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a b s t r a c t

I present a new method for removing unwanted components from neurophysiological recordings such
as magnetoencephalography (MEG), electroencephalography (EEG), or multichannel electrophysiologi-
cal or optical recordings. A spatiotemporal filter is designed to partition recorded activity into noise and
signal components, and the latter are projected back to sensor space to obtain clean data. To obtain the
required filter, the original data waveforms are delayed by a series of time delays, and linear combina-
tions are formed based on a criterion such as reproducibility over stimulus repetitions. The time shifts
allow the algorithm to automatically synthesize multichannel finite impulse response filters, improving
denoising capabilities over static spatial filtering methods. The method is illustrated with synthetic data
and real data from several biomagnetometers, for which the raw signal-to-noise ratio of stimulus-evoked
components was unfavorable. With this technique, components with power ratios relative to noise as
small as 1 part per million can be retrieved.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Magnetoencephalography (MEG) and electroencephalography
(EEG) measure brain activity non-invasively, but the measured sig-
nals often have an unfavorable signal-to-noise ratio (SNR) relative
to environmental and sensor noise or competing physiological and
brain components. Invasive techniques such as SEEG or ECoG in
humans or electrode arrays in animal models offer better SNR.
However, even in that case there may exist weaker components,
dwarfed by the stronger components, and as the field matures they
may become worthy of attention.

Multichannel sensor and electrode arrays, linear electronics, and
high-resolution digital representations offer considerable leverage
for multichannel signal processing techniques to resolve multiple
sources and extract weak components (Parra et al., 2005; Cichocki,
2004). Independent component analysis (ICA) finds linear com-
binations of sensors likely to correspond to independent sources
that can then be sorted between target and noise. Beamforming
likewise finds a spatial filter that zeros out unwanted components
based on their spatial signature, while retaining components from
sources within a region of interest (Sekihara et al., 2001, 2006). A
recent technique called denoising source separation (DSS) performs
a similar operation based on criteria such as reproducibility or spec-
tral content (Särelä and Valpola, 2005; de Cheveigné and Simon,
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2008b). Beamforming, DSS and ICA are data-dependent techniques,
in contrast to a method such as signal space separation (SSS) that
sorts between noise and target based on geometric constraints
(Taulu et al., 2005). All these techniques benefit from a large number
of sensors. As sensor count is increased the improvement for source
localization may taper off (Ahonen et al., 1993), but it continues to
progress for source separation (Vrba et al., 2004).

For a given system, the number of available sensors limits the
dimensionality of the data, which determines the ability of spa-
tial filtering techniques to resolve weak targets by separating them
into a subspace distinct from the subspace that contains the noise.
Here we propose to push back this limit by applying to the data
a set of time shifts that increase the dimensionality and allow
the source separation methods to synthesize time-domain finite
impulse response (FIR) filters in addition to spatial filters. Time
shifts were previously found to be useful to suppress environmental
noise using reference sensors (de Cheveigné and Simon, 2007).

Concretely, the method produces a set yk(t), k = 1, . . . , K of lin-
ear combinations of the time-delayed sensor channels:

yk(t) =
∑

j,d

akjdxj(t − d) (1)

where t is time, d = 0, . . . , D − 1 is time shift, xj(t), j = 1, . . . , J are
channels of raw data, and akjd are weights. Components yk are
orthogonal and sorted in order of decreasing quality according to
some criterion (see below). In particular, the first component is the
best linear combination of time-shifted sensor channels, according
to the chosen criterion. The second is the best linear combination
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orthogonal to the first, and so on. To obtain denoised data, a select
subset of components yk(t), j = 1, . . . , K ′ is projected back to sensor
space:

x̃j(t) =
∑

k

bjkxj(t) (2)

where x̃j(t), j = 1, . . . , J are the cleaned sensor signals and bjk are
projection coefficients. In this paper we focus on the case K ′ = 1
where only the best component is retained. Additional components
can be obtained by repeating the process after regressing out the
best component (“deflation”).

