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SUMMARY

Before a natural sound can be recognized, an
auditory signature of its source must be learned
through experience. Here we used random wave-
forms to probe the formation of new memories for
arbitrary complex sounds. A behavioral measure
was designed, based on the detection of repetitions
embedded in noises up to 4 s long. Unbeknownst to
listeners, some noise samples reoccurred randomly
throughout an experimental block. Results showed
that repeated exposure induced learning for other-
wise totally unpredictable and meaningless sounds.
The learning was unsupervised and resilient to
interference from other task-relevant noises. When
memories were formed, they emerged rapidly, per-
formance became abruptly near-perfect, and multi-
ple noises were remembered for several weeks.
The acoustic transformations to which recall was
tolerant suggest that the learned features were local
in time. We propose that rapid sensory plasticity
could explain how the auditory brain creates useful
memories from the ever-changing, but sometimes
repeating, acoustical world.

INTRODUCTION

One basic goal of auditory perception is to recognize the plau-

sible physical causes of incoming sensory information. In order

to do so, listeners must learn recurring features or templates of

complex sounds and associate them with specific sound sour-

ces, such as a familiar voice, a piano, or a bird singing. Most of

our knowledge on auditory memory is based on simple sounds

(for a review, see Cowan, 1984; Demany and Semal, 2008;

Jääskeläinen et al., 2007) or speech sounds (for a review, see

Baddeley, 1997). How templates emerge from everyday auditory

experience with arbitrary complex sounds is currently largely

unknown. It has even been suggested that auditory memory for

natural sounds may be remarkably poor (Cohen et al., 2009), in

contrast to visual memory, which is able to store details of thou-

sands of images after a single exposure (Brady et al., 2008).
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Here we used random acoustic waveforms as a tool to

observe the creation of new auditory memories. Random noises

may be particularly suitable for probing the formation of memo-

ries: before learning, random noises all sound like a hiss; yet,

they are acoustically diverse, and the listener would not have

been exposed to a given sample before the experiment. Noises

are meaningless, and no label can readily be attached to

different samples, so semantic processing will not interfere

with the acoustic memorization process (Cohen et al., 2009).

Acoustic details in noise are totally unpredictable, so memorizing

them should be particularly challenging and would test any

learning mechanism to the extreme, compared to more predict-

able sounds (Overath et al., 2007). Finally, by collecting behav-

ioral responses after each exposition to the noise, the temporal

dynamics of memory formation can be characterized.

The use of noise to probe auditory memory can be traced back

to the seminal work of Guttman and Julesz (1963). They intro-

duced a paradigm where a given segment of noise was ‘‘frozen’’

and then repeated identically several times. Discriminating

repeated noise from plain random noise requires some form

of memory of the repeated waveform. Over a wide range of

segment durations and repetition rates, listeners were found to

be able to detect repetitions (Guttman and Julesz, 1963; Warren

et al., 2001). The repeated-noise paradigm has thus been

used to investigate several time constants of nonverbal auditory

memory, from tens of milliseconds to tens of seconds

(Kaernbach, 2004). Long-term memory traces have also been

investigated by using the same noise samples throughout an

experimental block (Goossens et al., 2008; Hanna, 1984).

However, some essential characteristics of the everyday

learning of new sounds have not been addressed with the noise

paradigm. A first issue is that learning should be possible even

in an unsupervised fashion. In a typical auditory scene, it is not

obvious which segments of the ongoing sounds should be

memorized and which can be safely ignored. In the repeated-

noise paradigms, listeners knew that repetition would occur

within a trial (Guttman and Julesz, 1963) or that a noise

token could be repeated within a block (Goossens et al., 2008).

A second issue is that intervening sounds are likely to occur

between learning and recall. Repetition detection was shown

to remain possible when purely random noise segments were

inserted between the repeated noise samples (Kaernbach,

2004), but it is unclear whether it may survive the insertion of

other sounds that are actively processed. Also, memories of
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Trial 1 N (No)

Trial 5 N (No)

Trial 7 N (No)

Trial 2 RN (Yes)

Trial 4 RN (Yes)

Trial 3 RefRN (Yes)

Trial 6 RefRN (Yes)

Figure 1. Experimental Method

Samples of Gaussian noise were used as stimuli, illustrated here as schematic

spectrograms containing random amplitude fluctuations across time and

frequency. Listeners were asked to detect those trials that contained a repeti-

tion. The noise (N) trials were formed from segments of noise, so the correct

response would be ‘‘No’’ repetition. The repeated-noise (RN) trials were

formed from the seamless repetition of a half-duration segment of noise, for

which the correct response would be ‘‘Yes.’’ The N and RN trials were gener-

ated afresh for each trial. The reference repeated-noise (RefRN) trials also con-

tained a repetition but, importantly, the exact same reference noise sample

was used over several trials. Those trials were randomly interspersed within

the experimental block and never occurred on two successive trials. Unless

a listener formed some memory for the RefRN sample, RN and RefRN condi-

tions would be indistinguishable and equally difficult. If a memory was formed,

however, one would expect the RefRN trials to become easier. As an illustra-

tion of the memory load imposed by the task, digitally storing a given sample of

0.5 s long RefRN for playback during the experiments required over 105 inde-

pendent bits.
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sounds must be long lasting to be really useful. Memory for

noise has not been tested over time ranges extending past the

duration of a single experimental block. Finally, recall should

be tolerant to some acoustic variations, as the exact same

waveform will never be heard twice in real life. If a paradigm using

noise provides a good model for everyday auditory learning, then

it should display all of these features.

