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1. Introduction

Magnetoencephalography (MEG) measures magnetic fields
produced by brain activity using sensors placed outside the skull.
The fields to be measured are extremely small, and they compete
with strong fields from environmental noise sources (electric
power lines, vehicles, etc.), sensor noise, and unwanted physiolog-
ical sources (muscle activity, heart, eyeblinks, background brain
activity, etc.).

Many methods have been proposed to combat noise (see
Hämäläinen et al., 1993; Cutmore and James, 1999; Croft and Barry,
2000; Vrba, 2000; Volegov et al., 2004; Rong and Contreras-Vidal,
2006 for reviews). We recently proposed two new methods to tar-
get environmental noise (de Cheveigné and Simon, 2007) and sensor
noise (de Cheveigné and Simon, 2008). In this paper, we present
a third method that deals with biological noise that those previous
methods did not address. The method involves spatial filtering, that
is, replacing the recorded data by a set of linear combinations such
that sources of interest are preserved and unwanted components

∗ Corresponding author at: Equipe Audition, ENS, 29 rue d’Ulm, F-75230 Paris,
France. Tel.: +33 1 44322672.

E-mail address: Alain.de.Cheveigne@ens.fr (A. de Cheveigné).
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oving unwanted components of biological origin from neurophysiologi-
encephalography (MEG), electroencephalography (EEG), or multichannel
recordings. A spatial filter is designed to partition recorded activity into
-unrelated components, based on a criterion of stimulus-evoked repro-
e not reproducible are projected out to obtain clean data. In experiments
activity, typically about 80% of noise power is removed with minimal dis-
. Signal-to-noise ratios of better than 0 dB (50% reproducible power) may
reproducible spatial component. The spatial filters are synthesized using
od known as denoising source separation (DSS) that allows the measure
evoked power) to guide the source separation. That method is of greater
ising beyond the classical stimulus-evoked response paradigm.

© 2008 Elsevier B.V. All rights reserved.
are suppressed. Spatial filtering is involved in many MEG or EEG
signal analysis techniques, such as beamforming or independent
component analysis (ICA). We cast the problem in terms of denois-
ing and offer a rational and flexible method for synthesizing the
appropriate spatial filters.

Denoising involves a partition of the data into desirable com-
ponents (signal) and undesirable components (noise). This is
conceptually easier than the more ambitious task of analyzing the
data into individual sources, such as performed, for example, by
ICA. Separating the data into two parts requires milder assump-
tions than a complete analysis of all sources present. Validation
is easier than for more general techniques, and the tools require
less expertise and pose less risk of misuse by inexperienced prac-
titioners. Denoised data have the same format as raw data, so that
standard analysis tools may be applied to them, the only difference
with raw data being better sensitivity and reduced risk that results
are affected by noise.

In spatial filtering, each output channel s̃k′ (t) is the weighted
sum of input channels:

s̃k′ (t) =
K∑

k=1

akk′ sk(t) (1)
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where t is time, S(t) = [s1(t), . . . , sK (t)]T represents the K channels
of raw data, S̃(t) = [s̃1(t), . . . , s̃K ′ (t)]T the filtered data, and A = [akk′ ]
is the filtering matrix. Spatial filtering can be described in matrix
format as:

S̃(t) = AS(t). (2)

Spatial filtering subsumes a wide range of operations. The sim-
plest is to select an individual sensor channel (all akk′ = 0 except
one), as in classic descriptions of EEG data using standardized elec-
trode nomenclature, or a group of channels known to be sensitive
to the phenomenon of interest (all akk′ = 0 except for k within
the group) (e.g. Poeppel et al., 1996). More complex spatial fil-
tering techniques are signal space projection (SSP) (Uusitalo and
Ilmoniemi, 1997), signal space separation (SSS) (Taulu et al., 2005),
spatiotemporal signal space separation (tSSS) (Taulu and Simola,
2006), beamforming (Sekihara et al., 2001, 2006), principal com-
ponent analysis (PCA) (e.g. Kayser and Tenke, 2003), independent
component analysis (ICA) (e.g. Makeig et al., 1996; Vigário et al.,
1998), the surface laplacian (e.g. Bradshaw and Wikswo, 2001),
and other linear processing schemes (Parra et al., 2003; James and
Gibson, 2003; Barbati et al., 2004; Cichocki, 2004; Tang et al., 2004;
Delorme and Makeig, 2004; Nagarajan et al., 2006; Gruber et al.,
2006). The spatial filter (or set of filters) enhances activity of interest
and/or suppresses unwanted activity. Spatial filtering takes advan-
tage of the spatial redundancy of high-density MEG or EEG systems,
and is complementary with temporal filtering which takes advan-
tage of the spectral structure of target and/or noise.