The required weight parameters akjd are obtained using the DSS
algorithm (Särelä, 2004; Särelä and Valpola, 2005). In brief, DSS
involves the following steps: (a) orthogonalization by PCA of the
data matrix (here augmented with time shifts), (b) normalization
of the principal components, (c) application of a contrast function
to emphasize target components and/or deemphasize noise, and
(d) a final PCA to rotate the data so that the first component has the
highest possible value of the contrast function, the second the high-
est value within the subspace orthogonal to the first, etc. Details of
the algorithm are given in the next section, and related work is
reviewed in Section 4.

2. Methods

2.1. Signal model

Sensor signals X(t) = [x1(t), . . . , xJ(t)]� include interesting brain
activity and uninteresting noise activity:

X(t) = XB(t) + XN(t). (3)

The first term results from the superposition within each sensor of
sources of interest within the brain, XB(t) = ABSB(t), and the sec-
ond results from uninteresting sources within the environment,
sensors, and subject’s body, XN(t) = ANSN(t), where AB and AN are
mixing matrices. Our aim is to attenuate XN(t) so as to isolate XB(t),
thereby improving our observation of brain activity.

The sensor signals X(t) span a space of dimensionality J. Linear
separation techniques such as ICA, beamforming or DSS assume
that source and noise live in separate subspaces, the only difficulty
being to find them. Here we are interested in the situation where
target and interference components are partly colinear, and thus
not separable using such techniques.

2.2. Contrast function

For clarity we will focus on the common situation where data
are recorded in response to N presentations of the same stimulus,
and we are interested in reproducible stimulus-evoked activity. The
contrast function � used in this paper is the average over trials:

�[X(t)] =
(

1
N

) N∑
n=1

Xn(t) (4)

where Xn(t) designates data for trial n. Stimulus-evoked activity is
reinforced by averaging, whereas stimulus-unrelated activity and
noise are not, so the norm of �[X(t)] is greater for evoked activity
than for noise. Other contrast functions can be used but they are
not considered in this paper.

2.3. Algorithm

Given a data matrix of size [J, T, N] (channel × time × trial), the
following steps are performed:

1. Data are time-shifted over the range 0, . . . , D − 1, the time-
shifted data being treated like additional channels to form a
matrix of size [JD, T, N].

2. Data are reorganized by concatenating trials along the time
dimension to obtain a matrix of size [JD, TN]. Each row corre-
sponds to a particular channel/time shift, and each column to a
particular time sample/trial.

3. PCA is performed, and the resulting component time series are
normalized.

4. The data are reorganized again by trials to form a 3D matrix of
size [JD, T, N] (component × time × trial). The contrast function
defined in Eq. (4) is applied, resulting in a matrix of size [JD, T].

5. A second PCA is performed on this matrix.
6. The rotation matrix from the second PCA is applied to the

whitened data from step 2 to obtain a matrix of components
of size [JD, T, N] (component × time × trial). Each component is
of size [T, N] (time × trial).

Step 6 produces components that have two useful properties: (a)
they are mutually orthogonal and (b) they are ordered by decreas-
ing ratio of evoked power to total power. The first component is the
best linear function of the data according to that criterion, and each
subsequent component is the best within the subspace orthogo-
nal to previous components. Eq. (1) defines a spatiotemporal filter:
each component is a weighted sum of time-delayed channels. Intu-
itively it is easy to see why the algorithm maximizes evoked power:
the first three steps create a data set that is “spherical” in the sense
that all directions in multidimensional space have equal variance.
Averaging over trial “tips the balance” by favoring certain direc-
tions that are selected by the second PCA. The evoked/raw power
ratio is maximal along these directions.

