
Auditory memory for random time patterns
HiJee Kang, Trevor R. Agus, and Daniel Pressnitzer

Citation: The Journal of the Acoustical Society of America 142, 2219 (2017); doi: 10.1121/1.5007730
View online: http://dx.doi.org/10.1121/1.5007730
View Table of Contents: http://asa.scitation.org/toc/jas/142/4
Published by the Acoustical Society of America

http://asa.scitation.org/author/Kang%2C+HiJee
http://asa.scitation.org/author/Agus%2C+Trevor+R
http://asa.scitation.org/author/Pressnitzer%2C+Daniel
/loi/jas
http://dx.doi.org/10.1121/1.5007730
http://asa.scitation.org/toc/jas/142/4
http://asa.scitation.org/publisher/


Auditory memory for random time patterns

HiJee Kang,a) Trevor R. Agus,b) and Daniel Pressnitzer
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The acquisition of auditory memory for temporal patterns was investigated. The temporal patterns

were random sequences of irregularly spaced clicks. Participants performed a task previously

used to study auditory memory for noise [Agus, Thorpe, and Pressnitzer (2010). Neuron 66,

610–618]. The memory for temporal patterns displayed strong similarities with the memory for

noise: temporal patterns were learnt rapidly, in an unsupervised manner, and could be distin-

guished from statistically matched patterns after learning. There was, however, a qualitative dif-

ference from the memory for noise. For temporal patterns, no memory transfer was observed after

time reversals, showing that both the time intervals and their order were represented in memory.

Remarkably, learning was observed over a broad range of time scales, which encompassed

rhythm-like and buzz-like temporal patterns. Temporal patterns present specific challenges to the

neural mechanisms of plasticity, because the information to be learnt is distributed over time.

Nevertheless, the present data show that the acquisition of novel auditory memories can be as effi-

cient for temporal patterns as for sounds containing additional spectral and spectro-temporal cues,

such as noise. This suggests that the rapid formation of memory traces may be a general by-

product of repeated auditory exposure. VC 2017 Acoustical Society of America.

https://doi.org/10.1121/1.5007730

[JJL] Pages: 2219–2232

I. INTRODUCTION

Listening often requires matching current sensory evi-

dence with stored memory traces, such as when associating a

series of artificial tones to one’s new phone (Roye et al.,
2010), or recognizing natural sounds like voices and musical

instruments (Agus et al., 2012; Norman-Haignere et al.,
2015). In fact, as auditory information develops over time,

most aspects of auditory perception are likely to be shaped

by memory processes on different time scales (Demany and

Semal, 2007). How such memories are acquired through

experience is not well understood. Here, we investigated

auditory memory for temporal patterns, using random

sequences of irregularly spaced clicks, over a broad range of

time scales regarding the time-intervals forming the patterns.

In previous studies probing the acquisition of novel

auditory memories, another type of random stimulus has

been extensively used—white noise, obtained by drawing

successive audio samples from a Gaussian distribution

(Agus et al., 2010; Andrillon et al., 2015; Goossens et al.,
2008; Guttman and Julesz, 1963; Kaernbach, 2004; Luo

et al., 2013; Rajendran et al., 2016; Viswanathan et al.,
2016; Warren et al., 2001). Studies of the memory for noise

differed from each other in many experimental details, but,

essentially, an exemplar of noise selected at random was pre-

sented to listeners more than once during an experiment.

Putative memory traces were then probed by tracking psy-

chophysical or physiological measures for the re-occurring

noise exemplar, as exposure increased, either within a trial

or across trials. These studies have demonstrated remarkable

features of auditory memory. Immediate auditory memory

for noise, often probed by asking participants to detect ongo-

ing repetitions of a “frozen” noise exemplar, can extend up

to noise durations of several seconds (Guttman and Julesz,

1963; Kaernbach, 2004; Warren et al., 2001). Longer-term

memory traces can be measured by presenting the same

exemplar over different trials or experimental blocks, and in

this case memory be established within tens of seconds and

persist for minutes or even weeks (Agus et al., 2010;

Viswanathan, 2016; Viswanathan et al., 2016). Real-time

physiological correlates of the memory traces can be

observed in electroencephalography or magnetoencephalog-

raphy, with a response timing and topography suggesting an

origin within auditory cortex (Andrillon et al., 2015; Luo

et al., 2013). Finally, these physiological correlates can be

formed incidentally, even with a task diverting attention

away from the noises to be remembered (Andrillon et al.,
2015), or during REM sleep (Andrillon et al., 2017).

A puzzling question has been raised by most of these

studies: what had been learnt by listeners when they dis-

played evidence of a memory for noise? Answering this

question has implications for whether the memory for noise

is representative of the memory for sounds in general. It is

implausible that listeners learnt the exact time series of the

thousands of audio samples comprising the noise waveform,

first because of the sheer amount of information involved,

and second because audio waveforms are transformed as
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they ascend the auditory system so the central nervous sys-

tem does not have access to the audio samples themselves.