Our method belongs to the spatial filtering family. To synthesize
the filter we rely on a recently-proposed method for semi-blind
source separation known as denoising source separation (DSS)
(Särelä and Valpola, 2005). In DSS, the K-channel sensor data are
first spatially whitened by applying PCA and normalized to obtain
a dataset with spherical symmetry, i.e. with no privileged direc-
tion of variance in K-dimensional space. The whitened data are
then submitted to a bias function (which Särelä and Valpola, 2005
call “denoising function”) followed by a second PCA that deter-
mines orientations that maximize the bias function. This second
PCA produces a transformation matrix that is finally applied to
the whitened (but not biased) data. The result of DSS analysis is
a set of components ordered in terms of decreasing susceptibility
to bias. Throughout this paper, the bias function is chosen to be the
proportion of epoch-averaged (evoked) activity. However, other bias
functions may be used and the DSS method is of wider applicability

than described here.

Our focus here is denoising rather than data analysis. The
method that we propose is intended to complement, by use as a
denoising preprocessor, other techniques for brain source analysis
and source modeling.

2. Methods

2.1. Signal model

Sensor signals S(t) = [s1(t), . . . , sK (t)]T include interesting “tar-
get” activity and uninteresting “noise” activity:

S(t) = SB(t) + SN(t). (3)

The first term results from the superposition of sources of inter-
est B(t) = [b1(t), . . . , bJ(t)]T within the brain:

SB(t) = ABB(t) (4)

where AB is a mixing matrix. The second term results from the
superposition of various noise sources N(t) = [n1(t), . . . , nJ′ (t)]T in
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the environment, sensors, and subject’s body:

SN(t) = ANN(t) (5)

where AN is a second mixing matrix. Our aim is to attenuate SN(t)
and thereby improve our observation of SB(t). We suppose that
environmental and sensor noise sources (power line and machin-
ery) have already been suppressed (de Cheveigné and Simon, 2007,
2008), and so we are dealing mainly with physiological noise
sources within the subject’s body and brain, such as heart activity,
eye-blinks, and “uninteresting” ongoing brain activity. The distinc-
tion between interesting and non-interesting obviously depends
on the experiment or application. Here, we focus on stimulus-
driven responses, for which “interesting” is defined as activity
reproducibly triggered by presentation of a stimulus.

A typical stimulus-response experiment may include M distinct
stimulus conditions, each involving Nm repetition of that stimu-
lus. During the experiment, stimuli of all conditions are typically
pooled and presented in random order, while magnetic fields are
recorded continuously from K sensors around the subject’s brain.
Sensor data S(t) are then temporally divided into peristimulus seg-
ments (epochs) and the trials grouped by condition, forming a set
of M three-dimensional matrices {Sm(t)}, each with dimensions Nm

(trials), K (number of channels) and T (duration of an epoch in
samples).

2.2. Bias function

Our operational definition of “interesting” is implemented as a
bias function usable by DSS. As we are interested in evoked activity,
we will define bias as the function F that to data {Sm(t)} asso-
ciates the set {S̄m

(t)} of averages over epochs, one average for each
condition:

F[{Sm(t)}] =
{

1
Nm

Nm∑
n=1

Smn(t)

}
(6)

where Smn(t) designates epoch n of condition m. Stimulus-evoked
activity is reinforced by averaging whereas stimulus-unrelated
activity and noise are not, so the norm of F[{Sm(t)}] is greater for
evoked activity than for noise.
2.3. Algorithm

The following steps are performed:

1. Each data channel is normalized (divided by its norm).
. Data are submitted to a PCA and components with negligible

power are discarded.
. The time series corresponding to the remaining L principal com-

ponents are normalized to obtain a set of orthonormal, “spatially
whitened”, vectors.

. The bias function defined in Eq. (6) is applied to these data, and
the biased data are submitted to a second PCA.

. The rotation matrix produced by the second PCA is applied to the
whitened data from step 3.

. The set of L time series produced by steps 1–5, ordered by
decreasing bias score, is partitioned into “signal” components,
which are retained, and “noise” components, which are dis-
carded.

7. Signal components are projected back into sensor space to obtain
“clean” MEG data.
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The combined effect of these steps can be recapitulated in
matrix format:

S̃(t) = PQR2N2R1N1S(t) (7)

where N1 represents the initial normalization, R1 the first PCA rota-
tion , N2 the second normalization (whitening), R2 the second PCA
rotation matrix, Q the criterion-based selector, and P is the projec-
tion matrix back to sensor space. The initial normalization is not
critical: its aim is to give equal weight to each sensor regardless
of its gain. In step 2, components with power below some arbi-
trary (non-critical) threshold are discarded to save computation
and avoid numerical problems. The selection criterion of step 6
(number of components retained) constitutes the single important
parameter of the method. It can be set directly, or determined indi-
rectly, for example, based on a threshold applied to the bias score.
The algorithm produces a set of components that are (a) mutually
orthogonal, and (b) ordered by decreasing evoked-to-total power
ratio.