The following experiments investigated the ability of human

listeners to learn new sounds by using a new, indirect measure

of memory for noise. The general experimental method is

illustrated in Figure 1. Listeners were either presented with a

1 s sample of running noise (noise condition, N) or two seam-

lessly repeated 0.5 s samples of noise (repeated noise, RN).

They were asked to detect the repetitions, similar to previous

repeated-noise paradigms (Guttman and Julesz, 1963; Kaern-

bach, 2004; Warren et al., 2001). In the present experiments,

however, one particular exemplar of the RN condition reoccurred

identically in trials interspersed throughout an experimental

block (reference repeated noise, RefRN). Any evolution in perfor-

mance with repeated exposure would indicate the formation of

a memory for the RefRN. Note that learning would have to be

unsupervised: listeners were not told that memorizing trials

across the block might be beneficial, and, in any case, they could

not have identified which trials to memorize without prior learning

(no feedback was given). In addition, RefRN was never pre-

sented on two consecutive trials, so some interference from

intervening trials could be expected. In later experiments, the

same noise samples were used on experimental blocks sepa-

rated by several weeks, which tested for long-term memoriza-

tion. Finally, we investigated whether learning and recall were

robust to a range of acoustic manipulations.

RESULTS

Experiment 1: Fast Learning of Noises
Figure 2A shows the mean sensitivity to repetitions for RN and

RefRN conditions for 12 normal-hearing naive listeners. Perfor-

mance was better for RefRN (mean d0 = 1.0) than RN (mean

d0 = 0.4; t11 = 4.12, p = 0.002). This pattern persisted when six

of the naive listeners repeated the experiment as ‘‘trained’’

listeners. In fact, training accentuated the difference between

RN and RefRN (Figures S1A and S1B). Since RN and RefRN

were generated by the same process, this difference cannot

be attributed to acoustical differences, but rather to the reoccur-

rence of the RefRN stimulus.

Figure 2B shows the mean hit rates plotted in the order of the

individual trials within each block, averaged across the four

blocks for each of the 12 naive listeners. Initially, the hit rates

were the same for RN and RefRN. This was expected because,

again, RN and RefRN were generated from the same random

process and only distinguishable after learning. After that, an

increase in the hit rate for the RefRN was observed. Three-

parameter exponential curves were fitted to the RefRN data by

the least-squares method. The exponential model provided

a significantly better description of the data than a model that

assumed a constant hit rate, even taking into account the addi-

tional two parameters (F2,47 = 8.12, p = 0.001; see Motulsky and

Christopoulos, 2004). This demonstrates that the hit rate for
RefRN improved significantly during the block. Based on the

time constant of the exponential (mean half-life = 3.9 trials),

most of the learning occurred within the first ten presentations

of RefRN.

A similar analysis was also performed on the RN data, and it

showed that the hit rate for RN decreased during the block,

with a similar time course (mean half-life = 6.6 trials; F2,47 =

8.29, p = 0.001). This was explored further in a supplemental

experiment, which compared blocks where only RN had to be

detected and blocks containing both RN and RefRN. The inclu-

sion of RefRN did not affect d0 sensitivity to RN nor the overall

criterion for the block (Figures S1C and S1D). In the framework

of signal-detection theory, these findings account for the mirror

changes in hit rate observed for RefRN and RN in experiment 1:

as sensitivity to RefRN increased during the block through

learning, repetitions in RefRN trials became easier to detect.

However, listeners maintained a constant criterion, that is, they
Neuron 66, 610–618, May 27, 2010 ª2010 Elsevier Inc. 611
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Figure 2. Fast Learning of Noise

(A) Mean repetition-detection sensitivity for the RN and RefRN for the first visit

of 12 naive listeners in experiment 1. Error bars are 95% confidence intervals.

Sensitivity was significantly better for RefRN than for RN. Trained listeners

showed an even larger difference (Figures S1A and S1B).

(B) The variation of RefRN (red) and RN (gray) hit rates throughout the blocks in

experiment 1, averaged over all blocks for naive and trained listeners. The lines

show the best-fit exponential lines for each condition, and the surrounding

bands show the 95% confidence intervals of these fitted exponentials. Hit

rates for RefRN increased, while hit rates for RN decreased. This is accounted

for by a progressively higher sensitivity to RefRN and a constant overall crite-

rion (a balance of ‘‘yes’’ and ‘‘no’’ responses), leading to a decrease in RN hit

rates (Figures S1C and S1D).

(C) The distribution of the hit rates on the last 40 RefRN trials of each block. The

line shows a normal curve fitted to the left cluster of mean scores.