The subspace spanned by the first few components contains
the most reproducible brain activity. However, that subspace may
also include time-shifted versions of brain activity, and thus all
FIR-filtered versions of that activity, for filters of order up to D.
Components produced by step 6 may thus differ from real brain
activity by the effect of an arbitrary FIR filter of order D. This is
not always a concern, as spectral filtering is commonly applied to
improve quality of data. Nevertheless it may be desirable to mini-
mize potential filtering effects and approximate unfiltered source
activity. In that case an additional step may be performed:

7. Given a subset of components chosen for reproducibility, canon-
ical correlation is used to find the linear combination most
correlated to the raw data. Canonical correlation (Hotelling,
1936) is a technique that finds the linear combination of vec-
tors within one set that best accounts for the variance in another
set, and vice versa.

In the following we assume that only one component is retained
(the most reproducible, or the most similar to unfiltered data within
the chosen subspace). If stopped at step 6, the algorithm has one
user-set parameter, D, if continued to step 7 an additional param-
eter is the number of components within the chosen subset.

2.4. Implementation

The algorithm was implemented in Matlab. A few details are
worth mentioning. The size of the data matrices grows proportion-
ally with D and that of the covariance matrices with D2, limiting the
values of D that can be used. To save space, the time series may be
divided into chunks and the covariance matrices calculated over
these chunks and then summed. As in any calculation involving
sums of squares, it is important to discount outliers. This is done by
assigning them a zero weight in the calculations. PCA components
with relative power below a threshold (e.g. 10−9) are discarded in
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step 3 to save memory and computation time and avoid numerical
problems.

2.5. Evaluation data

The algorithm is evaluated first with synthetic test data, and
then with data from several biomagnetic sensor arrays: small
animal MEG, spinal cord magnetometer, and human MEG. Small
animal MEG data came from a system equipped with a 9-channel
array of magnetometers in a 8 × 8 mm array at 3 mm from the
external surface of the dewar placed over the animal’s head
(Miyamoto et al., 2007, 2008). Three reference sensors sampled
environmental noise, and an accelerometer sampled environmen-
tal vibration. Sensors and subject were placed within a magnetically
shielded enclosure. Data were acquired at a sampling rate of
1000 Hz after high-pass filtering at 0.1 Hz and low-pass filtering
at 200 Hz, and environmental and sensor noise attenuated using
the TSPCA and SNS algorithms (de Cheveigné and Simon, 2007,
2008a). Data were recorded from guinea pig, gerbil and mouse in
response to auditory stimuli presented diotically via flexible sound
tubes ending at 1.5 cm from each ear and driven by Etymotics trans-
ducers placed outside the shielded chamber. Spinal cord data were
recorded using a newly developed 120-channel vector magnetome-
ter array placed within a dewar optimized for measurements from
the spinal cord (Adachi et al., 2009). Data were filtered between
100 and 5000 Hz and recorded at a 10000 Hz sampling rate in
response to 4000 repetitions of electric stimulation of a peripheral
nerve. Human MEG data were acquired from a 160-channel system
equipped with axial gradiometers (Kado et al., 1999). Data were
sampled at 500 Hz after high-pass filtering at 0.1 Hz and low-pass
filtering at 200 Hz, and environmental and sensor noise compo-
nents were removed using the TSPCA and SNS algorithms. Data
were recorded from human subjects in response to a set of audi-
tory stimuli comprising clicks, short tones, noise bursts and tone
ramps interleaved at random.

2.6. Evaluation statistics

The effect of denoising is quantified in terms of power (before
vs. after denoising) and variance across stimulus repetitions
(evoked/total power). The reliability of evoked responses is esti-
mated using bootstrap resampling (Efron and Tibshirani, 1993). In
brief: random sets of N trials are drawn with replacement, and the
average over each set is calculated. This operation is repeated (typi-
cally 100 times) and the mean and standard deviation are calculated
at each time sample within the epoch.