Rather, a memory for noise should rely on a subset of audi-

tory cues emerging after processing along the auditory path-

ways. Such cues can belong to two broad classes: spectral

cues, like the random distribution of frequencies over a short

time frame, or temporal cues, like the occurrence of salient

“events” at random times during the stimulus. Even though

the opposition between spectral and temporal cues is some-

what arbitrary at the audio signal level, being essentially

imposed by the time frame of analysis, the distinction is

meaningful and important from an auditory perspective—

and even more so from an auditory memory perspective. To

simplify, spectral cues may be encoded by the place pattern

of spiking rates in frequency-tuned populations of auditory

neurons, whereas temporal cues may be encoded by the tim-

ing between spikes within a neuron or across neurons in

a population. Even though the mapping between acoustic

cues and their underlying neural representation is not well-

established (Cariani and Delgutte, 1996; Lim et al., 2016;

Shamma and Lorenzi, 2013), both place (Rothschild et al.,
2010) and temporal (Lu et al., 2001; Petkov and Bendor,

2016) cues are abundant along the auditory pathways, from

the auditory periphery up to at least the auditory cortex.

However, the two types of cue require qualitatively different

mechanisms when learning and neural plasticity are consid-

ered. Spectral cues in a place code are available as simulta-

neously active neurons, so the classic “fire together, wire

together” principle of neural plasticity can apply (Klampfl

and Maass, 2013; Masquelier et al., 2008). For temporal

cues, however, such a mechanism does not apply directly

because what needs to be learnt develops over time. So, neu-

rons would need somehow to encode past and present infor-

mation simultaneously to learn temporal patterns (Karmarkar

and Buonomano, 2007; Lim et al., 2016).

For noise, the evidence available so far points strongly

towards a memory representation based on brief spectral

cues. In their original report, Guttmann and Julesz (1963)

showed that listeners could detect repeating copies of a noise

segment even for periodicities outside of the pitch range.

They went on to describe the perceptual cues used to detect

repetitions with noise: a series of brief events, such as

“rasps” and “clangs,” which led them to the following state-

ment: “It appears to us that the basis of pitchless periodicity
detection must lie in the detection of short-term power-spec-
trum recurrence” (Guttman and Julesz, 1963). This conjec-

ture, based on introspection, was confirmed experimentally

by Kaernbach (1993), who used a technique based on partici-

pants tapping to a repeated noise exemplar. The replacement

of various portions of the memorized noise exemplar with

fresh noise showed that repetition-detection was based on

short segments, lasting less than 100 ms. Further experiments

using behavioral reverse-correlation suggested that, while

some of those short features could be described as spectro-

temporal, most were spectral edges (Kaernbach, 1999, 2000,

2017). More recently, when studying longer-term memory

for noise, Agus et al. (2010) showed that the memory repre-

sentation was robust to the time reversal of the noise seg-

ment. Time-reversal would leave short-term power spectra

unaffected, but would disrupt most cues based on timing.

Viswanathan et al. (2016) reported similar conclusions using

time shuffling instead of time reversal. Finally, Andrillon

et al. (2015) observed sizeable EEG event-related potentials

after learning. As event-related potentials require a precisely

time-locked neural response, this finding was accounted for

by positing neural responses locked to brief spectral features

within the noises after learning.

Considering all of these pieces of indirect but converg-

ing evidence, together with the well-established availability

of neural mechanisms to learn spectral cues, it is legitimate

to ask whether the remarkable characteristics of auditory

memory observed with noise are restricted to sounds con-

taining spectral cues. Here we aimed to answer this question

directly by using random time patterns devoid of spectral

cues.

The perception of auditory time patterns has been stud-

ied extensively, mostly using discrimination experiments.

The simplest possible temporal pattern is a single time inter-

val of variable duration. The discrimination between two

such intervals yields thresholds corresponding to a Weber

fraction, of about 10% for intervals in the range of about

200 ms to 2 s—although this range may vary with experi-

mental details (Grondin, 2010; Teki and Griffiths, 2014).

When the time interval to be discriminated was embedded

within longer, isochronic patterns, or relatively simple

patterns containing only two different interval durations,

the Weber law held (Hirsh et al., 1990). However, when the

embedding patterns were more complex, other listening

strategies appeared. Using a discrimination task between two

fully random temporal patterns, Sorkin (1990) showed that

behavioral results could be accounted for by a model based

on the cross-correlation between time intervals, each interval

being corrupted by additive noise (which would be inconsis-

tent with a Weber fraction). When the embedding pseudo-

random patterns were manipulated to induce a musical meter

of varying strength (Povel and Essens, 1985), the detailed

structure of the sequence influenced discrimination perfor-

mance, demonstrating that not all intervals had the same per-

ceptual weight (Ross and Houtsma, 1994; Teki and Griffiths,

2014). Finally, in yet another departure from the Weber law,

when the interval to be discriminated was preceded by

another, random time interval, this systematically distorted

the perceived duration of the target interval (Karmarkar and

Buonomano, 2007).