Eq. (7) defines a spatial filter in sensor space: each sensor chan-
nel is modified by adding a weighted sum of other channels. The
filter may be applied to the recorded data, and the filtered data then
averaged over trials to produce evoked responses that are more
reproducible and less noisy than those obtained by simple averag-
ing (see below). Alternatively, once the filter has been designed (a
process that requires multiple trials) it can be applied to enhance
the quality of single trial data, but this lies outside the main focus of
the present paper. A more intuitive explanation of why the method
is effective is given in Section 4.

2.4. Implementation

The algorithm was implemented in Matlab. The implementa-
tion involves standard matrix operations, but several issues are
worth discussing. (1) In experiments that involve multiple con-
ditions, processing must be applied uniformly to all conditions,
so as to avoid introducing differences that might masquerade as
experimental effects. The matrices of Eq. (7) are calculated from
pooled data from all conditions, and then applied to each condition
individually. This complicates the implementation, and multiple
processing passes may be required if the data are too large to fit in
memory. (2) It is important to prevent outliers and artifacts from
dominating the solution (the solution depends on sums of squares

that are easily dominated by high-amplitude values). Outliers are
detected automatically in several steps. First, sensor channels with
consistently large or constant values are flagged as bad. Second,
samples with absolute values larger than a threshold (e.g. 2000 fT),
or that exceed the average power for that channel by a second
threshold (e.g. 1000%), are marked as outliers. If a sample is marked
as outlier in one channel, all channels are similarly marked, and
their values at that time are ignored (given zero weight) in all calcu-
lations (averages, PCA, projection matrices, etc.). Third, trials with
power relative to the mean greater than a threshold (e.g. 1.4) are
marked as outlier trials and likewise ignored in all calculations.
Thresholds are not critical: the goal is to exclude severe outliers
while retaining a sufficient proportion of data (e.g. >80%) to con-
strain the solution. Although outlier data are excluded from the
denoising matrix calculations, they may be denoised together with
the non-outlier data so that no data are lost. (4) In steps involving
PCA, it is useful to ignore components with relative power below
a threshold (e.g. 10−6), to save computation and avoid numerical
problems. Taking these considerations into account, calculation of
the filter matrix takes approximately real time on a personal com-
puter for MEG data sampled at 500 Hz.
science Methods 171 (2008) 331–339 333

2.5. MEG data

MEG data used to illustrate the algorithm were acquired from a
160-channel, whole-head MEG system, with 157 axial gradiome-
ters sensitive to brain sources, and 3 magnetometers sensitive
to distant environmental sources (KIT, Kanazawa, Japan, Kado et
al., 1999). Subject and system were placed within a magnetically
shielded room. Data were filtered in hardware with a combination
of highpass (1 Hz), notch (60 Hz) and antialiasing lowpass (200 Hz)
filters before acquisition at a rate of 500 Hz. Acquired data were
then filtered in software by convolution with a square window of
size 16.67 ms to attenuate higher frequency components and sup-
press 60 Hz and harmonics. Remaining environmental noise was
suppressed using the TSPCA algorithm (de Cheveigné and Simon,
2007), and sensor noise was suppressed by the SNS algorithms (de
Cheveigné and Simon, 2008). These pre-denoised data were used
as a baseline to evaluate the amount of additional noise reduction
offered by the present method.

The MEG data were borrowed from an auditory MEG study
(Chait et al., in preparation). They were recorded in response to pre-
sentations of a 200-ms noise burst randomly interspersed between
tonal stimuli. Subjects performed a task on the tonal stimuli, but
no task was associated with the noise bursts. The MEG signal was
divided into epochs spanning from −400 to +600 ms relative to the
noise onset. The denoising matrix was calculated based on the−200
to +400 ms interval. Data shown are from one subject. There were
229 stimulus presentations, but the results presented here are from
a subset of 100 trials.

2.6. Evaluation statistics

The effect of denoising is quantified in terms of power of the data
or of individual components or groups of components (before ver-
sus after denoising), and variance across stimulus repetitions. For
the average over trials (evoked response) for which we have only
one observation, variability is calculated using bootstrap resam-
pling (Efron and Tibshirani, 1993).

3. Results

Fig. 1(a) shows the percentage of power carried by each DSS
component before (black) and after (red) averaging. In both cases,
the values are normalized to add up to 100%. For the raw signal

(black) all components have roughly the same order of magni-
tude, but for the evoked signal (red) the low-order components
carry most of the power. Fig. 1(b) shows the percentage of power
that would be retained if the component series were truncated
beyond a given component before (red) and after (black) averag-
ing. Evoked power asymptotes rapidly at close to 100%, whereas
total power increases much more slowly. For example, if the series
were truncated beyond the 10th component (dotted line), 96% of
evoked power would be retained, but only about 13% of power in
the original, unaveraged signal. Fig. 1(c) shows the percentage of
evoked power carried by each component (blue), or by all compo-
nents up to a given rank (green). The first component by itself is
about 60% reproducible (the part of the response that is the same
in each trial amounts to 60% of the power). If more components are
retained, their collective reproducibility is less (about 20% for 10
components).

