs across frequency to obtain the temporal

response profile for each site. This finding shows that STG re-

sponds later than HG and further illustrates the greater suppres-

sion of the unattended speaker in STG.

To examine the relationship between the speaker selectivity of

sites and their degree of attentional modulation, we calculated

the joint distribution of the SSI and AMI (Figure 4A), comparing

STG (orange) and HG (green). Figure 4B displays the AMI and
SSI across all neural sites that showed a significant response to

speech. These plots illustrate a fundamental difference between

the organization of the neural responses in HG and STG where

HG is relatively static and respondspreferentially to speaker differ-

ences, whereas STG favorably represents the attended speaker.
Emergence of Auditory Objects: The Neural
Representation of Masked versus Unmasked Acoustic
Features
Motivated by the clear difference between the organization of re-

sponses to multi-talker speech in HG and STG (Figure 4), we

further examined the similarity of the neural responses to

speakers from the single to multi-talker conditions. The speech

signal varies across both time and frequency; therefore, the

spectrotemporal features of an attended speaker variably over-

laps with interfering speakers (Figure 1B). Here, we examined

how the variable overlap between attended and unattended

speakers affected the neural responses in HG and STG.

The overlap between two competing speakers is easy to quan-

tify in the time-frequency domain (i.e., the spectrogram); how-

ever, the neurons in auditory cortex can have complex and often

nonlinear tuning properties, making it difficult to assess the de-

gree of overlap between the features to which they are tuned.

To circumvent this problem, we developed amodel-independent

method to evaluate neural responses as a function of the relative

energy of both speakers with respect to the feature to which a

neural site is tuned. To accomplish this goal, we superimposed

the magnitude of the responses in the multi-talker condition

onto the joint distribution of the responses to Spk1 and Spk2

alone. Figure 5A shows an example STG electrode. The top

panel shows the responses in the S-T condition to Spk1 (blue)

and Spk2 (red). The bottom panel shows the responses in the

M-T condition when Spk1 is attended (top) or when Spk2 is
Neuron 104, 1195–1209, December 18, 2019 1199



A B Figure 4. Speaker-Selectivity Index versus

Attention-Modulation Index (AMI)

(A) The joint distribution of the AMI (x axis) and SSI

(y axis) in HG (green) and STG (orange). This distri-

bution further illustrates that HG shows the small

effect of attention and a large amount of speaker

selectivity. Conversely, STG exhibits a large effect

of attention and little speaker selectivity.

(B) The anatomical distribution of the SSI (cyan) and

AMI (magenta). These plots illustrate a fundamental

difference between the nature of the representation

in HG and STG where HG provides a feature-rich,

relatively static representation of the speakers,

whereas STG filters out the unwanted source and

selectively represents the attended speaker.
attended (bottom). The color in these cases represents the

amplitude of the response. Three time points are denoted (a, b,

and c). The top-right panel shows the 2D histogram of the joint

distribution of the responses to Spk1 (x axis) and Spk2 (y axis)

in the S-T condition. The 3 time points (a, b, and c) are marked.

In the bottom-right panel, the response amplitude of the M-T

condition is superimposed on the S-T histogram (from above).

The color corresponds to the response amplitude in the M-T

condition. This calculation is performed separately for each

attention condition (A1: attend Spk1, and A2: attend Spk2). For

this example STG electrode, the representation rotates 90 de-

grees when the attended speaker changes. This change can

be summarized by adding A1 to the transpose of A2 to obtain

a single matrix that shows the magnitude of the multi-talker

response with respect to the attended and unattended speakers

(Figure 5B). The rows of this matrix show the response to the at-

tended speaker as the magnitude of the unattended speaker

varies (changing colors). This finding reveals that this site re-

sponds as a linear function of the attended speaker. However,

there is an effect of energetic masking at the extrema when the

magnitude of the unattended speaker is very large relative to

the attended speaker (dark lines, left of figure). Alternatively,

the columns of the matrix show that this site is almost unaffected

by the magnitude of the unattended speaker except when the

magnitude of the attended speaker is very small (light colored

lines). To summarize the response of this electrode, we took

the average across the rows and columns (Figure 5B, next-to-

last right panel). In summary, this site responds as a linear func-

tion of the features of the attended speaker, meaning that louder

features of the attended speaker result in a larger response. At

the same time, this site is mostly unaffected by the unattended

speaker, meaning that despite the change in the overlap be-

tween the features of the unattended and attended speakers,

this change in masking is not reflected in the responses. Fig-

ure 5B (bottom panels) shows the same analyses of an example
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electrode in HG. This neural site appears to

be unaffected by attention, responding lin-

early with respect to both speakers. This

observation means that this site responds

to the acoustic feature to which it is tuned

irrespective of whether that feature be-

longs to the attended or unattended
speaker. However, we observed a slight effect of attention at

the extrema, which is further illustrated in Figure S6.