(D) The same data shown in red in (B), but separated into the two clusters of

blocks highlighted in (C): those in which 90% or greater was scored in the

last 40 trials (upward-pointing triangles) and those under 90% (downward-

pointing triangles). After a fast initial improvement (half-life = 2.0 trials), perfor-

mance is almost perfect in the cluster of good blocks.
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chose to balance their ‘‘yes’’ and ‘‘no’’ responses so that they

reported repetitions on about half of the trials. To do so, they

had to increase their response threshold, which resulted in

a drop in RN hit rate (and in false-alarm rate, data not shown).

It was noted that performance for RefRN was highly variable.

Figure 2C shows the distribution of the mean hit rates for the

last 40 RefRN trials in each block for each listener (i.e., after

most of the learning had occurred in the first ten RefRN trials).

The distribution is bimodal, with approximately two-thirds of

the scores normally distributed around a mean of 47% and

with the remaining third of scores exceeding 90%. These near-

perfect scores were not limited to a small number of individuals:

7 of the 12 listeners detected 90% or greater in at least one of

their blocks, and one listener did so in all four of his blocks.

Nor were the high scores an effect of training: three of them
612 Neuron 66, 610–618, May 27, 2010 ª2010 Elsevier Inc.
occurred on listeners’ first blocks, and the rest were spread rela-

tively evenly across the remainder.

Figure 2D shows the average hit rate for RefRN over the course

of each block for the 15 blocks in which over 90% was scored

(upward-pointing triangles) and the equivalent data for the other

33 blocks (downward-pointing triangles). Nearly all of the errors

in the high-performance blocks occurred at the start of the

blocks and after rapid learning (half-life = 2.0 trials) the partici-

pants were able to detect the repetitions in the RefRN nearly

perfectly. Whereas learning was clearly evident in the high-

performance blocks (F2,47 = 141.49, p < 0.001), no significant

learning was observed in the remaining blocks (F2,47 = 1.71,

p = 0.19). Thus, the learning seems to be primarily driven by

a third of the blocks in which the stimuli were perfectly learned.

Experiment 2: Good Noise, Bad Noise, and Long-Term
Memory Traces
Different RefRNs were used for different blocks in experiment 1,

so some of the performance variability could have stemmed from

acoustic differences between the noises. We used a computa-

tional model to investigate whether outstanding acoustic

features could predict the high-performance blocks. Noises

were passed through a simulation of the auditory periphery,

and outstanding features were identified by comparing results

for a given noise sample to the distribution observed for

Gaussian noises. No correlation was found between behavioral

performance and the acoustic features tested (peaks in the

amplitude envelope and peaks in the spectro-temporal enve-

lope; see Figures S2A and S2B).

It is possible that other feature extraction techniques would

reveal acoustic correlates of performance. However, if some

noises are intrinsically easier to learn than others, this should

hold true for all participants. We tested this with a new experi-

ment, similar to experiment 1, except that the same reference

noises were used across all participants. Furthermore, each

participant completed two blocks of each noise, with the original

objective of allowing a test-retest comparison. To maximize the

potential differences, the RefRNs were selected from those of

experiment 1, choosing five noises that were learned well and five

that were poorly learned, here termed ‘‘good’’ and ‘‘bad’’ noises.

Figure 3A shows the average d0s observed for the good and

bad noises. An independent-samples t test on the d0s measured

for each block showed that listeners were more sensitive to the

good noises than the bad noises (mean d0 = 2.7 versus 2.0; t98 =

3.83, p < 0.001). However, the difference in sensitivity to the two

groups of noises was relatively small.

The average sensitivity to RefRNs overall was higher than in

experiment 1 (d0 = 2.3 versus 1.0–1.4). The improvement in score

seems to have come, not from learning the RefRN faster—it

would be difficult to learn the RefRN observably faster than the

listeners in experiment 1—but from learning more of the RefRN

stimuli. The criterion used in experiment 1 to define a high-

performance block (R90% correct over the last 40 trials) was

achieved on 67% of blocks in experiment 2, compared to only

31% of blocks in experiment 1. More experienced listeners

thus seem to be able to learn more of the noises.

Figures 3B and 3C show the hit rates for the RefRN and RN

noises split between the first blocks and the second blocks
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Figure 3. Good Noise, Bad Noise, and Long-Term Memory Traces

(A) Mean sensitivity to good and bad noises in experiment 2 (red) and the mean sensitivity to RN in the same blocks (gray). Error bars are 95% confidence intervals.

There is a small but significant advantage for good noises, which was not correlated to outstanding acoustic features in the temporal or spectro-temporal enve-

lope (Figures S2A and S2B). Individual data also failed to reveal a strong consensus across listeners for good and bad noises (Figure S2C).

(B) The variation of RN (red) and RefRN (gray) hit rates throughout the blocks in experiment 2, averaged over the first presentation of the good and bad noises in

the first ten blocks. The lines show the best-fit exponential lines for each condition, and the surrounding bands show the 95% confidence intervals of these fitted

exponentials.

(C) The equivalent data for the second presentation of the ten noises in the second ten blocks for each listener. There is an advantage for RefRN right from the start

of the block, showing that learning carried over between the two presentations (mean interval 16.5 days).
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that used the same RefRN samples. In the first presentation,

listeners were not significantly more likely to detect repetitions

in the first trials of RefRN and RN (F1,94 = 0.75, p = 0.39); which

was statistically tested using the ‘‘extra sum-of-squares test’’

(Motulsky and Christopoulos, 2004), comparing the independent

fitting of three-parameter exponentials for RefRN and RN with an

equivalent model whose initial value was fitted globally for both

RefRN and RN. This suggests that the good and bad noises

selected were, on average, approximately equivalent to the

RN noises in terms of repetition detection before learning.