It is clear from these plots that the algorithm has succeeded to
decompose the data into a first small set of components that are
highly reproducible (stimulus-driven), and a second larger set that
are less so. Denoising proceeds by discarding the second set and
projecting the first back to sensor space, to obtain “clean” data.
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Fig. 1. (a) Power carried by each DSS component, expressed as a percentage of the
total power over components. Black: Raw data, red: average over trials (evoked
power). (b) Power over subsets of components as a function of the rank of the last
component (cumulative power). (c) Ratio between evoked power (reproducible over
trials) and total power for each component (blue) or for all components up to a given
rank (green). The vertical dotted line separates components retained as signal (see
text) and those discarded as noise. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of the article.)

Fig. 1(b) (red) suggests that very little is lost in the process, in
terms of power of the evoked response pattern. In other words,
if we were concerned that the denoising operation might have
eliminated some important component together with the noise,
we can be reassured that that subtle component accounted for at
most 6% of the evoked pattern (for 10 components retained). The
choice of cutoff involves a tradeoff: a more stringent value (more
components rejected) suppresses more noise power at the risk of
distorting the evoked response. This requires a decision on behalf

of the researcher, but we note that there is a wide range of “safe”
values with both substantial noise reduction and negligible distor-
tion of evoked activity (Fig. 1b). One could argue that, if denoising
does not change the response pattern it cannot offer much benefit.
We address this question below.

A common way to summarize the time course of the evoked
MEG response is to plot the root-mean-square (RMS) over chan-
nels and trials. Fig 2(a) shows the RMS evoked response calculated
from our data before (red) and after (blue) denoising. The typical
“M100” response occurring approximately 100 ms from the onset
of an acoustic stimulus is visible in both plots. However, the back-
ground level is lower and the peak is more salient for the denoised
data. The gray bands represent ± 2 standard deviations of the boot-
strap resampling over trials, and give an idea of the reliability of
the RMS response (i.e. to what degree it might differ if calculated
over a different set of trials). The denoised response is much more
reliable. For this plot, the RMS before denoising was calculated, as
is common, from the 10 “best” channels in terms of reproducibil-
ity, whereas the RMS of the denoised data was calculated from all
channels (but only the 10 best DSS components were retained).
Fig. 2. Effect of denoising on MEG responses to repeated auditory stimuli (200 ms
noise bursts). (a) RMS over channels and trials before (red) and after (blue) denoising.
Gray bands indicate ± 2 standard deviations of the bootstrap-resampled mean. (b)
Time course of best (most reproducible) component averaged over trials. The gray

band (hardly visible) indicates ± 2 standard deviations of the bootstrap-resampled
mean. (c) Time-course of the first 20 components averaged over trials, coded as
colour. Each component was normalized and then multiplied by the square root of its
power. (d) Map of time intervals for which each component differs from zero by more
than four times the standard deviation of the bootstrap-resampled mean. Intervals
for which this plot is white are unlikely to represent stimulus-evoked activity, as are
intervals that precede stimulus onset. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of the article.)

If the goal is to summarize the evoked response by a single
function of time, an alternative to RMS is to use the first DSS
component. It can be understood as the best (most reproducibly
stimulus-driven) linear combination of channels, and as such it is
a reasonable candidate for a summary statistic. This component is
plotted in Fig. 2(b). The gray band (hardly visible) indicates ± 2
standard deviations of the bootstrap resampling: this response is
extremely reliable.

Fig. 2(c) plots the time courses of the first 20 components. Each
is weighted by the square root of its share of total power (hence
the differences in salience). The first few components (1–9) appear
to be silent before the stimulus onset, consistent with their inter-
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Fig. 3. Topography of magnetic field (left), signal-to-noise ratio (center), and filter c

pretation as stimulus-evoked. Subsequent components (10–20) are
more active before stimulus onset, suggesting that the spatial fil-
ters associated with these components are not effective to isolate
stimulus-driven activity. Fig. 2(d) indicates (in black) which por-
tions of the previous plot were in absolute value greater than four
times the standard deviation of the bootstrap. Components beyond
the 10th tend to have fewer such samples, consistent with the
notion that they are not reliably stimulus driven, justifying the
choice of 10 as a cutoff for denoising.