Figure 5B (right-most panel) illustrates the effect of masking

across the population of neural sites in HG and STG. This anal-

ysis reveals that (1) STG sites respond to the acoustic features

of the attended speaker and are unaffected by how much these

features are masked by the unattended speaker. (2) HG sites

respond to the features of both speakers. Although previous

studies have postulated that attention may act as a linear gain

change to enhance attended and suppress unattended

speakers, our findings show that the unattended speaker is not

simply attenuated (which would result in a linear interaction

with the attended speaker) but is nonlinearly suppressed in

STG responses. This nonlinear effect is quantified in Figure S6C

where we calculate a linear fit to each masking curve in HG and

STG (i.e., Figure 5). A linear fit performs well for attended speech

in HG (goodness of fit [GOF] = median ± STD: 0.98 ± 0.07) and

STG (GOF = 0.98 ± 0.14) and unattended speech in HG

(GOF = 0.96 ± 0.12). However, a linear fit performs poorly for un-

attended speech in STG (GOF = 0.63 ± 0.28). The linear response

of HG sites to the degree of masking indicates the acoustic na-

ture of the representation in this region with no evidence for

feature grouping. Nonetheless, the nonlinear suppression of

masking in STG responses indicates that the speaker features

are grouped and represented as a coherent auditory object in

this area.

Separability of Speakers in the Population Activity of HG
We have demonstrated an acoustic and linear representation of

mixed speakers in HG with relatively small attentional modula-

tion effects. Primary auditory cortex, however, is several synap-

ses away from the auditory periphery. Hence, the speech signal

must go through a series of transformations before it gets to the

primary auditory cortex (Webster and Fay, 2013). To shed light

on the encoding properties of the population responses in HG
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Figure 5. The Representation of Auditory Objects in HG and STG

The magnitude of the responses in the multi-talker (M-T) condition are superimposed onto the joint distribution of the responses to Spk1 and Spk2 in the single-

talker (S-T) condition.

(A) For an example STG electrode, the top panel shows the responses in the S-T condition to Spk1 (blue) and Spk2 (red). The bottompanel shows the responses in

theM-T condition when Spk1 is attended (top) or when Spk2 is attended (bottom). The color in these cases represents the magnitude of the response. Three time

points are denoted (a, b, and c). The top-right panel shows the 2D histogram of the joint distribution of the responses to Spk1 (x axis) and Spk2 (y axis) in the S-T

condition. The 3 time points (a, b, and c) and marked. In the bottom-right panel, the response magnitude of the M-T condition is superimposed on the S-T

histogram (from above). The color corresponds to the response magnitude in the M-T condition. This calculation is performed separately for each attention

condition (A1: attend Spk1, and A2: attend Spk2), illustrating a large effect of attention as the representation rotates 90 degrees.

(B) Summarizing the responses by adding A1 to the transpose of A2. The rows of this matrix show the response to the attended speaker as the magnitude of the

unattended speaker varies (changing colors), and the columns show the response to the unattended speaker as the magnitude of the attended speaker varies.

This finding reveals that this site responds as a linear function of the attended speaker and is almost unaffected by the magnitude of the unattended speaker.

Taking the average across the rows and columns allows for a summary of this response type (right panel). The bottom panels show the same analysis for an

example electrode in HG. This finding reveals that this neural site appears to be unaffected by attention, responding linearly with respect to both speakers. The

right-most panels show the average summary plots across the population of neural sites in HG and STG. This analysis reveals that (1) STG sites respond to

the acoustic features of the attended speaker and are unaffected by how much these features overlap by the unattended speaker, providing evidence for the

grouping of features of the attended speaker. (2) HG sites respond to the features of both speakers with no evidence of a coherent response to attended speaker

features.
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Figure 6. Speakers Are Linearly Separable in HG

(A) Training linear decoders to extract either speaker from the representation of the mixture in HG. Top panel: the spectrogram of the mixture (displayed as the

superposition of Spk1 and Spk2). Linear decoders can reconstruct either Spk1 (middle) or Spk2 (bottom) from the neural responses in HG to the mixture.

(B) Scatterplot of the amplitude of all time-frequency (TF) bins when reconstructing Spk1 (x axis) versus reconstructing Spk2 (y axis). The dots are colored

according to the dominant speaker in the corresponding T-F bin.

(C) Irrespective of the actual attended speaker, both speakers can be extracted from the representation of themixture in HG. Left panel: decoders were trained on

the attended speaker and tested when that speaker was either attended or ignored (see x labels). Right panel: decoders were trained on the ignored (unattended)

speaker and testedwhen that speaker was either attended or ignored (see x labels). Light gray bars indicate the correlation (mean ± STD) with the trained speaker,

and dark gray bars indicate the correlation with the untrained speaker. In all cases, the reconstruction has a significantly higher correlation (p < 0.001) with the

trained speaker than with the untrained speaker.

(D) The SSI for each electrode in HG (green dots) is plotted against the average weight that the decoders learn to apply to themwhen the decoders are taskedwith

extracting Spk1 (left panel) or Spk2 (right panel). The decoders learn to enhance/suppress the electrodes that are selective for Spk1/Spk2 depending on the

speaker to be extracted.
to mixed speech, we tested how the population of neural re-

sponses in HG can support speaker separation. We used a rudi-

mentary linear decoder to measure how well the clean speaker

spectrograms can be extracted from the HG responses to the

mixed speech. To do so, we used a method known as stimulus

reconstruction, which finds a linear mapping (decoder) between

a stimulus (spectrogram) and corresponding evoked neural re-

sponses (Akbari et al., 2019; Mesgarani et al., 2009b).