3. Results

3.1. Simulated data

3.1.1. Simulation 1
This simulation illustrates the limits of static methods such as

DSS. The artificial data had dimensions 10 channels ×1000 samples
×100 trials. The “signal” was a single period of a sinusoid as illus-
trated in Fig. 1 (top), identical in all channels and repeated over all
trials, and the “noise” consisted of 9 (resp. 10) independent Gaus-
sian white noise sources mixed within each of the 10 channels via a
9 × 10 (resp. 10 × 10) mixing matrix with random coefficients. The
SNR is defined as the ratio of signal and noise power summed over
channels, transformed to decibels (dB) according to the formula
SNR = 10log10Ps/Pn.

Fig. 1 (bottom left) shows data for the “best” channel (the chan-
nel with the largest correlation with the clean signal) for SNR = −40
dB (RMS amplitude ratio 1/100, power ratio 1/10000). The blue line
is the average over trials, and the gray band represents ±2 SD of a

bootstrap resampling of that average. This plot is for 9 noise sources,
the plot for 10 noise sources had a similar aspect (not shown). At
this unfavorable SNR, the signal seems to be lost within the noise.
The middle plot shows the first component of a DSS analysis (de
Cheveigné and Simon, 2008b) for 9 noise sources. The recovered
component is identical to the signal. In this case, signal and noise
were separable within the 10-dimensional data space and DSS was
successful in separating them. However, the right hand plot shows
the same analysis for 10 noise sources, in which case the noise has
the same dimensionality (10) as the data. Signal and noise are no
longer linearly separable and the result of DSS is noisy (but never-
theless an improvement over no processing). This is the situation
that we are interested in, where the dimensionality of the noise is
too large to allow perfect linear separation from the signal.

3.1.2. Simulation 2
This simulation illustrates how TDDSS can be more effective

than DSS. The signal was the same as in Simulation 1 (Fig. 1 top).
The noise was produced from 5 independent noise sources mixed
within each channel via a 5 × 10 random matrix, and the same 5
sources were shifted in time by 1 sample and added to each channel
via another 5 × 10 random matrix. This noise has a similar covari-
ance matrix as in the previous example, but there is now a serial
correlation within and across channels.

Fig. 2 (top) shows the result of applying standard DSS at SNRs of
−20, −40 and −60 dB. DSS is quite successful at −20 dB and partly
successful at −40 dB (as with 10 independent sources, Fig. 1 bot-
tom right), but it performs poorly at −60 dB. The lower plot shows
the result of applying TSDSS (D = 1). Now the signal is almost per-
fectly recovered even at −60 dB (1/1000 RMS ratio, 10−6 power
ratio). The technique is thus successful in extracting a component
with a power of 1 part per million (PPM) relative to the noise. For
smaller SNRs (e.g. −80 dB) the algorithm may fail depending on the
noise, and at yet smaller values it appears to fail systematically (not
shown). Similar results were obtained for various other values of
the D parameter and other noise correlation structures (not shown).

3.1.3. Simulation 3
This simulation tests TSDSS with noise correlation structures

more complex than a simple delay. The signal was the same as in
Simulations 1 and 2 (Fig. 1 top), but the noise was now produced
by adding 50 sinusoids with frequencies multiples of 24.5 Hz (sam-
pling rate was 1000 Hz), equal amplitudes, and phases that changed
randomly from trial to trial, distributed over the 10 channels via a
50× 10 random vector. Thus, within each channel the noise had a
complex spectrum consisting of narrowband components modu-
lated by an irregular spectral envelope that was different for each
channel.

TSDSS was implemented with D = 10. Fig. 3 (top) shows that
standard DSS is successful at −20 dB but fails at −40 and −60 dB.
The reason for this failure is that the dimensionality of the noise
(50) is much greater than that of the data (10), so noise and signal
are not linearly separable. The bottom row shows that TSDSS is
successful in each case.

These simulations illustrate situations where the TSDSS method
can retrieve very weak targets with little distortion.

