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Innovative Methodology
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de Cheveigné A, Edeline JM, Gaucher Q, Gourévitch B. Com-
ponent analysis reveals sharp tuning of the local field potential in the
guinea pig auditory cortex. J Neurophysiol 109: 261–272, 2013. First
published October 10, 2012; doi:10.1152/jn.00040.2012.—Local field
potentials (LFPs) recorded in the auditory cortex of mammals are
known to reveal weakly selective and often multimodal spectrotem-
poral receptive fields in contrast to spiking activity. This may in part
reflect the wider “listening sphere” of LFPs relative to spikes due to
the greater current spread at low than high frequencies. We recorded
LFPs and spikes from auditory cortex of guinea pigs using 16-channel
electrode arrays. LFPs were processed by a component analysis
technique that produces optimally tuned linear combinations of elec-
trode signals. Linear combinations of LFPs were found to have
sharply tuned responses, closer to spike-related tuning. The existence
of a sharply tuned component implies that a cortical neuron (or group
of neurons) capable of forming a linear combination of its inputs has
access to that information. Linear combinations of signals from
electrode arrays reveal information latent in the subspace spanned by
multichannel LFP recordings and are justified by the fact that the
observations themselves are linear combinations of neural sources.

multielectrode recording; electrode array; denoising source separa-
tion; independent component analysis; spectrotemporal receptive
field; frequency selectivity

TONOTOPY IS AN IMPORTANT ORGANIZATIONAL principle in the au-
ditory system (Escabi and Read 2005; Schreiner and Winer
2007): the gradient of frequency selectivity established in the
cochlea (tonotopy) is systematically observed at all levels of
the auditory system up to primary auditory cortex. The pio-
neering descriptions of cochleotopy/tonotopy were performed
using evoked potentials or local field potentials (LFPs; Wool-
sey and Walzl 1942; Tunturi 1944), culminating with the
description of maps of several auditory cortical fields (Woolsey
1961). The vast majority of subsequent single unit/multiunit
(SU/MU) studies confirmed this tonotopic organization and led
to parcellations of the cortical areas delineated by LFP studies
(Davies et al. 1956; Merzenich et al. 1975; Reale and Imig
1980; Schreiner and Cynader 1984). Although most of the
mapping studies have used SU/MU recordings, an increasing
number of studies recently recorded LFPs to assess functional
properties of neuronal groups (Eggermont 1996; Kayser et al.
2007; Katzner et al. 2009).

Due to the greater current spread at low frequencies, LFPs
reflect the activity of a larger number of neurons than single/

multiunits (SU/MU) and thereby offer a more comprehensive
but less detailed view of neural activity. LFPs complement
spikes to the extent that they reflect the input to dendritic fields
of cortical neurons rather than their output. This is useful if a
large proportion of cortical cells are silent, or thrifty of their
spikes (Hromádka et al. 2008; Barlow 1972), inasmuch that the
computations performed on the input are of interest whether or
not they lead to a spike. LFPs are a useful stepping stone
between animal electrophysiology and human brain imaging
that also reflects large ensembles of cells (Kayser et al. 2007;
Berens et al. 2010).

In auditory cortex, studies that have measured the tuning of
LFP recordings systematically reported bandwidths wider than
those obtained for SU/MU recordings (Eggermont 1996;
Noreña and Eggermont 2002; Noreña et al. 2008; Eggermont
et al. 2011; Gaucher et al. 2012; Kajikawa and Schroeder
2011). Pharmacological manipulations revealed that short-
range or long-range intracortical connections considerably in-
crease the spectral tuning provided by thalamocortical affer-
ences (Kaur et al. 2004; Moeller et al. 2010; Happel et al.
2010). In fact, long-range horizontal pathways can provide
subthreshold spectral inputs to adjacent cortical regions not
receiving any corresponding thalamic input (Kaur et al. 2005;
Liu et al. 2007). Thus the better tuning of SU/MU activity
relative to LFPs could be explained by cortical processing.
However, an alternative explanation is the greater current
spread for LFPs compared with SU/MU (Lindén et al. 2010,
2011).

The LFP signal recorded by an electrode represents the
weighted sum of multiple neural sources, each of which may
contribute to several electrodes. Ideally, we would like to
reverse the effects of this mixing by applying an “unmixing”
matrix to the LFP signals, so as to retrieve the underlying
neural sources. Unfortunately, the problem is ill posed as the
number of unknowns greatly exceeds the number of observa-
tions. It is, however, possible to enhance the data by forming
linear combinations of the measured signals, using a family of
methods known as component analysis. Prominent among
them, principal component analysis (PCA) yields orthogonal
components ordered in terms of decreasing variance, and
independent component analysis (ICA) maximizes some mea-
sure of “statistical independence.” Current source density anal-
ysis (CSD; Mitzdorf 1985) and beamforming (Hillebrand et al.
2005) also fit this definition as they involve weighted sums of
electrode signals. In this study, we use a form of component
analysis known as denoising source separation (DSS; Särelä
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and Valpola 2005) that produces components that maximize a
particular criterion. Whereas PCA produces orthogonal com-
ponents in order of decreasing power, DSS produces orthogo-
nal components in order of decreasing criterion score. In this
study, the criterion is the ratio of power of the response to one
stimulus frequency to the average power of the response to
other frequencies. We retain only the first component of the
analysis, which is the linear combination of electrode signals
that is most selective to that frequency.

