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During speech perception, linguistic elements such as consonants and vowels are extracted from
a complex acoustic speech signal. The superior temporal gyrus (STG) participates in high-order
auditory processing of speech, but how it encodes phonetic information is poorly understood. We used
high-density direct cortical surface recordings in humans while they listened to natural, continuous
speech to reveal the STG representation of the entire English phonetic inventory. At single electrodes,
we found response selectivity to distinct phonetic features. Encoding of acoustic properties was
mediated by a distributed population response. Phonetic features could be directly related to tuning for
spectrotemporal acoustic cues, some of which were encoded in a nonlinear fashion or by integration of
multiple cues. These findings demonstrate the acoustic-phonetic representation of speech in human STG.

Phonemes—and the distinctive features com-
posing them—are hypothesized to be the
smallest contrastive units that change aword’s

meaning (e.g., /b/ and /d/ as in bad versus dad)
(1). The superior temporal gyrus (Brodmann area
22, STG) has a key role in acoustic-phonetic pro-
cessing because it responds to speech over other
sounds (2) and focal electrical stimulation there
selectively interrupts speech discrimination (3).
These findings raise fundamental questions about
the representation of speech sounds, such as
whether local neural encoding is specific for pho-
nemes, acoustic-phonetic features, or low-level

spectrotemporal parameters. A major challenge
in addressing this in natural speech is that cor-
tical processing of individual speech sounds is
extraordinarily spatially discrete and rapid (4–7).

We recorded direct cortical activity from six
human participants implanted with high-density
multielectrode arrays as part of their clinical eval-
uation for epilepsy surgery (8). These recordings
provide simultaneous high spatial and temporal
resolutionwhile sampling population neural activ-
ity from temporal lobe auditory speech cortex.
We analyzed high gamma (75 to 150 Hz) cortical
surface field potentials (9, 10), which correlate
with neuronal spiking (11, 12).

Participants listened to natural speech sam-
ples featuring a wide range of American English
speakers (500 sentences spoken by 400 people)
(13). Most speech-responsive sites were found in
posterior andmiddle STG (Fig. 1A, 37 to 102 sites
per participant, comparing speech versus silence,
P < 0.01, t test). Neural responses demonstrated a
distributed spatiotemporal pattern evoked during
listening (Fig. 1, B and C, and figs. S1 and S2).

We segmented the sentences into time-aligned
sequences of phonemes to investigate whether
STG sites show preferential responses. We esti-
mated the mean neural response at each electrode
to every phoneme and found distinct selectiv-
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Fig. 1. Human STG cortical selectivity to speech sounds. (A) Magnetic
resonance image surface reconstruction of one participant’s cerebrum. Elec-
trodes (red) are plotted with opacity signifying the t test value when com-
paring responses to silence and speech (P < 0.01, t test). (B) Example

sentence and its acoustic waveform, spectrogram, and phonetic transcription.
(C) Neural responses evoked by the sentence at selected electrodes. z score
indicates normalized response. (D) Average responses at five example electrodes
to all English phonemes and their PSI vectors.

28 FEBRUARY 2014 VOL 343 SCIENCE www.sciencemag.org1006

REPORTS



ity. For example, electrode e1 (Fig. 1D) showed
large evoked responses to plosive phonemes /p/,
/t /, /k/, /b/, /d/, and /g/. Electrode e2 showed
selective responses to sibilant fricatives: /s/, /ʃ/,
and /z/. The next two electrodes showed selec-
tive responses to subsets of vowels: low-back
(electrode e3, e.g., /a/ and /aʊ/), high-front vowels
and glides (electrode e4, e.g., /i/ and /j/). Last,
neural activity recorded at electrode e5 was se-
lective for nasals (/n/, /m/, and /ŋ/).

To quantify selectivity at single electrodes, we
derived a metric indicating the number of pho-
nemes with cortical responses statistically dis-
tinguishable from the response to a particular
phoneme. The phoneme selectivity index (PSI)

is a dimension of 33 English phonemes; PSI = 0
is nonselective and PSI = 32 is extremely selec-
tive (Wilcox rank-sum test, P < 0.01, Fig. 1D;
methods shown in fig. S3). We determined an
optimal analysis time window of 50 ms, centered
150 ms after the phoneme onset by using a pho-
neme separability analysis (f-statistic, fig. S4A).
The average PSI over all phonemes summarizes
an electrode’s overall selectivity. The average PSI
was highly correlated to a site’s response mag-
nitude to speech over silence (r = 0.77,P < 0.001,
t test; fig. S5A) and the degree to which the
response could be predicted with a linear spec-
trotemporal receptive field [STRF, r = 0.88, P <
0.001, t test; fig. S5B (14)]. Therefore, the ma-

jority of speech-responsive sites in STG are se-
lective to specific phoneme groups.