3.2. Real data

3.2.1. Small animal MEG
Data were recorded from a guinea pig in response to repeated

tone pips of frequency 2 kHz, duration 30 ms, and 5 ms raised-
cosine onset and offset ramps, presented diotically at a rate of
3 pips/s during a 1-h recording session, for a total of about 11000
trials of which 40% of were discarded as outliers (and to allow the
data to fit in memory). These data have very poor SNR. After ini-
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Fig. 1. Effect of noise dimensionality on the performance of DSS. Artificial data involve 10 channels, each a mixture of one signal source (identical in all channels and all
trials) and either 9 or 10 independent Gaussian noise sources mixed with random coefficients. Overall SNR is −40 dB (1/100 in amplitude). All plots are based on 100 trials,
blue is the mean over trials, gray indicates ±2 standard deviations of a bootstrap resampling of the mean: (top) source waveform; (bottom left) waveform of the channel
with best SNR; (middle) best DSS component for 9 noise sources; (right) best DSS component for 10 noise sources. DSS can extract the signal perfectly if target and source
are linearly separable (middle), but not if they are not separable (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of the article.)

tial denoising (see Section 2), the 9-channel data were subjected
to three different processing schemes: PCA, DSS, and TSDSS with
D = 20 as illustrated in Fig. 4 (top). Here PCA is used as a baseline
to evaluate the improvement offered by DSS or TSDSS. Comparing
the time course of the averages over trials (blue), the first principal
component (left) appears to be noisier than the first DSS compo-
nent (middle), itself noisier than the first TSDSS component (right),
as confirmed by the bootstrap resampling (gray bands).

3.2.2. Spinal cord magnetometer
Data were recorded from a human subject in response to 4000

repetitions of an electrical stimulation of the median nerve of the
left wrist. The 120-channel data were subjected to PCA, DSS, and

TSDSS (D = 4) as illustrated in Fig. 4 (bottom). The first TSDSS com-
ponent (right) is less noisy than the first DSS component (middle)
itself less noisy than the first principal component (left).

3.2.3. Human MEG
Data were recorded from a human subject in response to 50

repetitions of a 1 kHz tone pip of duration 100 ms presented diot-
ically at a comfortable level. These were interleaved with various
other stimuli within a 5-min recording session. The original data
comprised 160 channels, but for this simulation only 7 channels
were retained (to obtain data with low spatial dimensionality to
better illustrate the behavior of the TSDSS algorithm). After initial
denoising to remove environmental and sensor noise (see Section

Fig. 2. Comparison of DSS and TSDSS on artificial data. The target is the same as in Fig. 1, the noise consists of 10 sources with serial correlation (see text) mixed with random
coefficients. Overall SNR was −20, −40 or −60 dB (1/10, 1/100 and 1/1000 in RMS amplitude). All plots are averages over 100 trials: (top) DSS algorithm; (bottom) TSDSS
algorithm implemented with D = 1. The performance of DSS degrades as SNR decreases (top row), whereas that of TSDSS remains good for SNRs as low as −60 dB (1/1000
in amplitude, 1 PPM in power).
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Fig. 3. The target is the same as in Figs. 1 and 2. The noise consists of 50 sinusoidal sources added with random amplitude and phase, different for each of the 100 trials:
(top) DSS algorithm and (bottom) TSDSS algorithm implemented with D = 10. The performance of DSS degrades as SNR decreases (top row), whereas that of TSDSS remains
good for SNRs as low as −60 dB (1/1000 in amplitude, 1 PPM in power).

2), data were processed by the DSS algorithm (Fig. 5 left), and
by the TSDSS algorithm with D = 30 (Fig. 5 right). The blue line
indicates the average over trials, and the gray band ±2 SD of a boot-
strap resampling. The TSDSS algorithm appears to yield a cleaner
result, with a smoother average and narrower bootstrap interval.
One might wonder whether the benefit of TSDSS is greater that

that obtained by simply smoothing the data with kernel of size
D = 30. To answer this question, data were smoothed with such a
kernel before applying DSS (middle). The result is less reproducible
than with TSDSS, as reflected by the width of the bootstrap band
(gray). With a full data set (150 channels rather than 7) the benefit
of TSDSS was less impressive (not shown), presumably because that