A comprehensive theory accounting for all of these find-

ings about temporal pattern discrimination is still lacking,

but, as outlined by Ross and Houtsma (1994), it may be use-

ful to consider at least three types of strategy to discriminate

complex time patterns: an analytic strategy, focusing on

each interval independently (Hirsh et al., 1990); a holistic

strategy, considering the whole pattern (Sorkin, 1990); and

an emphasis on a small subset of pattern motifs (sometimes

termed “runs” as they occur in time), which may stand out

because of meter (Povel and Essens, 1985), perceptual orga-

nization (Royer and Garner, 1966), or informational content

(Pollack, 1968a). Similar strategies could be relevant for the

memory representation of time patterns, but this has not

been investigated yet.
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In the present set of experiments, we used irregularly

spaced click trains in a memory paradigm similar to what

has been used previously for noise (Agus et al., 2010). The

intervals between clicks were randomly derived from a uni-

form (experiment 1) or Poisson distribution (experiment 2),

to evaluate the influence of interval statistics on perfor-

mance. A minimum gap between clicks was always

imposed, as well as high-pass filtering, to prevent any over-

lap in the internal representation of successive clicks and

thus restrict auditory cues to purely timing cues (Methods,

see also Fig. 1). One condition consisted of a random series

of clicks, lasting 2 s in total, which we termed C (Fig. 1,

top). A second condition, termed repeated clicks or RC, con-

sisted of a random series of clicks lasting 1 s, immediately

repeated for another 1 s (Fig. 1, bottom). The task assigned

to participants for all experiments was to report whether a

trial contained a repetition or not. There was a third condi-

tion, not mentioned to participants during the instruction

phase: a Reference RC, or RefRC, which was an RC that

re-occurred over several trials throughout an experimental

block. As we showed previously, longer-term memory can

be probed by comparing performance on RCs, heard in one

and only one trial, to performance on RefRCs, heard identi-

cally over several trials (Agus et al., 2010; Agus and

Pressnitzer, 2013). Improved performance for RefRCs com-

pared to RCs can be taken as an indication of longer-term

memory traces. In experiment 3, we tested if time-reversal

would affect performance after learning, as a memory repre-

sentation based on local cues such as extreme values of the

inter-click intervals could be resilient to time-reversal.

Finally, we used Sorkin’s cross-correlation model (Sorkin,

1990) to see if it could help interpret some characteristics of

repetition-detection (RC performance) for our click trains.

Unlike previous studies of auditory temporal patterns,

we probed both the immediate memory processes needed for

discrimination, reflected by the performance on RC trials,

and longer-term memory processes over the course of

minutes reflected by a possible advantage of RefRC trials

over RC trials. The experimental design precisely controlled

for the amount of exposure to RefRC, as participants would

not have heard the exact same random time pattern before,

so we could characterize the time-course of memory acquisi-

tion for temporal patterns. Finally, we could use the same

psychophysical task to test a broad range of time scales

(inter-click intervals), covering sequences sounding either

like a succession of isolated clicks or sequences sounding

like continuous buzzing sounds.

II. EXPERIMENT 1: UNIFORMLY DISTRIBUTED TIME
PATTERNS

A. Method

1. Participants

Fourteen participants were tested (age in year M¼ 25,

SD¼ 4; 6 female). All had normal hearing, as established by

an audiogram administered before the experiment [20 dB

hearing level (HL) or less for all tested frequencies of 125,

250, 500, 1000, 2000, 4000, and 800 Hz]. Participants gave

informed consent and were paid 10 euros per hour. The

study was approved by the ethical committee of U. Paris

Descartes, France (CERES, IRB: 20154000001072).

2. Stimuli

Click trains were generated in the digital domain at a

sampling rate of 44.1 kHz. Each click was a rectangular pulse

of two samples (about 50 ls). Inter-click intervals (ICIs)

were drawn from a uniform distribution, whose lower bound-

ary was maintained constant at 10 ms for all experiments.

The upper boundary of the ICI distribution was an experi-

mental parameter. Five logarithmically spaced values were

tested: 25, 50, 100, 200, and 400 ms. When taking account of

the upper and lower boundaries, the five experimental condi-

tions corresponded to average click rates of 57, 33, 18, 10,

and 5 Hz. For consistency with experiment 2, average click

rate is used to identify conditions.

Auditory filter ringing may introduce overlap in the

excitation caused by successive clicks, and thus spectral

cues that can be potentially be used to discriminate stochas-

tic click trains (Pollack, 1968b). To prevent the appearance

of any such cues, all click trains were high-pass filtered

using an 8th order Butterworth filter with a 2 kHz filter cut-

off. The cut-off value was chosen as the 20th potential

“harmonic” of the minimum ICI of 10 ms.

The nominal duration of each click train was 2 s. To

form the first half of the stimulus, a first click was set at time

0 and successive ICIs were randomly drawn from a uniform

distribution until the nominal duration of 1 s was surpassed,

FIG. 1. Illustration of the random auditory time patterns used in all experi-

ments. Stimuli were 2 kHz high-pass filtered click trains, combined with

low-pass noise, with a minimum time gap of 10 ms imposed between clicks.

The condition illustrated corresponds to a uniform distribution between

intervals and an 18-Hz average click rate, with the low-pass noise omitted

for clarity. The output of a single auditory filter (gammatone) centered at

4 kHz is represented. The vertical dashed lines indicate the midpoint of the

stimulus. On the top panel, a random pattern is shown (condition C, see

text). On the bottom panel, the first and second halves of the stimulus are

the same random pattern (conditions RC or RefRC). The inset on the top

panel illustrates that the minimum gap between clicks ensured that there

was no overlap between clicks, even after auditory filtering.
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and then the stimulus was truncated to 1 s minus the mini-

mum gap of 10 ms. In the C condition, the procedure was

repeated for the second half of the stimulus, with a fresh ran-

dom draw so as to obtain a fully random click train lasting

2 s (Fig. 1, top). In the RC condition, the first half of the

stimulus was repeated identically to obtain a repeated click

train lasting 2 s (Fig. 1, bottom). For C and RC, the random

ICIs were generated anew for each trial. For RefRC, the

same generation procedure as RC was adopted, but, addi-

tionally, ICIs were fixed for all trials within an experimental

block. Note that the truncation at 1 s caused a slight differ-

ence in the long-term distribution of the last ICI of the first

half of the stimulus compared to all other ICIs. However,

such a difference was only apparent on the long-term aver-

age of ICIs (each individual draw was compatible with the

target distribution) and, in any case, it was present for all

conditions.