Repeating the process for each frequency within our stimu-
lus set, we scan the multidimensional space spanned by the
LFPs for hints of frequency selectivity. Applied to LFPs, this
technique finds components with tuning curves, or spectrotem-
poral receptive fields (STRFs), that are considerably narrower
than the LFP recorded by a single electrode. Although this
outcome is consistent with the existence of narrowly tuned
neural sources, a more conservative interpretation is that such
selectivity is “latent” within the neural activity sampled by the
LFPs, for example, available to any neuron (or group of
neurons) that can linearly sum activity over the same neural
substrate. In other terms, the unit of observation sampled by the
electrode array is a subspace of the electrical activity within the
brain that we interrogate, using component analysis, for evi-
dence of sensitivity to stimulus frequency.

METHODS

Stimuli and Data Collection

Subjects. Pigmented guinea pigs free of middle ear infection were
used as subjects. The animals were housed in a humidity (50–55%)-
and temperature (22–24°C)-controlled facility on a 12:12-h light-dark
cycle (light on at 7:30 AM) with free access to food and water. Guinea
pigs were young adults (age 3–4 mo, 490–590 g) from our own
breeding colony. All procedures conformed to the European (86/609/
EEC) and French (JO 887–848) legislations on animal experimenta-
tion (which are similar to those described in the Guidelines for the Use
of Animals in Neuroscience Research of the Society of Neuroscience).
The study was performed under national authorization to work on live
animals (no. A 91-557 delivered to J.-M. Edeline). Two days before
the experiment, hearing thresholds were evaluated from auditory
brainstem responses (ABRs) while the animals were under isoflurane
anesthesia (2.5%). The protocol for ABR recording was previously
detailed (Gourévitch et al. 2009). The ABR thresholds obtained for
the animals included here were comparable to those obtained from
normal-hearing guinea pigs (Gourévitch et al. 2009).

Animal preparation and recording procedures. Guinea pigs were
anesthetized by an initial injection of diazepam (4 mg/kg ip) followed
by urethane (1.5 g/kg ip). Additional doses of urethane (0.5 g/kg ip)
were systematically delivered when reflex movements were observed
after pinching the hindpaw (usually once or twice during a 8-h
recording session). The body temperature was maintained at �37°C
by a heating pad throughout the experiment. The stereotaxic frame
supporting the animal was placed in a sound-attenuating chamber
(IAC, model AC1). A large opening was made in the temporal bone,
and the dura mater was removed under microscopic control. The
location of the primary auditory field (AI) was estimated based on the
pattern of vasculature and previous studies in guinea pig (Edeline
et al. 1993; Manunta and Edeline 1999; Wallace et al. 2000; Gou-
révitch and Edeline 2011). LFPs were recorded with an array of 16
tungsten electrodes [33 �m in diameter, impedance �1 M�; Tucker-
Davis Technologies (TDT)] arranged in a 8 � 2 configuration with
0.25-mm electrode separation within a row and 0.5-mm separation
between rows. The array was oriented such that all electrodes were
simultaneously touching the cortical surface. Recordings were ob-

tained at a depth of 500–1,000 �m below pia, which corresponds to
layer III and the upper part of layer IV (Wallace and Palmer 2008).
The signals were amplified 10,000 times (TDT LP16CH, 100-G�
input impedance) and then processed by an RX5 multichannel data
acquisition system (TDT). Signals were initially sampled at 24,400 Hz
and subsequently band-pass filtered between 5 and 305 Hz and
downsampled to 610 Hz for LFP analysis. Two or three positions of
the electrode array were used to map the entire field AI on each
animal. At the end of the recording session, a lethal dose of pento-
barbital (200 mg/kg) was administered to the animal.

Acoustical stimulation. Acoustic stimuli were generated in Matlab
and transferred to a RP2.1-based sound delivery system (TDT) and
then to a speaker system (Fostex FE87E). The speaker was placed at
2 cm from the guinea pig’s right ear, a distance at which the speaker
produced a flat spectrum (�3 dB) between 140 and 36 kHz. Calibra-
tion of the speaker was made by recording noise and pure tones from
the speaker with a Bruel & Kjaer microphone 4133 coupled to a
preamplifier B&K 2169 and a digital recorder Marantz PMD671. The
tuning properties of neurons were determined using 97 or 129 pure
tone pip frequencies spaced logarithmically at intervals of 1/16th
octave (4.4%), covering 6 (0.28–18 or 0.56–36 kHz) or 8 (0.14–36
kHz) octaves, respectively. Tones were presented at peak intensities
of 35, 55 and 75 dB SPL. At a given intensity, each frequency was
repeated eight times at a rate of 2.35 Hz in pseudorandom order. Tone
pips had �-envelopes given by �(t) � (t/4)2exp(�t/4), where t is time
in milliseconds. The duration of these tones over half-peak amplitude
was �15 ms, while the total duration of the tone was 50 ms.

Data were gathered from 11 guinea pigs, with one to four recording
positions of the array per animal. Forty-seven recording sessions were
carried out, one session being a set of 16 electrodes implanted in a
given position in an animal’s auditory cortex, yielding a total of 752
recordings. Nineteen sessions were recorded at 75 dB SPL, 14 at 55
dB SPL, and 14 at 35 dB SPL. Data are reported for all sessions and
electrodes, including those for which little selectivity was found in
either LFPs or spikes.