In contrast, in the second presentation, the RefRN hit rate

was significantly greater than the RN hit rate from the first trial

(F1,94 = 13.60, p = 0.004). In other words, in the second presen-

tation, the listeners had greater sensitivity for the RefRN right

from the start of the block. In fact, no significant learning was

observed for RefRNs in the second presentation (F2,47 = 0.64,

p = 0.53). Both findings show that some learning from the first

presentation must have carried over to the second presentation.

The mean time between blocks of identical RefRN stimuli for

the same listener was 16.5 days. However, the times between

the first and second presentations for a particular RefRN varied

greatly with noise and listener, because the noises were pre-

sented in a random order and the listeners completed this long

experiment in their own time. We split the data in long and short

intervals between blocks to evaluate the effect of duration on

memory persistence. For the longest interblock intervals for

each listener (median 20 days), there was a nonsignificant

trend of relearning in the second block (F2,47 = 2.78, p = 0.07),

but the small amount of relearning (from a starting point of

86% to an asymptote of 93%, compared to the initial hit rate

of 64% in the first blocks) suggests that at most a few noises

were forgotten and then relearned. No such trend was present

for the shortest interblock intervals (median 10 days). Thus, the

listeners sustained memories of several RefRNs for considerably

long periods of time.
Experiment 3: Identification of Unrepeated Noises
So far, all stimuli included a repetition. Although the learning of

reference repeated noises has been observed, this does not

necessarily entail that the half-second noise samples that consti-

tute the RefRNs were learned. It is hypothetically feasible that

learning was limited to the noise in its repeated form: the listener

could be learning the RefRN as a whole or could be sensitive to

patterns of slow modulations introduced by the repetition.

Experiment 3 tested whether the listeners had learned the indi-

vidual noise samples in experiment 2 by asking them to report

which of a short block of half-second samples corresponded

to the RefRN they heard in the immediately preceding block.

Thus, each participant completed the blocks of this experiment

alternated with blocks from the previous experiment. Given

how quickly listeners were able to learn the RefRNs in the

previous experiments, there was a risk that listeners could also

learn the unrepeated reference noises, even if they were not

able to associate them with the RefRNs learned in the preceding

block. Thus, a ‘‘decoy’’ noise was also included in each block,

which also remained the same from trial to trial, but which had

not previously been presented to the listener.

Results show that the average d0 for the reference noise (d0 =

1.3) was significantly greater than that of the decoy noise (d0 =

0.2; t4 = 5.12, p = 0.007). Listeners were able to recognize clearly

the 0.5 s reference noise sample when presented on its own.

Listeners also had a small but significant tendency to report

recognizing the decoy noise itself (t4 = 9.95, p = 0.001), despite

not being instructed to do so. This suggests that listeners

learned the decoy noise to some extent, even though it was

never presented in a repeated form.

Experiments 4–6: Robustness to Duration and Acoustic
Transformations
In this last series of experiments, we probed the effect of

acoustic parameters on the learning mechanism by testing
Neuron 66, 610–618, May 27, 2010 ª2010 Elsevier Inc. 613
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Figure 4. Robustness to Duration and Acoustic

Transformations

(A) Results for experiment 4. The mean recognition of RN

(gray) and RefRN (red) for noises of different durations

and the mean difference (open circles) with error bars

showing its 95% confidence interval. An advantage for

RefRN is observed for all durations.

(B) Results for experiment 5. Performance after time

compressions and frequency shifts (expressed in semi-

tones) of a previously learned RefRN. Format as in (A).

The analysis is based on the first ten trials after acoustic

transformation to reduce the influence of relearning (the

last ten trials are shown in Figure S3). The RefRN advan-

tage diminishes progressively with greater transformation.

(C) Results for experiment 6. The acoustic transformation

is now a time reversal. Format as in (B), except the mean

RN sensitivity is plotted twice for display purposes. Time

reversal had no significant effect on the RefRN advantage.
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a range of sound durations and by introducing changes after

learning.

Experiment 4 was a replication of experiment 1, but with noise

samples longer (1 s and 2 s) or shorter (0.125 s and 0.25 s) than

the 0.5 s samples used so far. The results are shown in Figure 4A.

Sensitivity to RefRN was greater than RN on average (F1,4 =

167.90, p < 0.001), and in fact for all listeners at all durations.

There was also a condition-duration interaction (F1.84,7.37 =

6.21, p = 0.03), with more learning observed for the 0.5 s noises

than for the shorter noises. A trend for an increase in RN sensi-

tivity with shorter sample durations was also apparent on the

average data, indicating that the repetition-detection task may

have been easier for short samples and/or faster repetitions.

However, there were large between-subject differences at the

shortest durations. Here, the repetitions were likely perceived

as infrapitch (Warren and Bashford, 1981), which some listeners

may not have interpreted as indicative of a repetition. At the other

end of the duration range, it is remarkable that learning was as

good for the 2 s samples as for the 0.5 s samples.