We used the stimulus reconstruction method to decode the

representation of Spk1 and Spk2 from HG responses to the

mixture, as shown in Figure 6A. The top figure shows the acous-

tic mixture (for visualization purposes, Spk1 [blue] is superim-

posed on Spk2 [red]). The middle and bottom panels show

example reconstructed spectrograms from the neural responses

to mixed speech in HG when the decoders were trained to map

the neural responses to the clean spectrograms of Spk1 (middle

panel) or Spk2 (bottom panel; Figure S4A). The high correlation

between the actual and reconstructed spectrograms for Spk1
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(0.64, p < 0.001) and Spk2 (0.65, p < 0.001) shows that the

speakers are highly separable in the population activity of HG.

Although the high reconstruction accuracy shows faithful de-

coding of the spectrotemporal features of each speaker, it

does not specify which time-frequency components are more

decodable. Figure 6B shows a scatterplot of the reconstructed

spectrograms of the same mixture sound from the reconstruc-

tion decoder trained on Spk1 (x axis) plotted against the recon-

struction decoder trained on Spk2 (y axis). Each dot represents a

time-frequency bin of the reconstructed spectrogram and is

colored according to the relative magnitude of the speakers in

that bin in the original acoustic mixture. Blue dots correspond

to a time-frequency bin in which the magnitude of Spk1 was

greater than that of Spk2 and vice versa (STAR Methods; Fig-

ure S4B). The separability of red and blue dots in Figure 6B

shows that the linear model can correctly pull out the time-fre-

quency bins of Spk1 and Spk2. This observation further supports

the notion that HG responses give rise to a representation of the



mixture in which the acoustic features of each speaker become

readily decodable.

The previous analyses showed a diverse and explicit represen-

tation of the speakers at individual HG sites and that the speakers

are separable at the population level. To relate the local and pop-

ulation encoding properties in HG, we examinedwhether the neu-

ral sites that are highly tuned to the acoustic features of each

speaker are responsible for successfully reconstructing the indi-

vidual speakers from the mixture. Since a linear decoder is a

spatiotemporal filter that applies a weight to each electrode at a

specified number of time lags, we can gain insights into how a

decoder learns to separate the speakers by examining these

weights. Figure 6D displays the weight applied to each electrode

plotted against the SSI for that electrode (to obtain a single weight

for each electrode, we averaged the weights across frequency

and time, as well as across attention conditions). As shown, the

decoders learn to place larger weights on the speaker-specific

electrodes and alternate the weights depending on the speaker

to be extracted (r = 0.7 and r = �0.78, when trained to extract

Spk1 and Spk2, respectively). This result shows the high contribu-

tion of speaker-selective sites in HG to decoding the individual

speakers from the responses to the mixture.

The successful decoding of speakers from the HG responses

to the mixture suggests that the representation of mixed speech

in HG may serve as a basis for higher auditory areas, such as

STG, in which the attended speaker can be extracted by chang-

ing the weights from the HG responses. However, for this

computation to work, the readout of a specific speaker from spe-

cific HG sites should not be affected by the attentional state.

Otherwise, the decoding schemewould also need to be updated

as the listener switches attention. To examine whether speaker

decoding accuracy depends on the attentional state, we trained

and tested linear decoders from all possible combinations of

training/testing and attention (Figure 6C). The left panel illus-

trates the decoders that were trained on the attended speaker.

The light gray bars display the correlation between the recon-

structed and actual spectrogram of the speaker on which the

decoder was trained. The dark gray bars display the correlation

between the reconstructed and actual spectrogram of the

speaker on which the decoder was not trained. The x axis is par-

titioned into instances when the trained speaker was either at-

tended or ignored during testing. Each decoder was trained on

the clean spectrogram of the attended speaker on a portion of

the data (4-fold cross-validation). This decoder was then used

to reconstruct a spectrogram from 2 different test sets when

(1) the trained speaker was attended to and (2) the trained

speaker was ignored. The right panel illustrates a similar combi-

nation of training and testing, and the only difference is that the

decoders were trained on the ignored speakers. The small

change in reconstruction accuracy as attention switches dem-

onstrates that a decoder that is trained to separate a speaker

from the mixture of responses in HG generalizes well to the con-

dition where that speaker is attended to or ignored. By training a

decoder on data when a speaker is attended but testing the

decoder on data when that speaker is ignored, we have shown

that the decoding scheme that is required to segregate a

speaker from HG responses remains unchanged, which is an

important property of the representation because it enables
the constancy of decoding the sound sources fromHG. Although

we do see a small effect of attention when decoding a speaker

from HG responses (the difference between the decoding of a

speaker in the attended/ignored condition; p < 0.001, t test),

this effect is likely caused by the small effect of attention on

HG that we showed previously (Figure 3B).