Data Analysis

On the basis of a peristimulus epoch of 100 ms starting at stimulus
onset, the data sampled at 610 Hz were arranged into a four-dimen-
sional matrix with dimensions time (T � 61 samples), channel (K �
16), repeat (8), and stimulus frequency (J � 97 or 129). Data were
averaged over repeats (8) and analyzed using the DSS component
analysis method.

DSS analysis. Figure 1A summarizes the principle of the analysis.
Neural sources (left) summate to produce electrode signals (middle).
Due to current spread the electrodes are less well tuned than the
sources, and there may also be contributions from untuned sources.
DSS forms a linear combination of electrode signals that is optimally
selective to a particular frequency (right).

The main steps of the DSS method are illustrated in Fig. 1B. The
set of K electrode signals (left) is spatially whitened by PCA and
normalized to obtain a data set with spherical symmetry, i.e., with no
privileged direction of variance in K-dimensional space (middle). The
whitened data are then submitted to a bias function [which Särelä and
Valpola (2005) call “denoising function”] that breaks the spatial
symmetry and causes the variance to be greater along certain orien-
tations in the data space. A second PCA produces components
collinear with these orientations, and the result is a set of K orthogonal
components ordered in terms of decreasing bias score.

The intuition behind DSS is illustrated in cartoon format in Fig. 1C
for two dimensions (e.g., 2 electrodes). Data are selective to some
feature of interest, coded as color, but its gradient does not align with
either of the observation dimensions (left). The selectivity gradient is
also not colinear with the direction of maximum (or minimum)
variance, so that PCA cannot isolate it (second to left). Normalization
removes the influence of variance so that the data are “spherical” and
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free to rotate (middle). The bias then emphasizes variance along the
direction of interest, and the second PCA rotates the data so that that
direction is aligned with the axes (right). In our case, the feature of
interest is stimulus frequency, accordingly the bias function is imple-
mented by multiplying the LFP signals in response to one particular
stimulus frequency fj by 1, and those to all other frequencies by 0.

In mathematical terms, supposing that the responses to all the J
frequencies are concatenated along the time axis, t � 1, . . . JT, let
X � [xkt], dimensions K � JT, be the matrix of LFP signals recorded
by the K electrodes. The PCA matrix P, dimensions K � K, is
obtained by eigendecomposition of the covariance matrix XXT. The
spatially whitened signals are obtained as X̂ � NPX, dimensions K �
JT, where N is the normalization matrix, so that X̂X̂T � I, identity
matrix. The bias is implemented by multiplying X̂ � [x̂kt] by zero for
values of t outside the fj trial and by one for values of t within that
trial. Denoting the result of this biasing as X̂j, dimensions K � JT, the
second PCA matrix is obtained by eigendecomposition of X̂jX̂jT. We
are interested only in the first row of this matrix, that we denote by Qj.

The component yt
j optimally tuned to fj is thus related to X by:

yt
j � W jX . (1)

where Wj � QjNP. The matrix Wj, dimensions 1 � K, defines the K
weights to apply to the electrode signals to obtain a signal optimally
tuned to fj. Repeating the operation for each of the J stimulus

frequencies results in a matrix of optimally-tuned component signals
Y � [yt

j], dimensions J � JT, each tuned to a particular stimulus
frequency. Computationally, each matrix Wj is calculated from two
covariance matrices: C0 � XXT, covariance of the entire data set,
and C1 � XjXjT, covariance of data restricted to one stimulus fre-
quency fj.

The DSS method (Valpola and Pajunen 2001; Sarela 2004; Särelä
and Valpola 2005) is related to the filtering by optimal projection
(FOP) and common spatial pattern (CSP) algorithms (Koles et al.
1990; Boudet et al. 2007; Blankertz et al. 2008), which have been
widely used for classification in the brain computer interface (BCI)
literature (see also Fukunaga 1990; Parra et al. 2005). In previous
studies, we used this technique to remove noise components so as to
maximize a trial-averaged response (de Cheveigné and Simon 2008;
de Cheveigné 2010, 2012). Processing was performed using the
NoiseTools toolbox (http://audition.ens.fr/adc/NoiseTools).

Optimally tuned LFP components. DSS analysis was applied as
described above, once for each stimulus frequency, each time keeping
only the first component (the linear combination best tuned to that
frequency). This yielded a set of optimally tuned components, one for
each stimulus frequency. Each component is associated with a set of
weights to be applied to the electrode signals and a time series
(weighted sum of electrode signals). To test for overfitting, we also
performed the calculation according to a jackknife “leave one out”
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Fig. 1. Principle of the analysis. A: neural
sources (left), some of which are well tuned
(top), others not (bottom), combine to pro-
duce poorly tuned local field potentials
(LFPs) recorded by an electrode array (mid-
dle). These are combined optimally using the
denoising source separation (DSS) method to
produce a well-tuned component (right).
Plots depict schematized spectrotemporal re-
ceptive fields (STRF) that represent the re-
sponse over time (abscissa) for each stimulus
frequency (ordinate). B: stages of the DSS
analysis. Matrix of observations (left) is sub-
mitted to a principal component analysis
(PCA) and the principal components (PCs)
are normalized (middle). A bias function is
applied (see text), and a second PCA is
performed. First PC yields the optimally
tuned component (right). C: schematic illus-
tration of how DSS works: raw data (left, e1
and e2) are selective to a feature (represented
here as color), but this selectivity is obscured
by other nonselective features. PCA (second
to left) by itself cannot help because the
selective dimension does not correspond to
a dimension of maximal (or minimal) vari-
ance. Normalization (middle) removes all
influence of variance, so the data are now
spherically symmetrical. Bias (next to right)
then breaks the symmetry, emphasizing the
selective direction, and a final PCA (right, c1
and c2) aligns it with the coordinate axes in
such a way that the first component (vertical)
is the direction of maximal selectivity in the
data. In the present study, the “selective
direction” that we are searching for is the
linear combination of LFPs that maximizes
selectivity to a particular stimulus frequency.
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procedure. The DSS solution was calculated based on a subset of
seven trials and applied to the eighth, and this was repeated eight
times, permuting the roles of the trials. The outcome of these eight
calculations were averaged to obtain the “optimal component.”