Experiments 5 and 6 introduced acoustic transformations to

a noise sample that had just been learned, to test whether recall

would tolerate these changes. After 80 trials containing 20

RefRN presentations in which listeners had a chance to learn

a given RefRN (same procedure as experiment 1), trials with

acoustic transformations were randomly inserted in the experi-

mental block, without telling the listeners and without feedback.

In experiment 5, the transformation was a time compression: all

features putatively learned in the RefRN were presented in faster

succession with an accompanying frequency shift (0, +2, +4,

or +7 semitones, depending on the condition). To make sure

that listeners could not identify the transformed trials on the basis

of duration, all stimuli were padded to 0.5 s. Results showed that

time-compressed RefRNs were significantly better detected

than RNs for all conditions (t4 = 4.07–10.69, p = 0.001–0.02),

but sensitivity to RefRN depended on the extent of the shift

(F3,12 = 3.72, p = 0.04). This stimulus-shift interaction was driven

by the first ten trials after transformation (F3,12 = 8.14, p = 0.003;
614 Neuron 66, 610–618, May 27, 2010 ª2010 Elsevier Inc.
Figure 4B), with no such effect over the last ten trials (F3,12 = 0.24,

p = 0.87; Figure S3A). Thus, only the large time compressions

impaired recall for previously learned RefRN, which were then

relearned over the course of an experimental block. In experi-

ment 6, the acoustic transformation was a time reversal of the

previously learned RefRN. Perhaps surprisingly, this major

acoustic transformation only resulted in a nonsignificant trend

in reduction in sensitivity compared to the original RefRN (d0 =

2.1 versus 2.3, t4 = 0.66, p = 0.55; Figures 4C and S3B). Both

experiments therefore show that recall is tolerant to a range of

spectral and temporal transformations.

DISCUSSION

Characteristics of Learning: Unsupervised, Fast-Acting,
and Long-Lasting
In the experiments described above, listeners were better able to

detect repetitions in noise samples that were presented several

times throughout an experimental block, compared to noise

samples that were generated afresh for each trial. These two

types of stimuli (RefRN and RN) were generated in the same

manner, the only difference being that identical copies of the

RefRN stimulus reoccurred within a block. Thus, repeated

exposure to a random waveform, up to 2 s long, resulted in the

learning of acoustic details of the waveform.

In the paradigm introduced here, listeners could not have

known, a priori, which of the trials to learn. These could only

be distinguished after a memory trace of the particular RefRN

presented in the experimental block occurred. The listeners

thus learned the RefRN in the absence of explicit exemplars

and without feedback, so the learning was unsupervised. In

another sense, the learning was ‘‘implicit,’’ in that the listeners

were not made aware that the same frozen noises would reap-

pear throughout the block, so they had no incentive to learn

individual noises. The listeners were, however, encouraged to

process the sound. Depth of processing is known to aid the

formation of memories (Craik and Lockhard, 1972) even when
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the stimulus to be learned simply co-occurs with increased

attention to a task (Seitz and Dinse, 2007) or even when it is

paired with a reward in the absence of a task (Seitz et al.,

2009). Still, the lack of any instruction to the participants to

memorize the stimuli reduces the likelihood that listeners could

have benefited from some learning strategies, such as mental

rehearsal. Furthermore, noise is devoid of obvious features

that could provide a basis for mental rehearsal. Rather, the

memories must have been stored relatively automatically.

When learning occurred, it occurred surprisingly fast. In many

cases, listeners tended toward perfect performance with a

half-life of about two trials. After these two trials (four presenta-

tions of the noise), enough acoustic details were memorized

for near-perfect performance. Fast perceptual learning has been

reported before for frequency discrimination (Hawkey et al.,

2004), interaural time differences (Ortiz and Wright, 2009), visual

texture segregation (Karni and Sagi, 1993), and visual spatial

discrimination (Poggio et al., 1992). However, the noise learning

exhibited here occurred on a much shorter timescale than was

observed in these previous studies.

In addition to being fast, the learning was robust and long-

lasting. Once listeners learned a noise in experiment 1, they

maintained almost perfect performance, despite the interference

of intervening RN and N trials, which also had to be actively pro-

cessed and which contained sounds statistically similar to the

sample to be learned. Long-term auditory memories were seen

in experiment 2, in which listeners could remember multiple

noises they had heard in previous blocks on different days.

Although the time between blocks varied, the average time

interval between repeats was more than 2 weeks. Listeners

thus retained memories for multiple individual noises over the

course of days or even weeks, despite the potential interference

of everyday listening.

The characteristics of the learning we observed for noise

samples (unsupervised, fast-acting, resistant to interference,

and long-lasting) would be highly desirable for learning about

the structure of the acoustic environment in realistic situations.

To our knowledge, this is the first time that auditory learning

with such ecologically relevant characteristics has been revealed

by means of a psychophysical paradigm. The paradigm uses

meaningless sounds, so it may also be useful for investigations

with animal models.