Low-pass pink noise was finally added to the stimuli, to

mask any possible distortion and to obtain stimuli lasting

exactly the same duration. The noise pedestal was generated

in the spectral domain with components between 50 Hz and

2 kHz. It started 200 ms before the click train and finished

200 ms after its nominal ending, including 50 ms raised

cosine fade in and fade out. The root-mean square (rms)

level of the pink noise was set at �20 dB relative to the click

train rms. The full stimuli were presented at an overall level

of 65 dB sound pressure level (SPL), A-weighted. As overall

level was maintained constant, this means that peak level

varied across (but not within) average rate conditions.

3. Apparatus and procedure

Participants were tested individually in a double-walled

sound-insulated booth (Industrial Acoustics). Stimuli were

played diotically through an RME Fireface UC soundcard, at

a sampling rate of 44.1 kHz and 16-bit resolution. They were

presented over Sennheiser HD 600 headphones. Participants

were instructed to report within-trial repetitions. They

responded through a computer keyboard in a self-paced

manner.

Prior to data collection, a training period was included.

Training was intended to help participants discover the types

of perceptual cues elicited by repeated click trains. We mod-

eled this training period on what had been previously used

for repeated noise experiments (Agus et al., 2014). Training

started with ten repeats of 1-s long random click trains, a

task in which informal listening indicated that repetition

detection should be easy. The click trains were generated as

Cs and RCs in the main experiment, with an average click

rate of 12 Hz. This rate was chosen to be approximately in

the middle of the experimental parameter range, but different

from any subsequent experimental parameter. Participants

received visual feedback on the repetition detection task dur-

ing training. The first training block presented ten trials, half

of them C and the other half RC. Then, training blocks were

run with 4, then 3, then 2 repeats only, for 40 trials in each

training block. Note that there were no RefRCs in any of

these training blocks.

When data collection began, no feedback was further

provided. The instructions to participants remained the

same. In particular, at no time were they instructed about the

possible re-occurrence of a sound (RefRC) during the block,

nor about our aim to test memory. In each experimental

block, the experimental parameter (average click rate) was

fixed and there were 40 C, 20 RC, and 20 RefRC trials in

pseudo-random order. The only constraint on order was that

RefRCs could not appear on successive trials (Agus et al.,
2010). Participants completed four blocks for each of the

five click-rate conditions. Blocks for a given parameter were

run in succession, but the order of parameters was random

and counterbalanced across subjects. Training and testing

was completed over two experimental sessions, each lasting

about 2 h and run on consecutive days.

4. Data analysis

The pattern of “yes” and “no” responses was first con-

verted to hit rate (proportion of “yes” responses for RC or

RefRC) and false alarms (“yes” response for C). The sensi-

tivity index d0 from signal detection theory was then com-

puted for each participant and RC or RefRC conditions

(sharing false alarms for a given experimental block).

Statistical testing was performed on d0 with repeated-

measures analyses of variance (ANOVAs), with trial type

(RefRC or RC) and average click rate (5, 10, 18, 33, 57 Hz)

as within-subject factors and participants as random factors.

We verified that the data conformed to the assumptions

required for ANOVA and applied Greenhouse-Geisser cor-

rections when necessary. Along with the F statistics and p-

values, with a significant level set at p< 0.05, we also report

effect size with the generalized eta-squared measure, g2
g

(Lakens, 2013). Post hoc t-tests were conducted, corrected

for multiple comparisons by using the Holm-Bonferroni

method as necessary.

When analyzing the time course of performance,

responses were converted to hit rate and aggregated in trial

bins over all blocks and participants. The first bin represents

the first time participants heard, e.g., a RefRC during a

block, but not necessarily the first trial of the block and not

necessarily the same trial number for all participants. These

average values were then fitted with either a flat line corre-

sponding to the average performance (1 parameter) or expo-

nential functions (three parameters) using a least-squared

method. The goodness of fit was estimated by penalizing

models with extra parameters (Motulsky and Christopoulos,

2004). The choice of model then led us to conclude whether

the performance of RC and RefRC evolved over time, per-

haps because of learning, or stayed statistically constant over

the duration of the blocks (Agus et al., 2010).

B. Results

The top panel of Fig. 2 displays the average perfor-

mance across participants as the sensitivity index d0, for RC

and RefRC trials, and over the five values of click rates

tested. A first feature of the results is that performance gen-

erally decreased with increasing click rate, from d0 values

around 2 at the lowest rate of 5 Hz, to d0 values below 1 at
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the fastest rate of 57 Hz. Stimulus duration was kept con-

stant, so increasing rates also corresponded to more clicks

and thus more time intervals in the patterns. A second

feature is that performance was generally higher for

RefRC than RC, with an advantage of about 0.5 d0 units for

all rates.