The response of a component (or electrode signal) was character-
ized by plotting its time course for each stimulus frequency to obtain
a STRF as in Fig. 2A. Tuning along the frequency axis was summa-
rized by calculating the root mean square (RMS) of the LFP averaged
over the initial 100 ms postonset interval, and plotting this value as a
function of stimulus frequency as in Fig. 2B. Tuning curves were
smoothed by convolution with a three-point square window, and the
best frequency (BF) of the electrode or component was defined as the
frequency that produced the largest RMS. The bandwidth of tuning
was quantified as follows. A criterion RMS value was set half way
between the peak and mean values of the RMS over frequency.
Starting from the peak, the right edge was defined as the first
frequency for which the response 1) fell below criterion and 2) re-
mained below criterion for at least one octave. The left edge was
defined in an analogous fashion, and the bandwidth was defined to be
the ratio (in octaves) between right and left edges (Valentine and
Eggermont 2004; Shechter and Depireux 2007). If the criterion was
exceeded for some frequency outside the left-right interval, the tuning
curve was classified as multimodal (multiple peaks); otherwise it was
unimodal (single peak).

To compare tuning between raw LFPs and DSS components, for
each electrode we selected the DSS component with the most similar
tuning curve (quantified by the Pearson product-moment coefficient
between electrode and component tuning curves). This gave us a
selection of 16 components with characteristics most similar to each
of the 16 electrode signals.

For comparison purposes, we also quantified the Multi-Unit re-
sponse collected from each electrode [see Gaucher et al. (2012) for
details]. The spectrotemporal characteristics of the spike response of
an electrode were characterized by plotting the firing rate as a function
of time for each stimulus frequency (spike-based STRF). Tuning and
bandwidths were calculated as for the LFPs. Thus for each of the 16
electrodes we had bandwidth estimates for the LFP, the closest DSS
component, and the spikes.

RESULTS

Figure 2A shows data obtained at 75 dB SPL from a typical
session. For each electrode, the initial 100 ms of the LFP signal
is represented according to a color scale (red � positive,
blue � negative) as a function of time (abscissa) for each
stimulus frequency (ordinate). The response generally includes
an initial short deflection that peaks at a latency of �15–20 ms,
followed by a later, slower deflection of opposite polarity.
Some electrodes respond over much of the frequency range
(e.g., electrodes 1–3 or 14–16 in Fig. 2A), for others the
response is greatest for a restricted range of stimulus frequen-
cies. Frequency responses are summarized in Fig. 2B, each row
representing in color the “tuning curve” of one electrode,
defined as the RMS of the LFP over the first 100 ms as a
function of frequency. For most electrodes, the response is
tuned to a particular frequency, and furthermore the BFs
appear to be distributed following a tonotopic gradient, evident
in Fig. 2C. For comparison, Fig. 2D shows tuning curves for
spikes on the same electrodes. BFs seem to be similar for
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Fig. 2. Data collected at 75 dB in the auditory cortex of a guinea pig. A: time course of LFP for each stimulus frequency (ordinate) for each electrode (also called
spectrotemporal receptive field, STRF). For visual convenience, data for 37 each electrode are normalized by dividing by the maximum absolute value. Time
is counted from stimulus onset, and values are coded as color. B: normalized LFP tuning curves for each electrode [root mean square (RMS) of signal over the
first 100 ms of the response as a function of frequency coded as color]. C: spatial distribution of LFP-based best frequencies (BFs) coded as color. D: normalized
spike tuning curves for each electrode (number of spikes over the first 22 ms as a function of frequency coded as color). Note the wider tuning of LFPs compared
with spikes.
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spikes and LFPs, but tuning is somewhat narrower for spikes
(compare Fig. 2, B and D).

These trends hold over the population of electrodes and ses-
sions (16 electrodes � 47 sessions). For the subpopulation for
which both LFP and spike tuning curves were unimodal, BFs
were roughly matched (Fig. 3, left; red points are clustered around
the diagonal). Spike tuning curves were generally narrower than
LFP tuning curves (Fig. 3, right; most red dots are below the
diagonal). Median bandwidths for LFPs and spikes were 1.5 and
1.1 octaves, respectively (Wilcoxon rank sum test P � 0.0002).
The 10th percentiles were 1 and 0.6 octaves, respectively. This is
consistent with previous studies that found LFP responses to be
less well tuned than spikes (Eggermont 1996; Noreña and Egg-
ermont 2002; Noreña et al. 2008; Eggermont et al. 2011; Gaucher
et al. 2012; Kajikawa and Schroeder 2011).