Our results are also reminiscent of the phenomenon of

‘‘insight’’ (Köhler, 1925), a sudden improvement in task perfor-

mance that is often long lasting. Although insight is normally

associated with high-level cognitive tasks, perceptual insight

has been demonstrated for stimulus-specific features in vision

(Rubin et al., 1997, 2002). In our experiments, after listeners

learned a given noise sample, they were able to detect it on

almost every trial. This shows that the differences between the

noises were highly salient after learning, even though the exact

same features were initially largely ignored by the listeners. Our

observations may thus be the first demonstration of insight for

‘‘low-level’’ acoustic details of auditory signals.

Features in Noise
Noise has much less structure and predictability than natural

sounds. It thus seems unlikely that listeners memorized the
whole waveform that they were able to recognize. Rather, a

subset of discriminative features may have been used. What

could these features be?

Evaluating the performance of different listeners on the same

set of noise samples is a first way to address this question. In

experiment 2, we found that some noises were indeed easier

to learn than others, but this difference was small. Most of the

more experienced listeners are able to learn most of the noises.

In addition, acoustical analyses failed to reveal any obvious

differences between good and bad noises. These observations

are consistent with the data of Kaernbach (1993), who measured

the ability of listeners to tap in time to repetitions in frozen noise.

He observed both self-consistency and interindividual differ-

ences in the tapping. Given the present data and Kaernbach’s,

at least some of the features learned in noise are likely to be idio-

syncratic; that is, they will not always be the same for different

listeners and the same noise.

The effect of acoustic transformations on recall further con-

strains the nature of features. Time reversal of a previously

learned sample had a surprisingly small influence on recall,

whereas increasingly severe spectro-temporal transformations

eventually led to poorer recall (even though some tolerance to

this transformation was also observed). This pattern of results

would be predicted if the features learned in noise were local

in time: for instance, listeners may have isolated a few random

short-term spectral shapes from each sample (Guttman and

Julesz, 1963). It is unclear yet whether this finding is a general

characteristic of auditory learning or whether it derives from

the statistics of the noise which, by definition, does not contain

long-term spectro-temporal regularities.

As noise contains an arbitrarily large number of random

features, a selection process is needed to single out features

distinctive enough to support almost-perfect performance after

learning. Automatic saliency-detection mechanisms may be

involved (Itti et al., 1998), but they alone are unlikely to account

for our results: some features seem to be idiosyncratic, and

current auditory-saliency models (Kayser et al., 2005) would

not predict any highly salient features in noise. Feature reduction

could also be implemented by a form of competition within

feature space (Desimone, 1996). Repetition suppression (Grill-

Spector et al., 2006) or stimulus-specific adaptation (Ulanovsky

et al., 2003) are widely observed phenomena that may reflect the

changes in neural responses for selected and repeated features.

Top-down processing could also accelerate the learning of

noise, by actively picking out subsets of features. Reverse-

hierarchy theory (Ahissar et al., 2009; Hochstein and Ahissar,

2002) suggests that listeners are initially only aware of the

‘‘gist’’ of a sound (e.g., that it is a noise) but can then access

lower-level features of the sound if required by the task. In the

course of this ‘‘perceptual mining’’ of the noise samples, perhaps

encouraged by our ancillary repetition-detection task, a subset

of the low-level features could be selected and committed to

longer-term memory.

Possible Neural Mechanisms
How might the brain detect the presence of repeating patterns of

sensory activity in the auditory system? Tentatively, several

characteristics of the data are consistent with a modulation of
Neuron 66, 610–618, May 27, 2010 ª2010 Elsevier Inc. 615
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synaptic weights following a spike-timing-dependent plasticity

(STDP) rule (Markram et al., 1997). Recent modeling studies

have shown that neurons equipped with a simple STDP rule reli-

ably become selective to random patterns of afferent activity,

provided that these patterns are presented repeatedly (Masque-

lier et al., 2008, 2009). Importantly for the present experiments,

which used stationary broadband noise, the selectivity emerged

even when no change in firing rate was associated with the

repeated pattern. In addition, STDP detected coincident activity

among afferents, which would be largely preserved for time-

compressed or time-reversed versions of the afferent pattern.

Finally, given the plausible assumption that auditory afferents

have relatively broad frequency tuning, the selectivity would be

tolerant to moderate frequency shifts. These predictions are

consistent with the effects of repetition and acoustic transforma-

tions measured here.

The extreme speed of the learning we observed remains an

issue for any plasticity rule. However, the efficiency (and speed)

of STDP is highest when spike timing is reliable and precise

(Markram et al., 1997). Many stages in the auditory pathways

display highly accurate and reproducible spike-timing character-

istics, including auditory cortex (Elhilali et al., 2004). Combined

with a sparse representation of complex signals (Hromádka

et al., 2008), this may be the key to fast plasticity for repeated

auditory events.

The neural substrate of the plastic changes supporting the

memory of noise is another important outstanding issue. The

current consensus, in several sensory modalities, is that memory

encoding and retrieval recruit a widely distributed network (Alain

et al., 1998; Harris et al., 2001). Rapid adaptive plasticity, defined

as task-dependent changes in the feature selectivity of sensory

neurons, is well documented in primary and secondary auditory

cortex (Atiani et al., 2009; Fritz et al., 2003). However, the neural

substrate of auditory memory formation may also encompass

subcortical areas, as plasticity (Tzounopoulos and Kraus, 2009)

and adaptive coding (Dean et al., 2005) have been observed in

the auditory brainstem.