To investigate the organization of selectivity
across the neural population, we constructed an
array containing PSI vectors for electrodes across
all participants (Fig. 2A). In this array, each column
corresponds to a single electrode, and each row
corresponds to a single phoneme. Most STG elec-
trodes are selective not to individual but to specif-
ic groups of phonemes. To determine selectivity
patterns across electrodes and phonemes, we
used unsupervised hierarchical clustering analy-
ses. Clustering across rows revealed groupings of
phonemes on the basis of similarity of PSI values
in the population response (Fig. 2B). Clustering

Fig. 2. Hierarchical clustering of single-electrode and population
responses. (A) PSI vectors of selective electrodes across all participants. Rows
correspond to phonemes, and columns correspond to electrodes. (B) Cluster-
ing across population PSIs (rows). (C) Clustering across single electrodes (col-
umns). (D) Alternative PSI vectors using rows now corresponding to phonetic

features, not phonemes. (E) Weighted average STRFs of main electrode clus-
ters. (F) Average acoustic spectrograms for phonemes in each population clus-
ter. Correlation between average STRFs and average spectrograms: r = 0.67,
P <0.01, t test. (r=0.50, 0.78, 0.55, 0.86, 0.86, and 0.47 for plosives, fricatives,
vowels, and nasals, respectively; P < 0.01, t test).

www.sciencemag.org SCIENCE VOL 343 28 FEBRUARY 2014 1007

REPORTS



across columns revealed single electrodes with
similar PSI patterns (Fig. 2C). These two analy-
ses revealed complementary local- and global-
level organizational selectivity patterns. We also
replotted the array by using 14 phonetic features
defined in linguistics to contrast distinctive artic-
ulatory and acoustic properties (Fig. 2D; phoneme-
feature mapping provided in fig. S7) (1, 15).

The first tier of the single-electrode hierarchy
analysis (Fig. 2C) divides STG sites into two dis-
tinct groups: obstruent- and sonorant-selective elec-
trodes. The obstruent-selective group is divided
into two subgroups: plosive and fricative elec-
trodes (similar to electrodes e1 and e2 in Fig. 1D)
(16). Among plosive electrodes (blue), somewere
responsive to all plosives, whereas others were
selective to place of articulation (dorsal /g/ and /k/
versus coronal /d/ and /t/ versus labial /p/ and /b/,
labeled in Fig. 2D) and voicing (separating voiced
/b/, /d/, and /g/ from unvoiced /p/, /t/, and /k/;
labeled voiced in Fig. 2D). Fricative-selective
electrodes (purple) showed weak, overlapping se-
lectivity to coronal plosives (/d/ and /t/). Sonorant-
selective cortical sites, in contrast, were partitioned
into four partially overlapping groups: low-back
vowels (red), low-front vowels (orange), high-front
vowels (green), and nasals (magenta) (labeled in
Fig. 2D, similar to e3 to e5 in Fig. 1D).

Both clustering schemes (Fig. 2, B and C) re-
vealed similar phoneme grouping based on shared
phonetic features, suggesting that a substantial por-
tion of the population-based organization can be
accounted for by local tuning to features at sin-
gle electrodes (similarity of average PSI values
for the local and population subgroups of both
clustering analyses is shown in fig. S8; overall
r = 0.73, P < 0.001). Furthermore, selectivity is
organized primarily by manner of articulation dis-
tinctions and secondarily by place of articulation,
corresponding to the degree and the location of
constriction in the vocal tract, respectively (16).
This systematic organization of speech sounds is
consistent with auditory perceptual models posit-
ing that distinctions are most affected by manner
contrasts (17, 18) compared with other feature
hierarchies (articulatory or gestural theories) (19).