DSS was applied repeatedly to the 16-channel data of each LFP
session, each repetition favoring a different stimulus frequency
(see METHODS). This resulted in a set of 97 or 129 components,
depending on the number of frequencies in the stimulus set.
Figure 4B shows the STRF of one particular component, chosen
for the similarity of its BF (10.7 kHz) to that of one electrode
(electrode 11 in Fig. 2A). The STRF of this component appears
narrower than that of the electrode, as evident in Fig. 4C where
their tuning curves are compared. Tuning curves of all 97 com-
ponents are plotted in Fig. 4B as a raster plot. Stimulus frequency
is indicated on the abscissa, and the RMS amplitude at each
stimulus frequency is coded as color. Over the range for which
electrodes were well tuned (5–20 kHz), the components were
quite narrow and their BFs formed a continuum covering that
range. Figure 4D shows the same result obtained with a jackknife
procedure designed to test for overfitting (see METHODS). The
similarity with Fig. 4B suggests that overfitting does not play a
major role in these results (see DISCUSSION). Figure 4E shows the
weights applied to each electrode signal to obtain the optimally
tuned component in Fig. 4C. Figure 4F shows weights for all
components (see DISCUSSION).

To allow a quantitative comparison among the tuning of
LFPs, DSS components, and spikes, for each electrode we
chose a single component with tuning curve most similar to
that of the electrode (quantified by the Pearson product mo-
ment coefficient, see METHODS). The 16 components obtained in
this way, one for each electrode, can be seen as “cleaned” or
“sharpened” versions of the 16 LFP signals. Bandwidths of
electrodes and closest components for the entire data set are
plotted as a scatterplot in Fig. 5, left. Most points are well
below the diagonal, indicating that tuning of components is

sharper than that of LFPs (Wilcoxon rank sum test P �
0.0001). The numerous green circles indicate that in many
cases the LFP was multimodal whereas the corresponding
component was unimodal. Components were more often uni-
modal than either raw LFPs or spikes (471 vs. 122 and 315,
respectively, out of a total of 752 recordings, Wilcoxon rank
sum test P � 0.0001). Spike and component bandwidths are
plotted as a scatterplot in Fig. 5, left. The lower limit of
component bandwidths, as quantified by their 10th percentile,
is similar to that of spikes (0.5 octave for components and 0.6
octave for spikes, vs. 1.1 for LFPs).

In several instances (14 sessions), data were collected at
three stimulus intensities (35, 55, and 75 dB SPL) for the same
electrode position in the same animal. Figure 6A shows DSS
tuning curves for one such instance. Plots on a row represent
DSS solutions calculated at a particular stimulus intensity, and
plots within a column represent the result of applying DSS
solutions to data for a particular stimulus intensity. For plots on
the diagonal, the DSS solutions were calculated based on, and
applied to, data for the same stimulus intensity. Results were
similar at all three intensities (plots on the diagonal). Plots off
the diagonal represent solutions calculated at one intensity and
applied to another. The similarity of diagonal and off-diagonal
plots suggests that solutions generalized, to some extent, to
data measured at another intensity. For this particular position
of the electrode array, tuned components were found for
frequencies �8 kHz. Below that frequency, tuning curves are
more erratic, presumably because the electrode array did not
span regions responsive to low frequencies. For a different
penetration in the same animal, the range of well-tuned com-
ponents was shifted to lower frequencies (not shown).

Figure 6B shows component bandwidth as a function of BF
for each intensity (restricted to recordings for which the tuning
curve was unimodal at all 3 intensities). Relative bandwidths
tend to be smaller for high than low BF, as expected from
well-known properties of cochlear selectivity. They are also
smaller at lower intensities (medians: 0.9, 1.2, and 1.5 octaves
at 35, 55, and 75 dB, respectively; Wilcoxon rank sum test for
35 vs. 55 dB, P � 0.0001; 55 vs. 75 dB, P � 0.0034). The
same trend was observed for raw LFPs (medians: 1.5, 2, and
2.9 octaves at 35, 55, and 75 dB, respectively; Wilcoxon rank
sum test for 35 vs. 55 dB, P � 0.0001; 55 vs. 75 dB, P �
0.0001) and spikes (medians: 0.9, 1.4, and 1.9 octaves at 35, 55,
and 75 dB, respectively; Wilcoxon rank sum test for 35 vs. 55 dB,
P � 0.0001; 55 vs. 75 dB, P � 0.0001). This is in agreement with
previous studies that also found narrower LFP tuning at low rather
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than high intensities, at least for spectrally sparse stimuli (Galván
et al. 2001; Pienkowski and Eggermont 2011).

Simulations

To better understand the nature of the DSS components, and
assign them a physiological meaning, we ran a simulation

involving a set of 40 simulated “neural sources” observed from
a set of 16 simulated “electrodes.” Each source responded to
stimulation with a stereotyped time course consisting of one
cycle of a sinusoid (to mimic the time course of an LFP
response), with an amplitude that depended on stimulus fre-
quency (to mimic frequency tuning). Source BFs ranged from
0.25 to 32 kHz (Fig. 7A). These 40 source signals were mixed
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to form 16 electrode signals via a 40 � 16 mixing matrix.
Matrix coefficients were drawn at random, but their values
were spatially smoothed to mimic correlations between
sources and between electrodes, and values near the diago-
nal were made larger to mimic a rough tonotopy (Fig. 7B,
left). The STRFs of eight of the simulated electrodes are
plotted in Fig. 7C. Similar to real data, these STRFs are
multimodal with peaks that roughly follow a tonotopic axis.
DSS analysis was applied to the simulated data in the same
way as with the real LFP data. This resulted in a set of
relatively well-tuned components over much of the fre-
quency range (Fig. 7B, right). Note that the aim here is not

to accurately model LFP recordings but to clarify the mech-
anisms of source-to-electrode mixing and electrode-to-com-
ponent analysis.