The left column of Fig. 3 shows the field distribution associated
with each of the first three components. These were calculated from
rows of the pseudoinverse of the denoising matrix (equivalently, the
field map for a component can be calculated by cross-correlating its
time series with each of the sensor waveforms). The field map for
the first component has a characteristic “auditory” shape (a dipole
over each auditory cortex). Those for subsequent components are
less easily interpreted (see below). The second column shows a map

of the estimated signal-to-noise ratio of each component (power
ratio between that component and all other components combined,
both signal and noise). The rightmost column shows the coefficients
of the spatial filters associated with each component. The remark-
able differences between filter maps (right) and field maps (left) is
discussed below

We stress that no claim is made that each individual compo-
nent corresponds to a meaningful source within the brain. What
can be said with some confidence is that, collectively, the compo-
nents retained carry most of the power of the repeatable activity,
probably all that can be extracted based on spatial filtering. Analy-
sis into meaningful physiological sources requires further analysis
(using ICA, beamforming, source models, etc.). That analysis should
be greatly facilitated as a result of denoising because it does
not need to model large noise components. Note that the num-
ber of components retained at the denoising stage sets an upper
limit on the dimensionality of the data, i.e. the number of distinct
sources that can be analyzed. More sources may exist within the
brain, but the data cannot resolve them (to resolve more sources
might require more sensors and/or less noise) (Ahonen et al.,
1993).
ients (right) for the three components with greatest evoked-to-total power ratio.

The first component might reasonably be attributed to a particu-
lar source if, as here, it accounts for a large proportion of the evoked
power. Averaged over trials, the time course of this component (the
most reproducible linear combination of sensors) is a good candi-
date for a statistic to summarize concisely the time course of the
multichannel stimulus-evoked response. In this role it is competi-
tive with commonly used quantities such as the RMS, or the time
course of a particular sensor.

To summarize, our new denoising method suppresses sources
of activity that do not contribute consistently to evoked responses.
Removing those components allows a more reliable observation
of the stimulus-evoked brain activity. The new method use-
fully complements the panoply of tools available to reduce noise
(Hämäläinen et al., 1993; Vrba, 2000; Baillet et al., 2001; de
Cheveigné and Simon, 2007, 2008). As the method produces clean
data in sensor space, it should be easy to combine with standard
methods of brain response analysis and modeling.
3.1. Comparison with other denoising techniques.

Our method may be compared to other spatial filtering tech-
niques. Fig. 4 plots the ratio between the power of the evoked
response averaged over 100 trials, and the variance of this power
(estimated by bootstrap with 200 iterations) for several common
techniques applied to our dataset.

The simplest form is the time-honored practice of selecting one
sensor channel with best SNR (e.g. Sharbrough et al., 1991). Sup-
posing that we are interested in the brain activity that gives rise
to the most reproducible spatial component (Fig. 3, top), the SNR
plot in that figure suggests that we should select a sensor located in
the right temporal region. However, the value of SNR at that sensor
(about −17 dB) is much smaller than the estimated SNR of compo-
nent 1 (about 1.5 dB). Other drawbacks of channel selection are that
it requires expert intervention, the observations reflect multiple
brain sources in unknown proportions, and it does not take advan-
tage of the redundancy of multiple sensors. The power/variance
ratio of the best channel is shown in Fig. 4 (column A).
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Fig. 4. Ratio of evoked response power to variance of evoked response (based on
200 repetitions of a bootstrap resampling), for various noise reduction schemes.
(A) Selection of single channel with best SNR. (B) Average of 20 channels with best
SNR. (C) Matched filter (coefficients as in figure, top, left). (D) Matched filter with
coefficients weighted by SNR. (E) First PCA component. (F) Best PCA component
(greatest evoked-to-total power ratio). (G) Best ICA component (RUNICA). (H) Best
ICA component (AMUSE). (I) Our method.

Selecting a group of sensor channels (e.g. Poeppel et al., 1996)
hopefully improves SNR by drawing data from multiple sensors,
for example, 10 per hemisphere in an auditory experiment. The
selected channels may be summarized by their root-mean-square
(RMS) field. RMS is a robust statistic, relatively insensitive to sensor
placement and independent of any particular model, but it discards
information about polarity, and it is potentially sensitive to baseline
shifts such as induced by spectral or spatial filtering. Here, to ease
comparison with other methods, we instead averaged over chan-
nels (flipping the polarity of any channel negatively correlated with
the mean). The power/variance ratio is shown in Fig. 4 (column B).

A different approach is to design a spatial filter based on the
topography of a component of interest (for example, measured at
some time when competing components are less active). This is
the idea behind signal space projection (Uusitalo and Ilmoniemi,
1997). Drawbacks are (a) the choice of spatial filter requires expert
intervention, (b) the filter is component-specific and thus does
not address the case of multicomponent responses. Surprisingly
the outcome (Fig. 4, column C) is no better than the best-channel
approach, presumably because the activity pattern extends over
regions of rather low SNR (Fig. 3, column 2). Weighting the compo-

nent topography by its SNR (product of columns 1 and 2 of Fig. 3)
provides some improvement (Fig. 4, column D).