Emergent Representation of Attended Speech in STG
The exact connectivity between HG and STG is not yet fully

established in humans, yet ample evidence suggests that HG

includes the primary auditory cortex, whereas STG contains

mostly non-primarybelt andparabelt areas (Hackett, 2008;Moerel

et al., 2014). Consistent with this notion, STGsites in our study had

significantly longer response latencies thandidHGsites (Figure7A;

STARMethods). Toestimate the response latency of an electrode,

we squared its STRF, averaged across frequency, and measured

the latency as the peak magnitude of the result. In addition, the

responses in STG were significantly better predicted from the

responses in HG than vice versa (Figure 7B; unpaired t test,

p = 0.033; STAR Methods). This observation was made despite

the significantly better prediction of responses by STRFs in HG

than in STG (Figure 7B; unpaired t test, p = 0.016). These results

suggest that the STG sites in our study may bemore downstream

relative to the HG sites, which is consistent with the architectonic

studies of these regions (Clarke and Morosan, 2012).

To examine whether the representation of attended speech in

STG can be predicted from the responses in HG, we used linear

regression to estimate the responses in STG from the population

ofHGsites separately for whenSpk1or Spk2was being attended.

Figure 7C (left panel) shows the results of this analysis for an

example electrode in STG. Each green dot on the left of the figure

represents anelectrode inHG, and the orangedot on the right rep-

resents one example electrode in STG. The electrodes are plotted

according to their SSI andAMI (similar to the plot in Figure 4A). The

color of the lines connecting HG electrodes to STG electrodes in-

dicates the change in prediction weight between the 2 attention

conditions (see Figure S5A for the weights in each attention

case). As shown, the largest weight changes correspond to the

most speaker-selective sites. The correlation between the weight

change and SSI for this electrode is 0.69 (Pearson’s r). Figure 7C

(right panel) shows the change in weights for all STG sites, illus-

trating a consistent effect across the population. For all STG elec-

trodes, the correlation between the average weight change and

SSI is 0.83 (p < 0.001; Figure 7D). In addition, we found a strong

correlation between the AMI of an STG site and the change in

HGweights (r = 0.54, p < 0.001; Figure S5B). This dynamicmodu-

lation of the weights from HG suggests a possible computational

mechanism for the selective representation of the attended

speaker and the suppression of the unattended speaker in STG

(Mesgarani and Chang, 2012). That is, STG sitesmay change their

synaptic weight to increase the input from HG electrodes that are

selective for the attendedspeaker anddecrease the input fromHG

electrodes that are selective for the unattended speaker.

Our proposed computational model requires known decoding

weights for STG sites from HG. Even though we showed that

the decoding weights are highly correlated with the SSI of each

site, the SSI of each site in the multi-talker condition is not given.

To determine whether speaker decoding weights given to each
Neuron 104, 1195–1209, December 18, 2019 1203
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Figure 7. Mapping HG to STG

(A) STG (orange) responds with a longer latency than

HG (green), suggesting that STG is further down-

stream (cf. Figure 3D).

(B) The neural responses in HG and STG can be

predicted from the acoustic spectrogram (using a

STRF) or from each other. Both areas can be pre-

dicted from the stimulus (left panel), with HG having

significantly higher (p < 0.05) prediction accuracies.

However, when mapping from HG to STG (and vice

versa), HG can predict STG significantly better

than STG can predict HG (p < 0.05). Error bars

denote the mean ± SE. Data are from the single-

talker condition.

(C) Mapping HG to STG in the multi-talker condition.

Left panel: for an example electrode in STG (orange

dot), under attention, the weights from each HG

electrode (green dots) change to enhance (sup-

press) the attended (unattended) speaker. Blue (red)

lines correspond to a larger weight when Spk1

(Spk2) is attended.

(D) The average weight change for each HG elec-

trode (green dots) plotted against their corre-

sponding SSI. The positive correlation (r = 0.85)

confirms that larger weight changes are applied to

the most speaker-selective sites in HG.
electrode in HG can be determined in an unsupervised manner,

we tested a plausible mechanism known as the temporal-coher-

encemodel of streamsegregation (Shammaet al., 2011). This the-

ory posits that mixed sources can be segregated because the

various constituent components of a single source will be corre-

lated over time and uncorrelated with the components of another

source. In the case of the two speakers, the neural sites in HG that

are selective for Spk1 should be uncorrelated with those that are

selective for Spk2. Figure 8A shows the correlation between all

HG electrodes over time sorted according to their SSI (STAR

Methods). Figure 8B shows the magnitude of the sum of the first

three principle components (PCs) of this matrix, plotted against

the corresponding SSI for each electrode. The high correlation

(r = 0.87, p < 0.001) demonstrates that temporal coherence highly

predicts the speaker selectivity of neural sites. In addition, the high

correlation (r = 0.79, p < 0.001; Figure 8C) between these PCs and

corresponding HG weight changes for speakers shows that the

linear weights required to separate a particular speaker from the

mixed HG representation can be found automatically, without

needing any prior knowledge or supervision.