Additionally, to simulate the potential effect of incom-
plete sampling of the tonotopic axis by the electrode array,
or the effect of nontuned sources, the values of the mixing
matrix for low-frequency sources were set to zero, and those
for high-frequency sources were given the same value for all
electrodes (Fig. 7D, left). Tuning of DSS components in this
case is shown in Fig. 7D, right. The outcome is similar
except that components for bias frequencies within the
missing ranges were poorly tuned (Fig. 7D, right), not
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unlike patterns observed for real data in some frequency
ranges (e.g., Fig. 4D or Fig. 6A).

Looking at the narrow and regularly distributed tuning
curves of Fig. 7B, right, it is tempting to conclude that the
method discovered a “demixing matrix” that recovered the well-
tuned sources that underlie the data. Two additional simulations
show that this is not necessarily the case. In Fig. 8A, the tuning of
the sources was three times wider than in Fig. 7, and in Fig. 8C,
it consisted of a high-pass transition rather than a peak. For
these simulations we used the same “incomplete” mixing
matrix as in Fig. 7D, left. Despite the wider and/or high-pass
tuning of the sources, the recovered components (Fig. 8B, left)
and (Fig. 8D, left) appear to be at least as narrow as for the
previous simulation. Interestingly, with a wider tuning (Fig.
8A) the component array is well tuned over a wider range of
frequencies than with narrow tuning (compare Fig. 8B with
Fig. 7D, right). We also investigated the effect of adding
noise to the electrode signals. In the presence of Gaussian
white noise at 0 dB signal-to-noise ratio (equal power for
noise and signal), component tuning is wider (more similar
to that observed in real data) and more strongly dependent
on the tuning of the underlying sources (Fig. 8B, right) and
(Fig. 8D, right). This suggests that the degree of component
tuning that we see for real data is determined by multiple
factors including noise. The main message to retain from
these simulations is that we cannot assume that the compo-
nents recovered by DSS correspond one-to-one to neural
sources that produced the LFPs. The issue of how to
interpret the components is addressed further in the DISCUS-
SION.

DISCUSSION

Our analysis found linear combinations of LFPs with tuning
characteristics that were often simpler (unimodal instead of
multimodal) and narrower than those of the raw signals col-
lected by the electrodes.

How Does the Analysis Work?

The DSS algorithm is conceptually easy to understand (see
cartoon in Fig. 1C). Each of the LFP signals measured by the
electrode array reflects neural sources to varying degrees,
because of the different amplitudes, gains, and degrees of
spread across electrodes. The measured signals are usually
strongly correlated between electrodes. The first step of the
DSS algorithm, PCA followed by normalization, factors out
these “nuisance parameters” by decorrelating the data and
giving equal variance to all dimensions, so that the data are
“spherical” and free to rotate in multidimensional space (Fig.
1C, middle). The second step, bias, has the effect of empha-
sizing certain directions in this space, so that the data cloud is
no longer spherical but rather extends more along certain
directions, like a rugby ball. The last step of DSS, PCA, finds
a new coordinate system aligned with the principal axes of
the biased data (Fig. 1C, right). The transform that takes the
initial data (electrode signals) to this new basis (DSS com-
ponents) is linear, and in particular the first component is the
most selective linear combination of electrode signals. The
selectivity of a component benefits both from an emphasis to
the appropriately tuned sources (via large weights to those
electrodes with a good signal-to-noise ratio) and from sup-
pression of spurious sources (via a combination of positive
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and negative weights that cancels them). This is obvious in
Fig. 4, E and F, which shows nonzero weights over much of
the electrode array.

Risk of Overfitting

The optimal linear combinations are guaranteed to be better
tuned than any of the electrodes, as evident in Fig. 5, left:
almost all points are below the diagonal (the rare exceptions
are explained by the fact that maximizing the power ratio
between one frequency and all others does not precisely min-
imize bandwidth according to our definition). Sixteen free
parameters are involved in each component, and therefore
some degree of tuning might emerge due to a chance combi-
nation of parameters. Several features suggest that this is not a
major factor in our results. First, solutions calculated from one
data set generalized to other data sets (see, for example, the
off-diagonal plots in Fig. 6A, for which the solution was
derived at one intensity and applied to another). Second, the
method readily failed over frequency regions not sampled by
the electrodes (e.g., Fig. 4B or Fig. 7D, right). Third, we
explicitly tested for overfitting with a jackknife “leave one out”
procedure, in which the solution was calculated based on a
subset of seven trials and applied to the eighth. This calculation
was repeated, leaving out each of the trials in turn, and the
results were averaged. The outcome of the standard and jack-
knife procedures is very similar. Comparing Fig. 4, B and D,
the only obvious difference is a faint ridge along the diagonal
present in the former and absent in the latter, reflecting the
better fit for frequencies matching the bias (average correlation

coefficient between rows �0.99). The tuning revealed by DSS
thus appears to reflect a genuine property of the neural activity
sampled by the LFPs rather than the effect of overfitting.