PCA produces a set of components that are mutually orthog-
onal (uncorrelated), ordered by decreasing power. It can be used
for denoising on the assumption that low-order components (with
strong power) represent activity of interest and higher order com-
ponents noise. Denoising then involves discarding PCs beyond a
certain rank. Obviously this assumption may fail, particularly when
the SNR is unfavorable (Fig. 4, column E). A different way of apply-
ing PCA, closer to the spirit of our algorithm, is to suppose that
principal components map to distinct brain sources. A measure of
evoked-to-total power ratio is applied to each PC, and PCs with poor
scores are discarded. Unfortunately PCs often do not map to indi-
vidual sources, and indeed results are disappointing (Fig. 4, column
F).

In contrast to PCA, ICA produces components that are statisti-
cally independent rather than uncorrelated. ICs are usually held to
be more likely than PCs to correspond to distinct brain sources, on
the assumption that distinct sources in the brain follow unrelated
time courses. The name “ICA” actually covers a range of distinct
algorithms. Certain algorithms can give different results at each
science Methods 171 (2008) 331–339

run (not a serious problem as long as the algorithm distinguishes
useful activity from noise). After ICA, ICs with small evoked-to-total
power ratio may be discarded. Fig. 4 (columns G and H) show results
for algorithms ‘RUNICA’ and ‘AMUSE’ as implemented in EEGLAB
(Delorme and Makeig, 2004). Scores are better than for PCA but not
as good as our method (column I).

Our method is related to ICA. Indeed, Särelä and Valpola
(2005) claim that most ICA techniques can be understood (or
implemented) as special cases of DSS. Equivalently DSS may be
understood as a reformulation of earlier techniques (Green et al.,
1988; Parra and Sajda, 2003; Särelä, 2004). In our opinion, the
appeal of our method over ICA is that (a) separation is guided by the
measure of interest (here evoked-to-total power ratio) rather than
a general measure of statistical independence, (b) components are
ordered according to this measure, and as a result selecting signal
and/or noise components is straightforward. The method is also
relatively fast. The multiplicity of different “ICA” methods, the fact
that some are non-deterministic (the outcome depends on a ran-
domized initialization), and the fact that ICs are not ordered makes
ICA a difficult tool to use.

Our method does not compete with approaches that it can
be combined with, such as spectral filtering and averaging over
trials. To summarize, our method is competitive with other
noise-suppression methods that involve spatial filtering, and com-
plementary with other standard techniques such as averaging over
trials.

3.2. Testing with other data

So far the algorithm has been tested with data from a num-
ber of MEG and EEG systems, and also with data from intrinsic
optical imaging of auditory cortex. In each case, it greatly reduced
non-reproducible activity, leading to clearer estimates of stimulus
evoked activity (not shown).

4. Discussion

The method reduces noise effectively in stimulus-evoked
response paradigms.

4.1. How it works

A formal description was given in Section 2, here we give a more

intuitive account. Two things need explaining. The first is how our
spatial filter is more effective than simple schemes such as channel
selection or a matched filter. A plausible matched filter might be
shaped as one of the field maps in column 1 of Fig. 3. The filter that
we use is shaped instead as in column 3. Comparing it to the first,
an intriguing feature is that the filter comprises non-zero coeffi-
cients in regions that appear to lack activity for that component.
The explanation is that those excentric coefficients are needed to
observe noise components that contaminate sensors close to the
source of interest (here auditory cortex), so as to subtract them.
Those observations may themselves be noisy, requiring subtrac-
tion of additional components from other regions, and so on. The
filter thus samples activity from all over cortex, cancelling out most
of it in a delicate “balancing act” in order to get the best possible
estimate of the source of interest. The method resembles in this
beamforming (e.g. Sekihara et al., 2001), that also cancels unwanted
sources in a data-dependent manner. This explains the widespread
distribution of filter coefficients.

The second thing that needs explaining is how this filter is deter-
mined automatically from the data. The reader is referred to Särelä
and Valpola (2005), and references therein, for a clear detailed
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explanation of how DSS works. In brief, the initial PCA and normal-
ization transform the multichannel MEG data into a set of points in
signal space that is spherical, that is, free to rotate in any direction.
The bias function (average over trials) has the effect of distorting
this set so that it is no longer spherical, increasing the variance
in directions of greater bias, and reducing it in directions of lesser
bias. The second PCA aligns these particular directions with the
axes of a new basis, the vectors of which are the DSS components.
By construction, the first component is the best linear combination
to maximize the bias. Each subsequent component is the best linear
combination orthogonal to the previous components.

4.2. Caveats and cautions

The method as described works for paradigms that focus on

evoked responses to repeated stimuli. This is the case of a large pro-
portion of studies. It would be unwise to use the evoked-response
method described here to enhance, say, induced activity, as com-
ponents that carry that activity may well have been discarded as
noise. It is possible to adjust the method to handle such a situation,
but this is outside the scope of the present paper (see below).