DISCUSSION

By leveraging invasive neural recordings from the human audi-

tory cortex, we examined the hierarchical and progressive

extraction of attended speech in a multi-talker scenario. The

high spatial and temporal resolution of our method allowed us

to determine the encoding properties of target and interfering

sources from primary (posterior HG) to nonprimary (STG) audi-

tory cortical areas and to relate the representation of mixed
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speech between these regions that leads to the enhanced en-

coding of attended speech. Specifically, based on our findings,

HG has more diverse spectrotemporal tuning properties than

does STG, which results in more selectivity for the distinct fea-

tures of individual speakers. The HG representation is also rela-

tively static, i.e., showing little effect of attention. However, the

population of responses in HG support a simple readout of the

individual speakers in the mixture. In contrast, STG is more dy-

namic and selectively encodes the acoustic features of the at-

tended speaker. Moreover, by examining the degree of acoustic

overlap between the target and interfering speakers, we found

that STG (but not HG) nonlinearly suppresses the overlapping

features of interfering sources, which results in an invariant rep-

resentation of the target speaker. Finally, we examined the rela-

tionship between the representation in HG and STG using a

linear model and successfully accounted for the formation of

the target speaker representation in STG from HG. In this model,

attention changes the weights of the input from HG to STG to

utilize the speaker-selective sites in HG to extract either speaker.

Importantly, these weights can be determined solely from the

temporal coherence of the neural activity in HG.

Our results show a stark contrast between the encoding prop-

erties of multi-talker speech in HG and STG where HG creates a

rich representation of the mixed sound, and STG invariantly rep-

resents the attended source. We showed that representation of

mixed speech in HG enables decoding of both attended and un-

attended speakers and may facilitate their extraction in down-

stream cortical areas (Puschmann et al., 2018). The neural

transformations of the acoustic signal that enable such a repre-

sentation in HG remain an open question. Previous research has



A B C Figure 8. Determining Speaker Selectivity in

the Multi-talker Condition

Given only the representation of the mixture in HG,

sites that are selective for either speaker can be

determined by obtaining the correlation structure

(temporal coherence) of the responses.

(A) The correlation between all HG sites sorted ac-

cording to their SSI.

(B) Decomposing the correlation matrix in (A) using

principal-component analysis (PCA) permits the

acquisition of a single number for each site. The large

correlation (r = 0.87) with the corresponding SSI for

each electrode demonstrates that the SSI can be

obtained from the multi-talker responses alone.

(C) Similarly, the weights from HG to STG (HGRF) in

the multi-talker condition can be determined from

the same PCA analysis (r = 0.81; cf. Figure 6D).
shown a hierarchical transformation of the acoustic signal as it

travels from the auditory nerve to primary and nonprimary audi-

tory cortical areas (Hickok and Poeppel, 2007; Rauschecker and

Scott, 2009). Specifically, neurons in the ascending auditory

pathway are tuned to increasingly more complex and multi-

featured spectrotemporal patterns (Linden et al., 2003; Miller

et al., 2001, 2002), which results in a multidimensional and joint

encoding of a multitude of acoustic dimensions in primary audi-

tory areas (Bizley et al., 2009; Mesgarani et al., 2008; Patel et al.,

2018; Walker et al., 2011). This increasingly complex tuning to

multiple acoustic features results in an explicit representation

of the spectrotemporal features of an acoustic stimulus from

which the informative aspects of that stimulus can bemore easily

decoded (Han et al., 2019; Mesgarani et al., 2008; O’Sullivan

et al., 2017; Walker et al., 2011). Consistent with our findings,

the multidimensional representation of stimuli in early auditory

areas supports the grouping of coherent acoustic dimensions

and the formation of auditory objects in higher auditory areas

where categorical and perception-driven representations of

acoustic stimuli emerge (Bidelman et al., 2013; Bizley et al.,

2013; Chang et al., 2010; Elhilali et al., 2009; Leaver and Rau-

schecker, 2010; Nourski et al., 2015, 2019; Teki et al., 2016).

The stimulus cues used by the auditory pathway to enable this

grouping are not completely clear. Computational models of

speech separation (Luo and Mesgarani, 2019; Luo et al., 2018;

Mesgarani et al., 2010) have shown the efficacy of several acous-

tic cues, including common onset and offset, spectral profile,

and harmonicity. In addition, areas in STG encode linguistic

cues (Mesgarani et al., 2014), which could be used to facilitate

segregation or the recovery of masked features (Leonard et al.,

2016), including phonotactic probability (Brodbeck et al., 2018;

Leonard et al., 2015; Di Liberto et al., 2019), syntax (Fedorenko

et al., 2016; Nelson et al., 2017), and semantics (Broderick

et al., 2018; de Heer et al., 2017; Huth et al., 2016). Future studies

that directly manipulate the linguistic structure of sentences in

multi-talker conditions are needed to investigate the extent to

which these cuesmay be used for speaker segregation in the hu-

man auditory cortex. In addition, what top-down mechanisms

drive speaker segregation in STG remains an open question.

The fronto-parietal attention network has shown to play a role,

in particular, the frontal eye fields, the temporoparietal junction,

and the intraparietal sulcus (Hill andMiller, 2010; Lee et al., 2014;
Molenberghs et al., 2007; Salmi et al., 2009). Future studies with

invasive electrodes in these areas may provide further informa-

tion on their mechanistic contribution to speaker segregation.