We next determined what spectrotemporal
tuning properties accounted for phonetic feature
selectivity. We first determined the weighted av-
erage STRFs of the six main electrode clusters
identified above, weighting them proportional-
ly by their degree of selectivity (average PSI). These
STRFs showwell-defined spectrotemporal tuning
(Fig. 2E) highly similar to average acoustic spec-
trograms of phonemes in corresponding popula-
tion clusters (Fig. 2F; average correlation = 0.67,
P < 0.01, t test). For example, the first STRF in
Fig. 2E shows tuning for broadband excitation
followed by inhibition, similar to the acoustic spec-
trogram of plosives. The second STRF is tuned to
a high frequency, which is a defining feature of
sibilant fricatives. STRFs of vowel electrodes show
tuning for characteristic formants that define low-
back, low-front, and high-front vowels. Last, STRF
of nasal-selective electrodes is tuned primarily to
low acoustic frequencies generated from heavy
voicing and damping of higher frequencies (16).
The average spectrogram analysis requires a priori
phonemic segmentation of speech but is model-
independent. The STRF analysis assumes a linear
relationship between spectrograms and neural re-
sponses but is estimated without segmentation.
Despite these differing assumptions, the strong
match between these confirms that phonetic fea-
ture selectivity results from tuning to signature
spectrotemporal cues.

We have thus far focused on local feature se-
lectivity to discrete phonetic feature categories.
We next wanted to address the encoding of con-
tinuous acoustic parameters that specify phonemes
within vowel, plosive, and fricative groups. For
vowels, we measured fundamental (F0) and for-
mant (F1 to F4) frequencies (16). The first two
formants (F1 and F2) play amajor perceptual role
in distinguishing different English vowels (16),
despite tremendous variability within and across
vowels (Fig. 3A) (20). The optimal projection of
vowels in formant space was the difference of F2
and F1 (first principal component, dashed line,
Fig. 3A), which is consistent with vowel percep-
tual studies (21, 22). By using partial correlation
analysis, we quantified the relationship between

electrode response amplitudes and F0 to F4. On
average, we observed no correlation between the
sensitivity of an electrode to F0 with its sensi-
tivity to F1 or F2. However, sensitivity to F1 and
F2 was negatively correlated across all vowel-
selective sites (Fig. 3B; r = –0.49,P < 0.01, t test),
meaning that single STG sites show an integrated
response to both F1 and F2. Furthermore, elec-
trodes selective to low-back and high-front vowels
(labeled in Fig. 2D) showed an opposite differen-
tial tuning to formants, thereby maximizing vowel
discriminability in the neural domain. This com-
plex sound encodingmatches the optimal projection
in Fig. 3A, suggesting a specialized higher-order
encoding of acoustic formant parameters (23, 24)
and contrasts with studies of speech sounds in non-
human species (25, 26).

To examine population representation of vowel
parameters, we used linear regression to decode
F0 to F4 from neural responses. To ensure un-
biased estimation, we first removed correlations
between F0 to F4 by using linear prediction and
decoded the residuals. Relatively high decoding
accuracies are shown in Fig. 3C (P < 0.001, t test),
suggesting fundamental and formant variability
is well represented in population STG responses
(interaction between decoder weights with elec-
trode STRFs shown in fig. S9). By using multi-
dimensional scaling, we found that the relational
organization between vowel centroids in the acous-
tic domain is well preserved in neural space (Fig.
3D; r = 0.88, P < 0.001).

For plosives, we measured three perceptually
important acoustic cues (fig. S10): voice-onset
time (VOT), which distinguishes voiced (/b/, /d/,
and /g/) from unvoiced plosives (/p/, /t/, and /k/);
spectral peak (differentiating labials /p/ and /b/
versus coronal /t/ and /d/ versus dorsal /k/ and /g/);
and F2 of the following vowel (16). These acous-
tic parameters could be decoded from population
STG responses (Fig. 4A; P < 0.001, t test). VOTs
in particular are temporal cues that are perceived
categorically, which suggests a nonlinear encod-
ing (27). Figure 4B shows neural responses for
three example electrodes plotted for all plosive
instances (total of 1200), aligned to their release

Fig. 3. Neural encoding of vowels. (A) Formant frequencies, F1 and F2, for
English vowels (F2-F1, dashed line, first principal component). (B) F1 and F2
partial correlations for each electrode’s response (**P < 0.01, t test). Dots (elec-

trodes) are color-coded by their cluster membership. (C) Neural population de-
coding of fundamental and formant frequencies. Error bars indicate SEM. (D)
Multidimensional scaling (MDS) of acoustic and neural space (***P<0.001, t test).
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time and sorted by VOT. The first electrode re-
sponds to all plosives with same approximate
latency and amplitude, irrespective of VOT. The
second electrode responds only to plosive pho-
nemes with short VOT (voiced), and the third
electrode responds primarily to plosives with long
VOT (unvoiced).