Powerful noise components are removed by adjusting sensor
coefficients to cancel them out and reveal the weaker signal compo-
nents. Obviously, any change to this delicate balance (for example,
head movement) could compromise the outcome. If the mismatch
occurred in one condition but not others, it could masquerade as an
experimental effect and lead to erroneous conclusions. This situa-
tion is common in experimental sciences, but given the sensitivity
of this method it is worth pointing out. Suggested precautions are
(a) examine attentively the noise components for leakage of useful
activity, (b) ensure that data collection and analysis are uniform
across conditions (did the subject move between blocks?) and (c)
check variability using the bootstrap. For example, head movement
within a block is likely to result in a much larger variance of the
mean for that block (as evaluated by bootstrap). Head movements
may conceivably be compensated by techniques such as spatiotem-

Fig. 5. Single-trial responses for component with greatest evoked-to-total power ratio. (a
green: response over one trial, red: average over all trials. (For interpretation of the refere
article.)
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poral signal space segregation (tSSS) (Medvedovsky et al., 2007;
Uutela et al., 2001).

At each step of the algorithm, solutions are found by mini-
mizing sums of squares involving data samples. These are very
sensitive to large-value outliers, for example, glitches or peaks
of noise that have escaped previous denoising stages. To avoid
the solutions being shaped by these pathological data samples,
they should be excluded from analysis. This may be done auto-
matically, but it is important to check that all major artifacts are
addressed. Things to look for are: bad channels, bad trials, tem-
porally or spatially localized outlier samples, narrow-band noise,
large-amplitude physiological events. This is important for the
quality of the outcome. Note, however, that the samples excluded
from the calculation of the denoising matrix may nevertheless be
retained when that matrix is applied to obtain denoised data.
The method involves a large number of free parameters (K2,
where K is the number of sensors), and thus it is susceptible
to over-fitting: even within a random dataset it may discover
linear combinations that yield repeatable patterns. For example,
in Fig. 2(d), some components with ranks ≥ 10 seem to show
robust activation before stimulus onset (e.g. component 11 around
−200 ms): such activation obviously cannot be stimulus-evoked.
The investigator should parry this possibility using stringent tests
and cross-validation. For example, the outcome of analysis may be
validated by including the denoising stage within the resampling
loop of a bootstrap procedure (Efron and Tibshirani, 1993).

Field maps for each component (left column of Fig. 3) are sub-
ject to spurious correlations between the component of interest
and noise components. When fitting a field map to a model (for
example, a dipole model) it may be useful to weight the map
by SNR (center column of Fig. 3). To summarize these caveats:
this method is critically dependent on several assumptions:
reproducible brain activity, stationary mixing matrix between
brain sources and sensors. If the data does not fit the model,
or if its parameters are no longer correct (e.g. head motion)
denoising may fail or produce misleading results. It is also sus-

) Raster plot of responses over successive trials. (b) Yellow: responses over all trials,
nces to colour in this figure legend, the reader is referred to the web version of the
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ceptible to overfitting: patterns revealed by denoising should be
cross-validated.

4.3. To analyze or to denoise?

Tools such as ICA are in principle capable of denoising and anal-
ysis in the same process. In contrast, we focus on the two-way
partition between noise and target. This less ambitious goal is easier
to attain than the multi-way partition involved in ICA. It is also eas-
ier to validate. Once validated, denoising schemes may be cascaded,
each step removing some aspect of the noise. For example, in this
study the methods TSPCA, SNS and the present method were cas-
caded to remove in sequence environmental, sensor and biological
noise sources, respectively. To the extent that denoising does not
distort brain activity, it may be combined with the many existing
analysis tools, while relieving them from the burden of resolv-
ing low power brain sources in the context of high power noise.
Denoising and analysis fit together neatly as modules. Denoising is
attractive as a processing step that can (with appropriate care) “do
no harm”.

4.4. Observing single trial and ongoing activity

Could the method be used to design a spatial filter to observe
single-trial or ongoing brain activity? This can be divided into two
questions: (a) does such a filter exist? and (b) how can we design it?
As visible from the leftmost data point in Fig. 1(c), about 60% of the
power of each trial response is the same as other responses, so this
component is reproducibly stimulus-driven. This is also obvious
from Fig. 5 that shows the time course of individual trial responses.
This shows that an effective filter does exist, at least for this dataset,
and if that filter had been known in advance we could have observed
each trial as it appeared, in real time. However, the filter was derived
after observation of the data. We believe that in many cases a similar
filter can be derived in advance, in a data-adaptive fashion, but proof
requires extensive testing that is beyond the scope of this paper.
The issue is of interest in the context of brain–machine interface
applications.

4.5. Beyond denoising

We intentionally limited this paper to denoising, mainly because
it is a relatively simple task that is universally useful. However,
the technique that we use for that purpose (DSS) is much more

powerful. Särelä and Valpola (2005) suggest that DSS may be used
with a wide range of bias functions, including non-linear functions
of the data. Indeed, we have found it useful to investigate other
responses such as the induced response, and to further analyze
the multidimensional denoised response into meaningful sources.
The investigation of these possibilities is beyond the scope of this
paper.