EXPERIMENTAL PROCEDURES

Experiment 1

Participants

There were 12 listeners with self-reported normal hearing, aged between

19 and 55. They had not previously participated in experiments involving

repeated-noise stimuli. Six of these ‘‘naive listeners’’ returned as ‘‘trained

listeners’’ and repeated the experiment with different RefRNs.

Stimuli

The stimuli were formed from Gaussian noises, generated as sequences

of normally distributed random numbers at a sample rate of 44.1 kHz and a

16 bit amplitude resolution. Each N stimulus was a 1 s sample of noise;

each RN or RefRN stimulus was formed from a 0.5 s sample of noise, concat-

enated to an identical copy of itself without any intervening silence. Both N and

RN were generated afresh for each presentation, but RefRN was identical

within an experimental block.

Procedure

Each block consisted of 100 N trials, 50 RN trials, and 50 RefRN trials. Thus,

half of the trials featured repeated noise, and half were unrepeated noise.

The trials were pseudorandomly ordered, with the restriction that the RefRN

was never presented on two consecutive trials. After each stimulus presenta-

tion, listeners had to report whether or not they heard a repetition in a ‘‘yes-no’’

task. Each listener completed four of these blocks, with each block based on
616 Neuron 66, 610–618, May 27, 2010 ª2010 Elsevier Inc.
a different RefRN. No feedback was given. As part of experiment 1, minimal

training was provided: the listeners were initially presented with demonstration

sounds using ten repetitions of half-second noise samples, resulting in 5 s

stimuli. The number of repetitions was then incrementally decreased. The

listeners did not experience a 1 s, repeated stimulus until the first experimental

block. The training and subsequent four blocks were presented in a single

session.

Analysis

Hit rates and false-alarm rates were analyzed in terms of the sensitivity (d0) and

criterion (c) measures of signal detection theory (MacMillan and Creelman,

2001). Specifically, the d0s for RN and RefRN were calculated from their

respective hit rates (HRN and HRefRN) and the false-alarm rate for unrepeated

noise (F):

d0RN = zðHRNÞ � zðFÞ

d0RefRN = zðHRefRNÞ � zðFÞ

Note that RN and RefRN stimuli were presented in the same block, so they

share a common false-alarm rate. Because of this, it is not possible to measure

two d0s and two criteria independently. However, since participants are known

to be unable to maintain separate criteria (Gorea and Sagi, 2000), we consider

a single measure of criterion, based on the average of the two hit rates.

c =
�1

2

�
z

�
HRN + HRefRN

2

�
+ zðFÞ

�

The d0RN, d0RefRN, and c were calculated for each block based on the 50 RN,

50 RefRN, and 100 N trials, then averaged to get a mean value for each listener

where required.

Apparatus

Stimuli were played through an RME Fireface digital-to-analog converter with

16 bit resolution at 44.1 kHz sample rate. They were presented to both ears

simultaneously through Sennheiser HD 250 Linear II headphones. The presen-

tation level was 70 dB(A). Listeners were tested individually in a double-walled

IAC sound booth. The apparatus remained identical for all subsequent

experiments.
Experiment 2

Participants

There were five listeners with self-reported normal hearing, aged between

21 and 30, including the first author. Three listeners and the first author had

previously participated in experiment S1 (see Supplemental Information); all

listeners but the author had participated in experiment 1.

Stimuli

The N and RN stimuli were generated as in experiment 1, while the RefRN

stimuli were identical to ten of the RefRN stimuli from experiment 1. Specifi-

cally, five ‘‘good noises’’ and five ‘‘bad noises’’ were chosen. The five good

noises were those that elicited the highest d0s in experiment 1, selecting at

most one noise from each listener. This restriction was to promote the selec-

tion of most learnable noises rather than the noises used by the best learners

of noise. The five bad noises were those that elicited the lowest d0s in experi-

ment 1, again selecting at most one noise from each listener, with two further

restrictions: (1) the listeners had to have already scored d0 R 1 for a RefRN in

a preceding block, to show that they were capable of learning the RefRN

stimulus, and (2) the listener had to have scored d0 R 0.5 for the RN in the

same block, to show that the poor learning of the RefRN was not due to

a lack of concentration. The d0s observed in experiment 1 were 2.9–3.9 for

the good noises and 0.5–1.2 for the bad noises. Note that the reuse of the

frozen noises from experiment 1 meant that some listeners had already heard

some of the RefRNs of experiment 2 �4 months previously. Such long-term

memories were not anticipated when designing the experiment but could

have affected the initial RefRN hit rate in 9 of the 50 participant-noise combi-

nations. However, any effect did not lead to a significant difference in the initial

values of the RN and RefRN hit rates (F1,94 = 0.75, p = 0.39).

Procedure

The procedure was the same as for experiment 1, except that there were 20

blocks, completed in sessions with durations of the listeners’ preference.
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The first ten blocks included the five good noises and five bad noises as

RefRNs, presented in a random order for each listener. The last ten blocks

were based on the same ten RefRNs in a different random order. Each of

the 20 blocks was succeeded by a short block testing the recognition of

the frozen RefRN sample presented without repetition, here described as

experiment 3.