We found a gradient of attentional modulation from posterior

to anterior HG that continued toward the posterior STG. This

finding is consistent with the anatomical and functional organiza-

tion studies of the human auditory cortex, which suggests that

primary auditory cortex originates in posterior HG, with belt/par-

abelt regions extending to anterior HG and STG (De Martino

et al., 2015; Moerel et al., 2014; Morosan et al., 2001; Nourski,

2017; Steinschneider et al., 2014). Previous studies have found

a similar organization of attentional modulation in humans (Nour-

ski et al., 2017; Obleser et al., 2007; Petkov et al., 2004; Puvvada

and Simon, 2017; Steinschneider et al., 2014). Our choice of

focusing on the anatomical division of HG and STG, however,

is functionally imprecise, because HG is not a single functional

area and anterolateral HGmay be higher in the cortical hierarchy

than portions of STG (DeMartino et al., 2015; Moerel et al., 2014;

Nourski et al., 2017). In a similar vein, STG may also contain

further subfields (Hamilton et al., 2018). Future studies with

higher density neural recordings (Khodagholy et al., 2015) from

these areas can further tease apart the response properties

within each cortical region and provide information that is criti-

cally needed to fully describe the functional organization of hu-

man auditory cortex.

Similar to our finding of higher attentional modulation of re-

sponses in STG compared to HG, animal studies have also re-

ported substantially more enhanced responses to target stimuli

in secondary auditory areas compared to the primary auditory

cortex (Atiani et al., 2014) and subcortical areas (Slee and David,

2015). These studies, however, reported a higher attentional ef-

fects in primary areas compared to what we observed in HG.

One possible reason for this bigger effect could be the simplicity

of the stimuli used in those studies (e.g., pure tones) where the

target and interfering sounds were separable even along the to-

notopic axis at the auditory periphery. The combined evidence

suggests that the attentional modulation of the neural represen-

tation of target sound sources may occur only at a level of

representation where the tuning properties of the neurons has

enough capacity to realize sound separation. Additional experi-

ments comparing the attentional modulation of various auditory

cortical areas with tasks that systematically increase the
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spectrotemporal overlap of the target and background scene

can further shed light on this hypothesis. An alternative explana-

tion is the difference between the behavioral demands and the

ecological relevance of the stimulus used in our study compared

to animal studies (Atiani et al., 2009), which may differently re-

cruit the neural circuits of attention which varies as the task’s

reward structure changes (David et al., 2012). Since the perfor-

mance of the subjects in our task was close to ceiling, we could

not study the effect of behavioral performance on themodulation

of neural responses. However, previous studies have found cor-

relates of behavioral failure in the neural data recorded from the

human STG (Mesgarani and Chang, 2012).

We demonstrated that a linear model can successfully map

the responses in HG to those in STG, and this connection can ac-

count for the attentional modulation of STG responses from HG

in themulti-talker condition. Importantly, the required changes in

the weights of the model can be found simply from the temporal

correlation of the neural activity in HG (Krishnan et al., 2014;

O’Sullivan et al., 2015; Shamma et al., 2011; Thakur et al.,

2015). Although debates regarding the anatomical and functional

connectivity of these two regions are ongoing (Moerel et al.,

2014), recent fMRI work supports a hierarchical model of speech

processing progressing from HG to STG and beyond (de Heer

et al., 2017). In addition, intracranial recordings have shown

functional connectivity betweenHG and STG,with bottom-up in-

formation transfer observed in a similar frequency band as in our

study (higher than 40 Hz; Fontolan et al., 2014). Future research

that tests the causal relationship between these two regions, for

example, by using cortico-cortical evoked potentials (CCEPs;

Keller et al., 2014) during multi-talker speech perception, might

be particularly suitable to shed light on the information transfer

and dynamic connectivity of these areas as the attentional focus

of the subject changes. We did not find any significant differ-

ences between the two hemispheres with regards to speaker

selectivity or attentional modulation (Figure S7B), which could

be due to the lack of enough anatomical coverage. Future

studies with more extensive coverage may be able to shed light

on potential hemispheric differences in the acoustic processing

of speech (Flinker et al., 2019).

We tested the formation of auditory objects in HG and STG

by examining the responses to target features in the presence

of variable overlap with the interfering speaker (Bizley and Co-

hen, 2013; Shamma, 2008; Shinn-Cunningham, 2008). We

found that HG sites respond to the total sum of spectrotempo-

ral energy in the acoustic signal irrespective of whether the

energy belongs to the target or interfering speaker. This obser-

vation confirms that HG does not represent segregated and

grouped spectrotemporal features of target sound sources;

hence, the attended auditory objects are not yet formed in

this region. However, STG showed nonlinear suppression of

the acoustic overlap with the interfering source, resulting in

an invariant representation of the attended features that is un-

affected by the amount of acoustic overlap, indicating the pres-

ence of auditory objects in this region. These findings are

consistent with previous noninvasive studies that showed a

late emergence of attended speech (Ding and Simon, 2012; Po-

wer et al., 2012) in only higher auditory regions (Petkov et al.,

2004). However, the high temporal and spatial resolution of
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our recording method allowed us to further determine the en-

coding properties of target and interfering sound sources in

these areas.