To examine the nonlinear relationship between
VOT and response amplitude for voiced-plosive
electrodes (labeled voiced in Fig. 2D) compared
with plosive electrodes with no sensitivity to
voicing feature (labeled coronal, labial and dorsal
in Fig. 2D), we fitted a linear and exponential
function to VOT-response pairs (fig. S11B). The
difference between these two fits specifies the
nonlinearity of this transformation, shown for all
plosive electrodes in Fig. 4C. Voiced-plosive elec-
trodes (pink) all show strong nonlinear bias for
short VOTs compared with all other plosive elec-
trodes (gray).We quantified the degree and direc-
tion of this nonlinear bias for these two groups
of plosive electrodes by measuring the average
second-derivative of the curves in Fig. 4C. This
measure maps electrodes with nonlinear prefer-
ence for short VOTs (e.g., electrode e2 in Fig. 4B)
to negative values and electrodes with nonlinear
preference for long VOTs (e.g., electrode e3 in
Fig. 4B) to positive values. The distribution of this
measure for voiced-plosive electrodes (Fig. 4D,
red distribution) shows significantly greater non-
linear bias compared with the remaining plosive
electrodes (Fig. 4D, gray distribution) (P < 0.001,
Wilcox rank-sum test). This suggests a special-
ized mechanism for spatially distributed, non-
linear rate encoding of VOT and contrasts with
previously described temporal encoding mecha-
nisms (26, 28).

We performed a similar analysis for fricatives,
measuring duration, which aids the distinction be-
tween voiced (/z/ and /v/) and unvoiced fricatives
(/s/, /ʃ/, /q/, /f/); spectral peak, which differentiates
/f/ and /v/ versus coronal /s/ and /z/ versus dorsal /ʃ/;
and F2 of the following vowel (16) (fig. S12).
These parameters can be decoded reliably from
population responses (Fig. 4A; P < 0.001, t test).

Because plosives and fricatives can be sub-
specified by using similar acoustic parameters, we
determined whether the response of electrodes to
these parameters depends on their phonetic cate-
gory (i.e., fricative or plosive). We compared the
partial correlation values of neural responses with
spectral peak, duration, and F2 onset of fricative
and plosive phonemes (Fig. 4E), where each point
corresponds to an electrode color-coded by its clus-
ter grouping in Fig. 2D. High correlation values
(r = 0.70, 0.87, and 0.79; P < 0.001; t test) sug-
gest that electrodes respond to these acoustic pa-
rameters independent of their phonetic context.
The similarity of responses to these isolated acous-
tic parameters suggests that electrode selectivity
to a specific phonetic features (shownwith colors
in Fig. 4E) emerges from combined tuning to mul-
tiple acoustic parameters that define phonetic con-
trasts (24, 25).

We have characterized the STG representation
of the entire American English phonetic inventory.
We used direct cortical recordingswith high spatial
and temporal resolution to determine how selec-
tivity for phonetic features is correlated to acous-
tic spectrotemporal receptive field properties in
STG. We found evidence for both spatially local
and distributed selectivity to perceptually relevant
aspects of speech sounds, which together appear to
give rise to our internal representation of a phoneme.

We found selectivity for some higher-order
acoustic parameters, such as examples of non-
linear, spatial encoding of VOT, which could have
important implications for the categorical repre-
sentation of this temporal cue. Furthermore, we
observed a joint differential encoding of F1 and
F2 at single cortical sites, suggesting evidence of
spectral integration previously speculated in theo-
ries of combination-sensitive neurons for vowels
(23–25, 29).