A repeated-measures ANOVA on d0 (see Sec. II A) con-

firmed that both trial type [F(1, 13)¼ 41.56, p< 0.001, g2
g

¼ 0.05] and click rate [F(4, 52)¼ 25.29, p< 0.001, g2
g

¼ 0.27] had a reliable effect on performance. No interaction

reached our significance criterion (all p> 0.05). Post hoc com-

parisons confirmed that the advantage of RefRC over RC

was present for all rates [5 Hz: t(13)¼�3.10, p< 0.01, 10 Hz:

t(13)¼�3.86, p< 0.01, 18 Hz: t(13)¼�2.22, p< 0.05,

33 Hz: t(13)¼�3.45, p< 0.01, 57 Hz: t(13)¼�2.84,

p< 0.01; reported p-values are uncorrected but all p< 0.05

after Holm-Bonferroni correction].

A superior performance for RefRC over RC could indi-

cate learning of RefRC thanks to increasing exposure to the

reference click train as the block progressed. But it could

also simply be the chance result of the particular set of ran-

domly chosen RefRCs being easier to detect from the outset.

To test for this possibility, we examined the changes in

performance over trials throughout the block. Previous

experiments with white noise showed that not all blocks

produced learning (Agus et al., 2010). Moreover, RefRC

performance was associated to higher variance than RC in

Fig. 2, which would also suggest an additional source of

variability for this condition. Therefore, we first tested for

the presence of “good” blocks and “bad” blocks in the pre-

sent data. “Good” blocks were defined as blocks for which

performance was high for RefRCs at the end of the block.

The middle panel of Fig. 2 shows the histogram of hit rates

for RefRCs over the last ten presentations of RefRC during

the blocks, illustrated here for the 18 Hz rate condition. A

one-sample Kolmogorov-Smirnov test confirmed that hit

rates did not follow a normal distribution [D(56)¼ 0.55,

p< 0.001]. This suggests that two types of blocks contrib-

uted to the histogram: “bad” blocks, with hits around 50%,

and “good” blocks, with hits above 90%. We then selected

those “good” blocks (41% of blocks in the 18 Hz rate condi-

tion) and computed performance for RC and RefRC for

each trial position within a block. The result is shown in the

lower panel of Fig. 2. Performance was not constant for

RefRC: from the beginning to the end of the block, perfor-

mance increased. In contrast, for RC there was a no change

in performance.

The same qualitative description of the data was verified

in all other conditions, and tested statistically. We first tested

for the presence of good and bad blocks: all distributions

deviated from normal [one-sample Kolmogorov-Smirnov

test, 5 Hz: D(56)¼ 0.95; 10 Hz: D(56)¼ 0.55; 18 Hz: D(56)

¼ 0.55; 33 Hz: D(56)¼ 0.58; 57 Hz: D(56)¼ 1, all p< 0.001].

When applying the criterion of selecting blocks with hit rates

above 90% for the last ten presentations of RefRC, the propor-

tion of good blocks was 64%, 55%, 41%, 39%, and 23% for

rate conditions of 5, 10, 18, 33, and 57 Hz, respectively. We

next tested whether performance changed over the course of

an experimental block, for RC and RefRC trials, by fitting

exponential functions testing whether this explained the data

better than a flat line at the mean hit rate (see Sec. II A).

This test confirmed that performance increased over the

course of a block for RefRC, for all click rate conditions except

10 Hz [5 Hz: F(2, 17)¼ 12.70, p< 0.001, 10 Hz: F(2, 17)

¼ 2.18, p¼ 0.143, 18 Hz: F(2, 17)¼ 4.73, p< 0.05, 33 Hz:

F(2, 17)¼ 11.85, p< 0.001, 57 Hz: F(2, 17)¼ 8.19, p< 0.01].

The same test suggested that performance for RC did not

change over the course of a block for any of the click rates

(all p> 0.05). RefRCs regarded as “bad blocks” also showed

no performance change of the course of a block in any of the

click rate conditions (all p> 0.05).

C. Interim discussion

The results obtained so far are similar to what had been

observed using white noise in the same experimental para-

digm (Agus et al., 2010). Across-trial re-occurrence of a sto-

chastic time pattern, defined by a series of clicks with

random ICIs, led to improved performance on a within-trial

repetition detection task.

This was not observed for all experimental blocks, but

only on between 23% and 64% of all blocks, depending on

FIG. 2. Results for experiment 1, Uniform distribution. Top panel: The sen-

sitivity index d0 is shown for each stimulus type and average click rate con-

ditions, averaged across listeners. Error bars are 95% confidence intervals

about the mean. Middle panel: Histogram of the proportion of hit rates for

the last ten trials of each block in the RefRC condition, over all blocks for

all listeners. Here, only the condition with 18 Hz average rate is shown, but

all conditions displayed similar results. Lower panel: The time course of hit-

rate for all blocks with 90% or more hit-rate over the last ten trials of a

block. Data points are average values over blocks and listeners for each trial

order. The solid lines are best-fit exponentials for each stimulus condition,

with dashed lines indicating 95% confidence interval. Again, only the 18 Hz

condition is illustrated.
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the baseline difficulty of the within-trial repetition detection