By examining the representational and encoding properties

of speech in primary and nonprimary auditory areas, our study

takes a major step toward determining the neural computa-

tions underlying multi-talker speech perception and the

interaction between bottom-up and top-down signal transfor-

mations that occur in the auditory pathway that gives rise to

a segregated and grouped representation of attended auditory

objects.
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STAR+METHODS
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Nima

Mesgarani (nima@ee.columbia.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
Eight subjects who were undergoing clinical treatment for epilepsy participated in this study. All subjects gave their written informed

consent to participate in research. Five subjects were located at North Shore University Hospital (NSUH), and 3 subjects were located

at Columbia University Medical Center (CUMC). All research protocols were approved and monitored by the institutional review

board at the Feinstein Institute for Medical Research and Columbia University Medical Center (CUMC) and informed written consent

to participate in research studies was obtained from each subject before implantation of electrodes. Two subjects were implanted

with high density subdural electrode arrays over the left (language dominant) temporal lobe with coverage of STG, and one of those

subjects also had a depth electrode implanted in the left auditory cortex with coverage of HG. The remaining 6 subjects had depth

electrodes implanted bilaterally, with varying amounts of coverage over the left and right auditory cortices for each subject

(Figure 1A).

Stimuli and Experiments
Each subject participated in the following experiments for this study: a single-talker and multi-talker experiment. The single-talker

experiment was used as a control. Each subject listened to 4 stories read by a male speaker and female speaker (hereafter referred

to as Spk1 and Spk2, respectively) for a total of 8 stories (4 stories twice). Each story lasted approximately 3.5 minutes. Both Spk1

and Spk2 were native American English speakers and were recorded in house. The average F0 of Spk1 and Spk2 was 65Hz and

175Hz, respectively. The stories were intermittently paused, and the subject was instructed to repeat the last sentence to ensure

the attentional engagement of each subject. For the multi-talker experiment, subjects were presented with a mixture of the same

female and male speakers (Spk1 and Spk2), with no spatial separation between them. The acoustic waveform of each speaker

was matched to have the same root mean squared (RMS) intensity. All stimuli were presented using a single Bose� SoundLink�

Mini 2 speaker situated directly in front of the subject. The sound level was adjusted for each subject to be at a comfortable level.

Themulti-talker experiment was divided into 4 blocks. Before each block, the subject was instructed to focus their attention on one

speaker and to ignore the other. All subjects began the experiment by attending to the male speaker and switched their attention to

the alternate speaker on each subsequent block. The story was intermittently paused, and the subjects were asked to repeat the last

sentence of the attended speaker to ensure that the subjects were engaged in the task. The stories were paused on average every

20 s (min 9 s, max 30 s). The locations of the pauses were predetermined and were the same for all subjects, but the subjects were

unaware of when the pauses would occur. In total, there were 11 minutes and 37 s of audio presented to each subject during the

multi-talker experiment. The single-talker experiment lasted twice as long as each subject was required to listen to each story

read by each speaker independently.

METHOD DETAILS

Data Preprocessing and Hardware
The subjects at NSUH were recorded using Tucker Davis Technologies (TDT�) hardware and sampled at 2441 Hz. One subject at

CUMC was recorded using Xltek� hardware and sampled at 500 Hz, and the other 2 subjects at CUMC were recorded using Black-

rock� hardware and sampled at 3 kHz. All further processing stepswere performed offline. All filters were designed usingMATLAB’s�

Filter Design Toolbox and were used in both forward and backward directions to remove phase distortion. The TDT and Blackrock

data were resampled to 500 Hz. A 1st-order Butterworth high-pass filter with a cut-off frequency at 1 Hz was used to remove DC drift.

Data were subsequently re-referenced using a local scheme whereby each electrode was referenced relative to its nearest neigh-

bors. Line noise at 60 Hz and its harmonics (up to 240 Hz) were removed using 2nd order IIR notch filters with a bandwidth of

1 Hz. A period of silence lasting 1 minute was recorded before the single-talker and multi-talker experiments, and the corresponding

data were normalized by subtracting the mean and dividing by the standard deviation of this pre-stimulus period.

Then, data were filtered into the high-gamma band (70-150 Hz); the envelope of this band is modulated by speech. To obtain the

envelope of this broad band, we first filtered the data into 8 frequency bands between 70 and 150 Hz, eachwith a bandwidth of 10 Hz,

using Chebyshev Type 2 filters. Then, the envelope of each band was obtained by taking the absolute value of the Hilbert transform.

We took the average of all 8 frequency bands as the final envelope. This method is commonly used in neuroscience research(Bou-

chard et al., 2013). Electrodes were tested for speech responsiveness by calculating the effect size (Cohen’s D) between the
e1 Neuron 104, 1195–1209.e1–e3, December 18, 2019
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distributions of the responses during speech and silence (instantaneous envelope of the high gamma band at each time point). Elec-

trodes with an effect size greater than 0.2 (considered a small but significant effect size) were retained for further analysis.