Fig. 4. Comparison of TSDSS and DSS on real data. (Top) Data from a 9-channel magnetometer for small animals. The fields originate from the auditory cortex of a guinea
pig in response to 6400 repetitions of a 2 kHz tone pip of duration 30 ms: (left) first PCA component; (middle) first DSS component; (right) first TSDSS component (D = 20).
(Bottom) Data from a 120-channel magnetometer for spinal cord evoked field measurements. The fields originate from the spinal cord of a human subject in response to
4000 repetitions of an electrical stimulation: (left) first PCA component; (middle) first DSS component; (right) first TSDSS component (D = 4).
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Fig. 5. Comparison of TSDSS and smoothing on real data. MEG data were recorded from a 160-channel whole-head axial gradiometer array from one human subject in
response to 50 repetitions of a click-like stimulus. In order to illustrate the algorithm on data with reduced dimensionality (relative to that of cortical fields), 7 channels
were arbitrarily selected for processing: (left) first DSS component; (right) first TSDSS component (D = 30); (middle) first DSS component after smoothing the data with a
30-sample square window. Note the wider bootstrap band for DSS with smoothing than for TSDSS.

number of channels was sufficient to represent the noise without
delays.

4. Discussion

TSDSS performs by introducing time shifts that allow the algo-
rithm to synthesize an optimal multichannel FIR spatiotemporal
filter, rather than just a spatial filter. The benefit is clear on the
artificial data, on real data it is more limited but nevertheless appre-
ciable.

4.1. How it works

The principle of DSS is well explained by Särelä (2004); Särelä
and Valpola (2005), and has been illustrated in the context of an
evoked-response paradigm by de Cheveigné and Simon (2008b).
In brief, the initial PCA and normalization steps of the DSS algo-
rithm produce a data set that is “spherical” in the sense that it
extends equally in every direction of the multidimensional signal
space, and is thus free to rotate. The contrast function emphasizes
certain directions of interest (here: directions of greatest repeata-
bility), and the second PCA aligns them with the coordinate axes. In
this way DSS finds the optimal linear combinations for the chosen
criterion. The effectiveness of DSS depends on the dimensionality
of the data, itself determined by the number of sensors. Intuitively,
one might expect time shifts to be beneficial simply by increasing
the dimensionality. Furthermore, the ability to synthesize multi-
channel FIR filters might give leverage in at least two ways. The first
is by designing a spectral filter that emphasizes spectral features of
the target relative to the noise (as in a Wiener filter), regardless of
spatial structure. The second is by giving the algorithm more flex-
ibility to suppress interfering sources on the basis of their spatial
structure. As an example, suppose two noise sources such that the
target is not collinear with either of them, but nevertheless falls
within the hyperplane that they span. If either noise source were
alone the target would be separable, but if both are active at the
same time it is not. However, if the two noise sources have different
spectral properties, TSDSS may be able to find a solution involving
two spatial filters, each optimized for a different spectral region.

4.2. Caveats and cautions

The algorithm extracts weak sources by cancelling strong inter-
ference components. This delicate “balancing act” might go wrong
in a variety of ways, a remark that was made previously for DSS
(de Cheveigné and Simon, 2008b), but that applies even more to

TSDSS because of the larger number of parameters, and because
TSDSS may be applied at lower SNRs. It is essential to understand
what the algorithm is doing, and to corroborate its results by cross-
validation.

The method involves a large number of free parameters (JDK ′,
where J, D and K ′ are the number of sensors, shifts, and retained
components, respectively), and thus it is susceptible to over-fitting:
even within a random data set there may exist linear combinations
that appear “repeatable” to some degree. The investigator should
parry this possibility by applying cross-validation tests. For exam-
ple, the denoising stage may be included within the resampling
loop of a bootstrap procedure (Efron and Tibshirani, 1993). Con-
cretely: sets of trials are drawn with replacement, the denoising
algorithm is applied to each set, and statistics (mean and standard
deviation) are calculated over the population of denoised sets.