task. These numbers bracket what was observed with naive

listeners and 0.5 s-long white noise, where the proportion of

good blocks was about a third. It is possible that the actual

click train characteristics systematically differed between

good and bad blocks, even though their generative parame-

ters were the same. To test for this possibility, we compared

between good and bad blocks the average ICIs, the standard

deviation of ICIs, and the presence of exceptionally long or

short ICIs. The analysis is detailed in the Appendix. Overall,

we did not find any systematic difference between good and

bad blocks for these acoustic characteristics. As each RefRC

was unique to a block and a participant, it is not possible to

ascertain whether good blocks were caused by intrinsically

easier RefRC patterns, with acoustic characteristics remain-

ing to be elucidated, or if good and bad blocks rather resulted

from an idiosyncratic interaction between pattern and

participant.

The rapid time-course of learning was also similar with

Agus et al. (2010), as 90% performance or better was

reached after only ten presentations of the RefRC sequence.

Looking at the time course of the good blocks, we could rule

out chance selection of easier stimuli for RefRC, but rather

attribute the RefRC advantage to true learning. Thus, sto-

chastic time patterns can rapidly form memory traces with

increasing exposure.

The observed effect of click rate, a parameter that could

not be tested with white noise, was perhaps in part predict-

able: slower rates, associated with clicks that could easily be

heard out individually, produced better performance com-

pared to faster rates. However, the advantage of longer-term

learning in the case of RefRC was always of about 0.5 of a

d0 unit, with no interaction between this RefRC advantage

and click rate. This suggests that even though faster rates led

to poorer baseline performance and also less good blocks,

the benefit of longer-term learning for RefRC remained

about the same.

It is possible that the other aspects of the ICI patterns

besides mean rate could have impacted performance. For

instance, as we kept stimulus duration constant, faster rates

led to more clicks and thus to more time intervals to be

learnt. Even though it is intuitively appealing that more

intervals should induce poorer performance, this has not

always been observed in discrimination tasks. When the var-

iance of ICIs is low, for instance, performance actually

improves with number of intervals (Pollack, 1968a). We

therefore repeated the experiment with a different random

distribution of ICIs to test for the influence of additional ICI

statistics besides the average click rate.

III. EXPERIMENT 2: POISSON-DISTRIBUTED TIME
PATTERNS

A. Method

1. Participants

Participants were 14 normal-hearing listeners, who had

not participated in experiment 1 (age in year M¼ 24, SD¼ 3;

11 female). They were recruited as in experiment 1, and their

audiogram was confirmed as normal using the same

procedure.

2. Stimuli

Stimuli were click trains generated as for experiment 1,

with a single difference: the ICIs were now drawn from a

Poisson distribution, instead of a uniform distribution. We

imposed a refractory time of 10 ms on the Poisson distribu-

tion, and adjusted its rate parameter to have the same

average click rate conditions as for experiment 1. To obtain

average click rates of 5, 10, 18, 33, and 57 Hz, we used

Poisson rate parameters of 5, 10, 22, 50, and 133 Hz, respec-

tively. Stimuli were then high-pass filtered at 2 kHz and

noise was added, exactly as described for experiment 1. We

again used conditions C, RC, and RefRC.

3. Apparatus, procedure, and data analysis

Apparatus, procedure, and data analysis were identical

to experiment 1.

B. Results

The top panel of Fig. 3 displays the average perfor-

mance across participants, for RC and RefRC trials, and for

the five values of click rates tested. Results were broadly

similar to those of experiment 1: performance decreased

with average click rates, and RefRC produced generally bet-

ter performance than RC. However, the overall performance

was higher here than for experiment 1, with d0 values

between 2 and 3 for the slowest rates, and d0 values above 1

for the fastest rates. The difference between RefRC and RC

FIG. 3. Results for experiment 2, Poisson distribution. Same format as Fig. 2.
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was in the same range or larger as what was observed for

experiment 1, between 0.5 d0 units (5 Hz, 18 Hz, 57 Hz) and

1 d0 unit (10 Hz, 33 Hz).

A repeated measures ANOVA was used to test those

observations (see Sec. III A, degrees of freedom corrected as

appropriate). Both average click rate [F(2.46, 31.93)

¼ 25.25, p< 0.001, g2
g¼ 0.38] and trial type [F(1, 13)

¼ 82.40, p< 0.001, g2
g¼ 0.14] had a reliable effect on per-

formance. An interaction with small effect size was found

between average click rate and trial type [F(4, 52)¼ 3.02,

p< 0.05, g2
g¼ 0.02]. Post hoc t-test confirmed that RefRCs

produced higher performance than RCs for all average click

rates [5 Hz: t(13)¼�2.42, p< 0.05, 10 Hz: t(13)¼�4.20,

p< 0.01, 18 Hz: t(13)¼�2.59, p< 0.05, 33 Hz: t(13)

¼�6.92, p< 0.001, t(13)¼�4.39, p< 0.001; all p< 0.05

after the Holm-Bonferroni correction]. The interaction may

thus have been caused by an especially large performance

advantage of RefRC over RC for 10 and 33 Hz. Given the

small effect size of the interaction, we did not explore it any

further.