Sources, Electrodes, and Components

What do we mean by “neural source”? At the microscopic
level, each synaptic event (excitatory postsynaptic current or
inhibitory postsynaptic current) is reflected by multiple current
sources and sinks distributed along the dendrites, soma, and
axon of the postsynaptic neuron, with waveforms that vary
with position due to membrane filtering properties (Lindén
et al. 2010). Assuming linearity between currents and potential
(Ohm’s law), each synaptic event induces a potential at the
electrode that is the weighted sum of these elementary sources
and sinks. The measured LFP integrates these potentials over
events and neurons (Nunez and Srinivasan 2006; Lindén et al.
2010), thus collapsing a very high-dimensional space of activ-
ity into a single signal (for a single electrode) or set of signals
(for an electrode array). In mathematical terms, the neural
activity is projected on the subspace spanned by the electrodes,
so that many distinct patterns of neural activity map to exactly
the same measured response. The contribution of any given
neural source to this projection depends on multiple factors,
including distance to the electrode, geometry of the neuron’s
dendritic field, e.g., “open” vs. “closed,” and parallel orienta-
tion of neighboring neurons (Nunez and Srinivasan 2006;
Lindén et al. 2010).

LFPs therefore offer an impoverished view of the neural
activity because of the small dimensionality of the subspace
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that they span. Component analysis addresses a different prob-
lem, which is to find points within that subspace (i.e., linear
combinations of electrode signals) that are the most meaning-
ful. Raw electrode signals span the observation subspace by
definition, but they are not necessarily its most interesting
points. Component analysis searches for more interesting sig-
nals that might correspond to groups of neurons that are
functionally related (for example similarly tuned) or that reflect
information that a downstream neuron might usefully extract.

To recapitulate: the interpretation of LFPs recorded by
electrode arrays is limited in two fundamental ways: 1) the
observed signals sample a low-dimensional subspace of the
high-dimensional neural activity, and 2) they are not the most
informative elements of this subspace. Component analysis
addresses the second limitation by offering a better view of the
available information, but there is no way to alleviate the first
except by using more electrodes or positioning them better.

It is tempting to assign each component to the activity of an
individual neural source within the brain and to infer neural
tuning from the component tuning. Such a lucky outcome
cannot be ruled out, but our simulation warned us that sharp
and unimodal component tuning curves can also arise from
underlying sources with a variety of tuning patterns. Thus it is
not necessarily the case that components map to neural
sources. Rather, the existence of a sharply tuned component
implies that the tuning is “latent” in the LFP signals sampled
by the electrodes, in the sense that it could be read out by a
downstream neuron capable of forming a linear combination of
its inputs. This weaker interpretation is probably the best we
can hope for, given that the measured LFPs themselves are
linear combinations of multiple neural sources with unknown
weights.

From an epistemological point of view, we may feel uncom-
fortable with the idea of reporting “components” in lieu of, or
in addition to, directly observed data such as raw LFPs.
However, the power of multichannel recording (beyond the
efficiency gain provided by parallel observations) resides pre-
cisely in the possibility of performing such linear analyses. In
this sense, the unit of observation is the subspace spanned by
electrode signals, and component analysis is required to make
the most of this observation. Here we used component analysis
to reveal frequency tuning, but it is potentially useful as a
general tool to find evidence of neural activity that reflects task
or stimulus conditions, reveal oscillatory activity, etc. (see A
General Tool for LFP Analysis). We argue that this is a
paradigm shift that is rendered inevitable by multichannel
techniques if we are to reap their full benefit.

As an aside, it is interesting to note that the components
obtained for the widely tuned or high-pass sources of Fig. 8A
were similarly tuned as those for the narrowly tuned sources of
Fig. 7A. This illustrates the point made by Pouget et al. (1999)
that narrow tuning is not an essential quality for a population
code, as various tuning functions can be “resynthesized” by
combining adjacent channels, subject to noise constraints.
Mach and Helmholtz had earlier put forward the idea that the
resolution of a coarsely sampled sensory continuum can be
increased by interpolation between its elements, and various
schemes based on lateral inhibition have been proposed to
increase selectivity within the auditory system (e.g., Huggins
and Licklider 1951; Shamma 1985). Interpolation and lateral
inhibition are special cases of the wider class of linear combi-

nations that are subsumed by component analysis algorithms
such as DSS.

Frequency Tuning in Auditory Cortex of Guinea Pigs

LFP recordings were frequency selective but with tuning
curves that were often multimodal (black dots and green circles
in Fig. 3, right), as observed in other studies (Noreña and
Eggermont 2002; Eggermont et al. 2011; Gaucher et al. 2012).
Those tuning curves that were unimodal were wide (median
1.5 octave) relative to tuning curves of spikes recorded on the
same electrode (median 1.1 octave), as found in other studies
(Noreña and Eggermont 2002; Eggermont et al. 2011; Gaucher
et al. 2012; Gourévitch and Edeline 2011; Kajikawa and
Schroeder 2011).

LFPs are assumed to mainly reflect the input, and spikes the
output of cortical neurons, and thus narrower tuning for spikes
has been interpreted as the result of cortical processing (Noreña
and Eggermont 2002), for example based on the balance of
inhibitory and excitatory inputs to individual neurons (Wehr
and Zador 2003; Wu et al. 2008). Our results offer a new
perspective on this issue. Components were more often uni-
modal than raw LFPs, a major effect of component analysis
being to suppress secondary modes, presumably by reducing
the contamination from more distant sources that are either
broadly tuned or tuned to other frequencies. They were also
narrower (Fig. 5, left) with bandwidths more in line with
spikes. This is consistent with two possible interpretations:
1) neural sources underlying the LFP are well tuned, the mismatch
between LFPs and spikes being due to the low-pass filtering of
more distant sources (Bedard et al. 2010; Lindén et al. 2010).
2) Neural sources underlying the LFP are no better tuned than
the LFP, but narrow tuning can be “read out” by a downstream
neuron capable of forming a linear combination of activity
similar to that sampled by the LFP. We cannot distinguish
between these two hypotheses, but we can rule out a third:
3) tuning is not present within the LFP activity.