Experiment 3

Participants

The participants were the same as for experiment 2.

Stimuli

Each stimulus was a 500 ms sample of Gaussian noise, just like the ones used

to form the repeated noises of the previous experiments. Fresh noise trials

were generated anew for each trial, with 500 ms duration. The reference noise

was always identical to the unrepeated half of the RefRN from the preceding

block (see experiment 2). The decoy noise was generated like a fresh noise

in the first instance, but then reoccurred throughout a block unchanged, like

the reference noise.

Procedure

Each block was formed from 20 reference noises, 40 fresh noises, and 20

decoy noises. The 80 trials were pseudorandomly ordered such that no two

subsequent trials were formed from either two reference noises or two decoy

noises. There were 20 such blocks, each based on a reference noise taken

from the RefRN used in the preceding repetition-detection blocks (see exper-

iment 2). Thus, these data were collected at the same time as the data for

experiment 2. The five participants were asked, on each trial, to report whether

or not they thought the presented noise was the noise from the preceding

block. They were not told that there would also be a decoy noise, but two of

the listeners asked why they were hearing a second noise recurring throughout

the trial; the concept of the decoy noise was then explained to them, and they

were instructed not to report the decoy noise as a target.

Analysis

Here, because there were never more than 20 target trials per block, hit rates

and false-alarm rates were averaged across listeners before d0 was calculated.

Experiment 4

Participants

There were five new naive listeners with self-reported normal hearing, aged

between 21 and 28. A sixth listener was excluded whose RN sensitivity never

exceeded d0 = 0.1, although some learning for RefRN was still observed for this

listener at all durations. None of the listeners had previously participated in

experiments involving repeated-noise stimuli.

Stimuli

The RN and RefRN stimuli were created as in experiment 1, but with each

segment of RN or RefRN being 0.125, 0.25, 0.5, 1, or 2 s in duration. The N

stimuli were double those lengths, so that all stimuli had the same total dura-

tions within a block.

Procedure

Each block was formed in the same manner as experiment 1, except that

the durations of the stimuli varied from block to block. Each of the five dura-

tions was presented in five separate blocks (in a random order), and this

process was repeated four times to form a total of 20 blocks. As for experi-

ment 1, listeners were minimally trained to detect repetitions without use of

any RefRN, but here the training used the full range of durations in the main

experiment.

Analysis

As for experiment 1, d0 and c were calculated for each block then averaged

across blocks of equal duration for the same listener.

Experiment 5

Participants

There were five listeners with self-reported normal hearing, aged between 24

and 31. All listeners had previously participated in experiment 6 and some of

the preceding experiments.

Stimuli

N, RN, and RefRN were created as for experiment 1. Each listener was pre-

sented the same six RefRN stimuli. Time compressions were applied to N,
RN, and RefRN stimuli. Stimuli were resampled at ratios of 8:9, 4:5, or 2:3,

resulting in frequency shifts of +2, +4, or +7 semitones. Before resampling,

the first and second halves of each stimulus were padded with additional

samples of Gaussian noise (repeated for RN or RefRN and different for N) so

that the processed stimuli had the same duration as the original stimuli. The

padding was fresh for each trial, including the RefRN trials.

Procedure

Each block started with a ‘‘learning phase’’, which was formed in the same

manner as experiment 1, but with just 20 RefRN, 20 RN, and 40 N trials.

A ‘‘testing phase’’ immediately followed, unbeknownst to the listeners, as

part of the same block. In the ‘‘testing phase’’, there were 20 RN, 20 RefRN,

and 40 N for each of the four time compression ratios. The ordering within

the testing phase was pseudorandom, such that no two subsequent trials

were identical, but time-compressed counterparts of the same RefRN could

be presented on subsequent trials. Note that listeners were asked to report

whether they had detected a repetition, not whether they had recognized

the sound.

Analysis

As for experiment 3, hit rates and false-alarm rates were averaged within

listener before d0 and c were calculated. Six blocks were excluded because

insufficient RefRN learning was observed (defined as less than 15 out of 20

RefRN trials in the learning phase successfully reported as containing repeti-

tions). These excluded blocks were reasonably evenly distributed across the

listeners.

Experiment 6

Participants

The participants were the same as for experiment 5, although they completed

experiment 6 first. All listeners had previously participated in some of the

earlier experiments.

Stimuli

N, RN, and RefRN were created as for experiment 1. Each listener was pre-

sented the same six RefRN stimuli. A reversed RefRN was also generated,

by simply reversing the order of the waveform samples.

Procedure

Each block started with a ‘‘learning phase,’’ which was formed in the same

manner as in experiment 5. The testing phase was formed from 20 RefRN,

20 reversed RefRN, 40 RN, and 80 N trials. The ordering within the testing

phase was again pseudorandom, such that no two subsequent trials were

identical, but RefRN and its reversed counterpart could be presented on

subsequent trials.

Analysis

As for experiments 3 and 5, hit rates and false-alarm rates were averaged

within listener before d0 and c were calculated. Six blocks were excluded

because insufficient RefRN learning was observed (defined as less than 15

out of 20 RefRN trials in the learning phase reported as containing repetitions).

These excluded blocks were reasonably evenly distributed across the

listeners.
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