The middle panel of Fig. 3 illustrates performance for

RefRCs for different blocks in the 18 Hz average click rate

condition. As for experiment 1, the distribution of hit rate over

the last ten trials for RefRC was not normally distributed. This

was confirmed by one-sample Kolmogorov-Smirnov tests

for all rate conditions [5 Hz: D(56)¼ 0.64, p< 0.001, 10 Hz:

D(56) ¼ 0.73, p< 0.001, 18 Hz: D(56)¼ 0.58, p< 0.001,

33 Hz: D(56)¼ 0.57, p< 0.001, 57 Hz: D(56)¼ 0.50,

p< 0.001]. When applying the criterion of hit rate above 90%

for the last ten trials, we observed 79%, 91%, 63%, 57%, and

38% of good blocks for rate conditions of 5, 10, 18, 33, and

57 Hz. The lower panel of Fig. 3 illustrates performance for

RC and RefRC during the course of good blocks. As for exper-

iment 1, performance increased for RefRCs while there was a

small trend for a decrease for RC. Statistical analyses of the

exponential fits showed that performance increased for RefRC

during a block [5 Hz: F(2, 17)¼ 20.80, p< 0.001, 10 Hz: F(2,

17)¼ 14.25, p< 0.001, 18 Hz: F(2, 17)¼ 11.21, p< 0.001,

33 Hz: F(2, 17)¼ 7.95, p< 0.01, 57 Hz: F(2, 17)¼ 13.64,

p< 0.001]. For RC, performance decreased for 10 Hz [F(2,

17)¼ 4.99, p< 0.05] but was constant for all other rates (all

p> 0.05).

C. Interim discussion

Experiments 1 and 2 used the same psychophysical par-

adigm and average stimulus characteristics, but with uni-

formly distributed (experiment 1) or Poisson-distributed

(experiment 2) stochastic time intervals. The average perfor-

mance and proportion of good blocks differed between the

two experiments, with a general advantage to the Poisson

distribution. We thus decided to compare formally the results

of these two experiments.

Figure 4 shows the individual data obtained by all par-

ticipants of experiments 1 and 2, averaged across all blocks

(good and bad) and averaged over all average click rates for

each participant. A first observation, consistent with all anal-

yses presented so far, is that in all cases but one (out of 28

participants), performance for RefRC was better than perfor-

mance for RC.

It also appears that, in spite of individual variability,

performance was generally better for experiment 2. This was

tested statistically with a mixed-design ANOVA on d0 aver-

aged across rates, with factors of experiment (1 or 2) and

trial type (RC or RefRC). Both experiment [F(1,26)¼ 12.37,

p< 0.01, g2
g¼ 0.09] and trial type [F(1,26)¼ 121.42,

p< 0.001, g2
g¼ 0.23] had sizeable effects. A small interac-

tion was also found [F(1,26)¼ 4.52, p< 0.05, g2
g¼ 0.004].

Both experiments therefore clearly showed an advan-

tage of RefRC over RC, but performance was generally

higher for Poisson-distributed intervals compared to uni-

formly distributed intervals. The means of both distributions

were matched across experiments, but distributions still

differed in terms of higher order statistics. In particular, the

Poisson distribution had higher variance. Using 1000 simu-

lated click trains per condition, we estimated that the variance

between successive time intervals was between 18% and

70% higher for Poisson-distributed stimuli, depending on

average rate. As suggested before, higher variance may facili-

tate the discrimination between temporal patterns (Pollack,

1968a; Sorkin, 1990) and thus explain the difference between

experiments 1 and 2. We evaluate this interpretation quantita-

tively in the modeling section below.

Another difference between experiments 1 and 2 could

have been in the local distribution of clicks. It is possible

that salient “motifs” or “runs” were used by participants to

perform the task (Pollack, 1968a; Ross and Houtsma, 1994).

For instance, a chance succession of very short or very long

ICIs could have been sufficiently salient to support the repe-

tition detection task, even if the whole time pattern had not

been learnt. Such runs may have occurred more often for

Poisson distributions because of its higher variance. These

runs are still temporal cues, but highly local.

To test for the importance of local cues on the results

presented so far, we quantified the possibility of transferring

the learning of one sequence to its time-reversed counterpart.

If the whole time pattern was learnt, time reversal should

dramatically impair performance. In contrast, if only local

FIG. 4. Comparison between experiments 1 and 2. The sensitivity index d’
is plotted for individual participants (squares: experiment 1, crosses: experi-

ment 2) for RC and RefRC conditions. In all but one cases, the points are

above the diagonal, indicating a performance advantage for RefRC.
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runs were learnt, such as distinctively long or short ICIs, or

repetitions of identical ICIs, memory should transfer almost

perfectly to time-reversed sequences. The same reasoning

was followed by Agus et al. (2010) for white noise. They

showed an almost-perfect memory transfer after time rever-

sal for noise stimuli, suggesting local spectral cues for the

memory representation of noise. In experiment 3, we tested

whether the same would hold for click trains.

IV. EXPERIMENT 3: MEMORY TRANSFER AFTER TIME
REVERSAL

A. Method

1. Participants

Twelve participants who had previously participated in

psychophysical experiments in our laboratory were invited

back as “experienced” participants (age in year M¼ 25,

SD¼ 3; 5 female). We chose experienced participants

because the experiment tested memory transfer, so for effi-

ciency we wanted to ensure that as many blocks as possible

would display initial learning. Participants’ audiograms were

again verified as normal. All other details are as in experi-

ments 1 and 2.