Narrow tuning has also been found in the CSD profile from
electrode arrays inserted perpendicularly to the surface of
auditory cortex of awake monkeys, compared with raw LFPs
from individual electrodes (Kajikawa and Schroeder 2011).
CSD is based on the second spatial derivative of the electrode
array that involves a series of weights with alternating signs. If
that pattern of weights were optimal for frequency tuning, it
would necessarily be found by DSS, and indeed, there is some
hint that nonzero weights of individual components may some-
times occur in pairs (e.g., 	-) or triplets (e.g., 	-	) with
alternating signs, although in general the patterns are more
complex (Fig. 4E). The advantage of our technique is that it is
guaranteed to find the optimally tuned component whatever the
underlying geometry.

Component analysis is a useful tool for data analysis, but it
can also be taken as a model of linear processing within the
dendritic field of a cortical neuron, excitatory and inhibitory
inputs mapping to positive and negative weights, respectively.
This model subsumes classic hypotheses of enhancement of
sensory representations by interpolation or lateral inhibition, as
well as recent proposals of linear summation of excitatory and
inhibitory input (Wehr and Zador 2003; Wu et al. 2008;
Eggermont et al. 2011). The optimal solution found by DSS
provides an upper limit of the selectivity that such a neuron
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could potentially achieve, if its inputs were restricted to the
subspace sampled by the electrode array. The two ingredients
of DSS, PCA and normalization, can be performed by neural
mechanisms such as Hebbian plasticity (Oja 1982; Swinehart
and Abbott 2006; Carandini and Heeger 2011), suggesting that
a cortical neuron might find these optimal weights adaptively
according to the task at hand. This hypothesis is attractive as
frequency discrimination is only one of many tasks that an
organism needs to do with its ears. The model might explain
the super-sharp tuning that has recently been observed in
cortex of both humans (Bitterman et al. 2008) and monkeys
(Bartlett and Wang 2011). Analysis techniques such as we
propose give a more complete picture of the information
carried by the LFPs sampled by multielectrode arrays.

A General Tool for LFP Analysis

DSS offers a simple way to “interrogate” multichannel LFP
data for sensitivity to a parameter of interest. Here we focused
on selectivity to stimulus frequency, but stimulus-locked ac-
tivity (de Cheveigné and Simon 2008), narrowband oscillatory
activity, and activity specific to a class of stimuli (e.g., animal
calls) or behavior (e.g., hit vs. miss) can likewise be isolated.

As an example, DSS may be used to isolate narrowband
cortical activity within multichannel data, such as EEG or
MEG. In this case, the bias applied is a bandpass filter, and the
method produces a series of components ordered in terms of
decreasing power in that band. The first component is the linear
combination of channels with highest power at the output of
the filter relative to the input. The second is optimal within the
subspace orthogonal to the first and so-on. The subspace
spanned by the first few components may be projected back
into electrode or sensor space, or individual components may
be singled out for analysis. In contrast to time-frequency
analysis, where temporal smearing occurs due to the temporal
extent of the analysis filters, DSS involves no loss of temporal
resolution. Although a filter is used to derive the DSS matrix,
no filter is involved when the matrix is applied. The time
course of features such as “event-related synchronization or
resynchronization” (ERS, ERD) may thus be followed accu-
rately.

The method is effective to factor out irrelevant response
components and noise, for example, common-mode compo-
nents. Other techniques may have a similar effect (e.g., sub-
traction of the mean over electrodes, or CSD, or differential
montages used in EEG), but DSS is at least as effective by
construction and in many cases significantly more. In the
future, as the density of electrode arrays increases, such linear
processing will be needed to take full advantage of the data:
given the redundancy between electrodes caused by current
spread, increasing the density of an array does not produce
radically new LFP waveforms, but it does increase the dimen-
sionality of the data that the component analysis can exploit to
tease apart weak components of the response.

The basic linear DSS can be extended in several ways, for
example, by applying convolutional or nonlinear transforms to
the data (de Cheveigné 2010, 2012). The authors of the DSS
method (Särelä and Valpola 2005) also discuss nonlinear
versions of the algorithm. From a practical point of view, the
algorithm requires calculation of two covariance matrixes (see
METHODS), one for each of the conditions to contrast (in our

case: response to all frequencies, and response to one fre-
quency). These undergo a generalized eigenvalue decomposi-
tion (Parra et al. 2005) from which the analysis matrix W is
derived. Similar techniques have proved useful in brain com-
puter interfaces (Blankertz et al. 2008).

Conclusion

In the auditory cortex, the wider and more complex tuning
recorded from LFP compared with spiking activities can result
from a greater overlap of responses from neural sources with
different tuning due to current spread. Such mixing effects can
potentially be reversed by forming linear combinations of
electrode signals using component analysis techniques. We
used DSS to calculate optimally tuned components based on
LFPs recorded with a 16-channel array in auditory cortex of
guinea pigs. Component receptive fields were in general sim-
pler (unimodal rather than multimodal) and narrower than
LFPs, with tuning characteristics similar to spikes. Component
analysis gives a more complete picture of the electrical activity
sampled by the multichannel LFP signals than the raw LFP
signals and usefully complements descriptions of the raw data.
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