Acoustic Spectrum of Speakers
The spectrograms were first z-scored and then filtered using the NSL toolbox(Chi et al., 2005), specifically using the static cortical

representation (aud2cors) to obtain the average acoustic spectrum of each speaker. This process provided a more defined repre-

sentation of the harmonic structure of both speakers. The spectrograms were sampled at 100Hz, and split into 50 frequency bands

logarithmically spaced between 50Hz and 8kHz.

STRFs and Stimulus Reconstruction
STRFs and stimulus reconstruction decoders were calculated using custom code to implement ridge regression. K-fold cross-vali-

dation was used to select a ridge parameter that would optimally predict neural data in the case of a STRF or optimally reconstruct

spectrograms in the case of stimulus reconstruction. To estimate the response latency of an electrode, we took the peak magnitude

of its STRF after averaging across frequency. For reconstruction, we used only electrodes in HG whose AMI was less than the

threshold previously established for statistical significance (i.e., AMI < 0.15). Only 4 electrodes were rejected using this criterion.

Predicting Speaker Selectivity and Attentional Modulation
Before predicting the SSI of each site, we removed the temporal dimension of their STRFs by obtaining their 1st PC in the spectral

dimension. Therefore, we will abbreviate these STRFs to SRFs. Next, we used ridge regression to find a set of weights that would

predict the SSI for each site using its SRF (see Figure S1). Ten-fold cross-validation was used to optimize the ridge parameter.

Mapping HG to STG
Mappings between HG and STG were calculated in the same manner as the STRFs (i.e., k-fold ridge regression). However, only

causal time lags were used (0-400 ms). In addition, only STG electrodes from the two subjects with high density grids were used.

This requirement was used to prevent predictions with spuriously large correlations with the actual data due to shared noise between

contacts on the same electrode arrays. That is, we used data from the depth electrodes to predict the data on the grid electrodes.

Temporal Coherence
Because every retainedHG electrode responded significantly to the presence of speech, this introduced spuriously large correlations

across all electrodes. To remove this confound and focus more on what was discriminative between electrodes, we subtracted the

first PC from the neural responses. Then, we found the correlation between all HG electrodes to obtain a 2D pairwise correlation ma-

trix. To relate this 2Dmatrix to the 1D array of speaker-selectivity indices, we performed PCA on thismatrix. The correlations between

speaker selectivity and the first 3 PCs are 0.76, 0.3 and 0.35. The correlation in the results section (Figure 8B) is between speaker

selectivity and the sum of the first 3 PCs. The matrix shown (Figure 8A) is the projection of the first 3 PCs onto the 2D pairwise cor-

relation matrix.

Transformation of Electrode Locations onto an Average Brain
The electrodes were first mapped onto the brain of each subject using co-registration by iELVis (Groppe et al., 2017) followed by their

identification on the post-implantation CT scan using BioImage Suite(Papademetris et al., 2006). To obtain the anatomical location

labels of these electrodes, we used Freesurfer’s automated cortical parcellation(Dykstra et al., 2012; Fischl et al., 1999, 2004) by the

Destrieux brain atlas(Destrieux et al., 2010). These labels were closely inspected by the neurosurgeons using the subject’s co-regis-

tered post-implant MRI. We plotted the electrodes on the average Freesurfer brain template.

QUANTIFICATION AND STATISTICAL ANALYSIS

Speaker-Selectivity Index (SSI)
The SSI was calculated as the effect size (Cohen’s D) of the difference in the magnitude of the responses to each speaker in the sin-

gle-talker condition. Figure 2A shows histograms of the responses to Spk1 and Spk2 in the single-talker condition for 2 example elec-

trodes. The responses were normalized by concatenating the responses to each speaker together, and then z-scoring them. This

ensured that any difference in response magnitude to either speaker would be maintained in the normalized representation.

Attentional Modulation Index (AMI)
A chance level for the AMI was obtained by randomly shuffling the temporal order of the neural data and calculating the AMI per elec-

trode as follows:

AMI= corrðSpk1attend;Spk1aloneÞ--corrðSpk1attend;Spk2aloneÞ+
corrðSpk2attend;Spk2aloneÞ � corrðSpk2attend;Spk1aloneÞ
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Where SpkX refers to the response to speaker X either in the single-talker condition (alone) or when they are attended in the multi-

talker condition (attend).

This calculation resulted in a null distribution of the AMI. As expected, the chance level of the AMI was zero (mean of the null dis-

tribution). To determine what could be considered an AMI significantly above chance, we used three times the standard deviation of

the null distribution, which corresponds to an AMI of 0.15. Figure S3 shows a linear correlation between speech responsiveness

(effect size: speech versus silence) and AMI in STG (r = 0.71, p < 0.001) but not in HG (r = 0). This result was observed probably

because our measure of attention is based on the correlation between the multi- and single-talker responses and is affected by

the signal-to-noise ratio (SNR) of the recording at each electrode.

DATA AND CODE AVAILABILITY

There are restrictions to the availability of dataset due to the protection of human subjects who participated in this study. The data

that support the findings of this study are available upon request from the corresponding author [NM]. The codes for pre-processing

the ECoG signals and calculating the high-gamma envelope are available at http://naplab.ee.columbia.edu/naplib.html (Khalighine-

jad et al., 2017).
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