4.6. What next?

Brain activity is expected to be of high dimensionality, much
greater than the number of sensors on any typical machine. The
fact that, even after denoising, the data occupy a much smaller
space (in our example less than 10 dimensions) suggests that we are
still far from a detailed observation of brain activity. How can this
be improved? Systems with large, high-density sensor arrays are
sometimes criticized on the account that they go beyond the lim-
its imposed by the spread of fields or currents produced by brain
sources. We would argue that a major benefit of high-density arrays
is to increase the leverage of algorithms such as ours. Following
the same logic, additional sensor modalities (EEG, EOG, EMG, ECG,
Fig. 6. Estimated signal-to-noise ratio (SNR) at each step of processing. The ‘sig-
nal’ here is defined here as the trial-by-trial replication of the average over trials
of the best DSS component. The SNR after processing (rightmost data point) is cal-
culated based on bootstrap resampling. The SNR for other steps is calculated as
(signal power)/(total power − signal power). Dataset 1: The 157-channel MEG data
used to illustrate this study (100 trials). Dataset 2: Data from a 208-channel MEG
system (28 trials). Dataset 3: Data from a 440-channel MEG system (30 trials).
Dataset 4: Data from a 151-channel MEG system (89 trials). Dataset 5: Data from
a 4788-channel intrinsic optical imaging system recording from auditory cortex (10
trials).

etc.) may help by offering observations of artifacts that can then be
factored out from brain activity.

This paper concludes a series of three papers on denoising
methods. The previous two methods, TSPCA (de Cheveigné and
Simon, 2007) and SNS (de Cheveigné and Simon, 2008) addressed
environmental and sensor noise, respectively. Together, the three

methods offer a toolkit to improve the quality of electrophysio-
logical recording techniques such as MEG. To give a quantitative
idea of the benefit of each processing step, let us define arbitrarily
the “signal” as the average over trials of the first DSS component,
and measure its signal-to-noise ratio at each stage. The SNR of
the final denoised, averaged component was estimated from its
bootstrap resampling, the SNR at other stages was calculated as
(signal power)/(data power − signal power). The values are plot-
ted in Fig. 6 (thick full line) together with similar values for data
recorded from other systems. The step that provides the largest
improvement is usually the time-honored average over trials, but
each other step contributes to reduce the noise, sometimes sig-
nificantly. These values should not be taken as a norm, as noise
levels and processing benefits vary greatly between systems and
datasets.
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Hämäläinen M, Hari R, Ilmoniemi PJ, Knuutila JK, Lounasmaa OV. Magnetoen-
cephalography theory, instrumentation, and applications to noninvasive studies
of the working human brain. Rev Mod Phys 1993;65:413–97.

James CJ, Gibson OJ. Temporally constrained ICA: an application to artifact
reduction in electromagnetic brain signal analysis. IEEE Trans Biomed Eng
2003;50:1108–16.

Kado H, Higuchi M, Shimogawara M, Haruta Y, Adachi Y, Kawai J, Ogata H, Uehara
G. Magnetoencephalogram systems developed at KIT. IEEE Trans Appl Super
1999;9:4057–62.
science Methods 171 (2008) 331–339 339

Kayser J, Tenke CE. Optimizing PCA methodology for ERP component identification
and measurement: theoretical rationale and empirical evaluation. Clin Neuro-
physiol 2003;114:2307–25.

Makeig S, Bell AJ, Jung T-P, Sejnowski TJ. Independent component analysis of elec-
troencephalographic data. Adv Neural Inf Process Syst 1996;8:145–51.

Medvedovsky M, Taulu S, Bikmullina R, Paetau R. Artifact and head movement com-
pensation in MEG. Neurol Neurophysiol Neurosci 2007;4:1–10.

Nagarajan SS, Attias HT, Hild KE, Sekihara K. A graphical model for estimating
stimulus-evoked. Brain responses in noisy MEG data with large background
brain activity. Neuroimage 2006;30:400–16.

Parra LC, Sajda P. Converging evidence of linear independent components in EEG.
IEEE EMBS Conference on Neural Engineering 2003;525–8.

Poeppel D, Yellin E, Phillips C, Roberts TPL, Rowley HA, Wexler K, Marantz A. Task-
induced asymmetry of the auditory evoked M100 neuromagnetic field elicited
by speech sounds. Cogn Brain Res 1996;4:231–42.

Rong F, Contreras-Vidal JL. Magnetoencephalographic artifact identificatiion
and removal based on independent component analysis and categorization
approaches. J Neurosci Methods 2006;157:337–54.

Sharbrough F, Chatrian G-E, Lesser RP, Lüders H, Nuwer M, Picton TW. Ameri-
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