Our results are consistent with previous single-
unit recordings in human STG, which have not
demonstrated invariant, local selectivity to single
phonemes (30, 31). Instead, our findings suggest
a multidimensional feature space for encoding the
acoustic parameters of speech sounds (25). Pho-
netic features defined by distinct acoustic cues for
manner of articulation were the strongest determi-
nants of selectivity, whereas place-of-articulation
cues were less discriminable. This might explain
some patterns of perceptual confusability between
phonemes (32) and is consistent with feature hi-
erarchies organized around acoustic cues (17),
where phoneme similarity space in STG is driven
more by auditory-acoustic properties than articula-
tory ones (33). A featural representation has greater
universality across languages, minimizes the need
for precise unit boundaries, and can account for
coarticulation and temporal overlap over phoneme-
based models for speech perception (17).
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Fibrolamellar hepatocellular carcinoma (FL-HCC) is a rare liver tumor affecting adolescents and
young adults with no history of primary liver disease or cirrhosis. We identified a chimeric
transcript that is expressed in FL-HCC but not in adjacent normal liver and that arises as the
result of a ~400-kilobase deletion on chromosome 19. The chimeric RNA is predicted to code
for a protein containing the amino-terminal domain of DNAJB1, a homolog of the molecular
chaperone DNAJ, fused in frame with PRKACA, the catalytic domain of protein kinase A.
Immunoprecipitation and Western blot analyses confirmed that the chimeric protein is expressed
in tumor tissue, and a cell culture assay indicated that it retains kinase activity. Evidence
supporting the presence of the DNAJB1-PRKACA chimeric transcript in 100% of the FL-HCCs
examined (15/15) suggests that this genetic alteration contributes to tumor pathogenesis.

Fibrolamellar hepatocellular carcinoma
(FL-HCC) is a rare liver tumor that was
first described in 1956 and that historically

has been considered a variant of hepatocellular
carcinoma (1, 2). It is histologically characterized
by well-differentiated neoplastic hepatocytes and

thick fibrous bands in a noncirrhotic background
(3, 4). FL-HCC has a clinical phenotype distinct
from conventional hepatocellular carcinoma and
usually occurs in adolescents and young adults.
Patients have normal levels of alpha fetoprotein
without underlying liver disease or history of vi-
ral hepatitis (3–6). Little is known of its mo-
lecular pathogenesis. FL-HCC tumors do not
respond well to chemotherapy (7, 8), and surgical
resection remains the mainstay of therapy, with
overall survival reported to be 30 to 45% at
5 years (1, 6, 8, 9).

To investigate the molecular basis of FL-HCC,
we performed whole-transcriptome and whole-
genome sequencing of paired tumor and adjacent
normal liver samples. To determine whether there
were tumor-specific fusion transcripts among the
coding RNA, we ran the program FusionCatcher

(10) on RNA sequencing (RNA-Seq) data from
29 samples, including primary tumors, metastases,
recurrences, and matched normal tissue samples,
derived from a total of 11 patients (table S1).
There was only one recurrent candidate chimeric
transcript detected in every tumor sample. This
candidate transcript is predicted to result from
the in-frame fusion of exon 1 from the DNAJB1
gene, which encodes a member of the heat
shock 40 protein family, with exons 2 to 10 from
PRKACA, the gene encoding the adenosine 3′,5′-
monophosphate (cAMP)–dependent protein ki-
naseA (PKA) catalytic subunit alpha. This fusion
transcript was not detected in any of the available
paired normal tissue samples (n = 9). This fusion
is not found in the COSMIC database (11) and
has not previously been reported in the literature.

To further characterize the candidate fusion
transcript, we directly examined those RNA-Seq
reads that mapped to PRKACA andDNAJB1. We
examined PRKACA transcript levels with DESeq2
(12) and found that they were increased relative
to normal in tumors from all nine patients tested
[P value adjusted formultiple testing (pAdj) < 10−12,
range three- to eightfold]. To determine whether
the increased expression was attributable to a
specific isoformof PRKACA,we quantified reads
mapping to different exons and evaluated differ-
ential expression using DEXSeq (13). In all nine
patients, there was an increase in the expression
of exons 2 to 10 of PRKACA in the tumor rela-
tive to exon 1 and relative to the expression in nor-
mal tissue (Fig. 1A, left). This exon expression
pattern does not correspond to a known isoform
of PRKACA. Rather, it reflects an increase in
PRKACA transcripts lacking the first exon, which
encodes the domain that engages the regulatory
subunits of PKA. All reads mapping to PRKACA
in normal tissue were either contained within
exons or bridged the junctions between adjacent
exons at annotated splicing sites (Fig. 1B, left,
blue). All tumor samples additionally had reads
mapping from the start of the second exon of
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