Another concern is spectral distortion. Suppose that the algo-
rithm succeeds in suppressing all noise components. The SNR is
now infinite, but the recovered data may nevertheless differ from
true brain activity, as TSDSS components are weighted sums of sen-
sor signals and their time-shifted versions. This can obviously affect
the latency (within a range of size D), but also the shape of the
response. To illustrate this point, Fig. 6 shows the result of a PCA on
the time-shifted versions of the signal depicted in Fig. 1 (top left)
for D = 5. The first principal component (PC) is a slightly-smoothed
version of the signal, but none of the subsequent PCs resembles the
signal. The subspace of time-shifted signals includes such distorted
waveforms, and TSDSS components are potentially susceptible to
similar distortion. One can argue that TSDSS components are opti-
mized for repeatability, and thus any filtering will emphasize the
“true” evoked response. Nevertheless the optional step 7 of the
algorithm offers a means to minimize this distortion by rotating
the subspace spanned by the selected components to maximize
similarity to the undelayed data (at the expense of repeatability).

It is important to stress a potential pitfall of using TSDSS or
other data-dependent algorithms such as DSS, ICA or beamform-
ing. If the algorithm is applied separately to each condition of an
experiment, differences in data-dependent processing might mas-
querade as effects. One way to avoid this is to interleave conditions
to ensure that the same processing is applied to all conditions.

4.3. Relation with previous methods

The DSS method was proposed by Valpola and Pajunen (2000)
and developed by Särelä (2004; Särelä and Valpola, 2005). It is
related to the filtering by optimal projection (FOP) and common
spatial pattern (CSP) algorithms (Boudet et al., 2007; Blankertz et
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Fig. 6. Subspace spanned by a single-cycle sinusoidal waveform shifted by [0, . . . , 4] samples (top left) as revealed by principal component analysis. Linear combinations
of time-shifted signals can give rise to waveforms with shapes quite different from the original waveform. The number in each plot indicates the proportion of power
represented by that component.

al., 2008; Koles et al., 1990) that have been widely used for clas-
sification in the brain computer interface (BCI) literature. These
methods have earlier roots (Fukunaga, 1990; Parra et al., 2005).
In de Cheveigné and Simon (2008b) we applied DSS (without time
shifts) to denoising of stimulus-evoked data.

The idea of augmenting multichannel data with time shifts has
been proposed in several contexts. The initial two steps of TSDSS
correspond to the spatiotemporal whitening proposed by Beucker
and Schlitt (1997). Time delays are involved in various other anal-
ysis techniques (Friman et al., 2002; Gruber et al., 2006; Sander
et al., 2002; Woon and Lowe, 2004; Ziehe et al., 2000). TSDSS
exploits the serial correlation structure of the data, that can also
be captured in the frequency domain (Anemüller et al., 2003) or
by multichannel linear prediction (e.g. Xie et al., 1992). Dornhege
et al. (2006) have proposed to include time shifts in CSP to derive
classification features in a brain computer interface application, a
proposition closely related to ours. An appeal of DSS is that it is com-
paratively easy to understand, an advantage for non-specialized
users.

4.4. Summary

TSDSS is effective in extracting extremely weak signals from
noise. It capitalizes on the dimensionality of large multisensor
arrays such as used in MEG, EEG or multielectrode electrophys-
iology, and on the spatiotemporal disparities between target and
noise and/or between different noise components. In this respect, it
pushes the limit of what can be done to retrieve signals at extremely
unfavorable SNRs using purely linear techniques. Applied to data
from human MEG, small animal MEG, and spinal cord biomagne-
tometry, TSDSS offered an improvement over DSS in the quality and
reliability of extracted components as assessed by bootstrap resam-
pling. An similar benefit was observed in simulations, for which the
method succeeded over a wide range of conditions for which the
best alternative algorithm that we know (DSS) failed. This suggests
that there may be applications for which TSDSS is the only effective
solution to extract exploitable data.
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