2. Stimuli

The stimulus generation method of experiment 2 was

used, with Poisson-distributed ICIs. Here we only tested the

average rate conditions of 5, 18, and 57 Hz. In addition to

the C, RC, and RefRC trial types, a new “reversed-RefRC”

trial type was introduced. This was simply achieved by

reversing the order of ICIs of the RefRC trials (effectively,

reversing the time axis of the stimulus before high-pass

filtering was applied).

We used two minor variants of the stimulus generation

procedure. In the method of experiment 2, there was

always a click at the beginning of the stimulus. As a conse-

quence, all reversed-RefRCs would have displayed a click

at the very end of the sequence, and thus a slightly differ-

ent time-course relative to the noise pedestal compared to

all other trial types. In a first variant of the stimuli, we

shifted the reversed-RefRCs in time so that they would

include a click at time 0 s like all other conditions. In a sec-

ond variant, we omitted the first click of the sequence for

all trial types before reversal (C, RC, RefRC). This led to

more variability overall in the start and end time of the

stimuli relative to the noise pedestal, as well as a small

change in average rate compared to experiment 2, but here

all conditions received the same treatment. Participants

were randomly assigned to one or the other variant (six

participants for each).

3. Apparatus and procedure

The procedure was the same as experiment 2, with minor

differences. We used BeyerDynamics DT 770 Pro head-

phones. Also, as participants were experienced, no training

session was provided.

The first half of each block contained 30 C, 15 RC, and

15 RefRC trials in pseudo-random order. The second half of

the block seamlessly followed the first half without any

interruption, and introduced the reversed-RefRCs. It con-

tained another 30 C, 15 RC, and 15 reversed-RefRC trials.

Four blocks were run in succession for each average rate.

The order of presentation of the rates was random and coun-

terbalanced across participants. Each experimental session

lasted about 2 h.

4. Data analysis

To test for the possible influence of the two possible var-

iants in the stimulus generation procedure, the sensitivity

index d0 from signal detection theory was used to evaluate

performance for RefRC and RC on the first half of the

blocks. We then performed a repeated measures ANOVA on

d0 with factors of stimulus type, rate condition, and stimulus

generation procedure variant. To test for memory transfer,

we estimated performance at various time points during the

block by computing d0 for subsets of trials. We first selected

“good” blocks to ensure that the initial RefRCs had been

learnt, using the criterion of 90% or more hit rate for the last

five trials over which this stimulus was presented (which, for

five trials, amounts to 100% hit rate). Then, for such good

blocks, we computed d0 for the RefRCs for the first five trials

(i.e., before learning) and last five trials (i.e., after learning)

of the first half of the block, estimating false alarms from the

corresponding C trials. The same analysis was then carried

out for reversed-RefRCs, for the second half of the selected

blocks (i.e., when reversed-RefRCs replaced the original

RefRCs). A perfect memory transfer from RefRC to

reversed-RefRC would be reflected the same performance

for the last five trials of RefRC and the first five trials of

reversed-RefRC, before any re-learning could occur. To test

for this, we used paired t-tests comparing d0 on the last five

trials for RefRC and first five trials for reversed-RefRC, for

each rate condition. On some rates, one subject did not show

any good blocks and was excluded from this particular anal-

ysis, hence the reduced degrees of freedom. All differences

reported as statistically significant are at p< 0.05 after

Holm-Bonferroni correction.

B. Results

We first confirmed that there was no effect of the stimu-

lus generation variant on general task performance [F(1,8)

¼ 3.31, p> 0.05] nor any interaction with other factors (all

p> 0.05). All further analyses thus used aggregated data

for the 12 participants, irrespective of stimulus generation

variant.

A one-sample Kolmogorov-Smirnov test confirmed that

hit rate for the last five trials of each block did not follow a

normal distribution [5 Hz: D(48)¼ 0.6423, p< 0.001, 18 Hz:

D(48)¼ 0.5721, p< 0.001, 57 Hz: D(48)¼ 0.5929, p< 0.001].

We thus selected “good” blocks with hit rate of 100% for the

last five trials, which led to selecting 67%, 70%, and 52% of

blocks for 5, 18, and 57 Hz, respectively. For these blocks, the

RefRC has been learnt, so we could meaningfully test for

memory transfer to the reversed-RefRC.
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Figure 5 displays the sensitivity to RefRCs and

reversed-RefRCs over the course of a block. The important

feature is what happened immediately after the introduction

of time reversal (last white bar compared to first black bar).

In all cases, performance dropped for reversed-RefRC, down

to levels similar of those observed with initial exposure to a

novel RefRC (first white bar). Paired t-test confirmed reli-

able performance drops after time reversal for rates of 18 Hz

[t(1,10)¼ 3.37, p< 0.001] and 57 Hz [t(1,10)¼ 6.96,

p< 0.001]. The 5 Hz rate condition did not meet our signifi-

cance criterion [5 Hz: t(1,11)¼ 1.87, p¼ 0.11].

C. Interim discussion

The pattern of results showed a drop in performance

when a RefRC was replaced by its time-reversed version,

with performance reverting to levels observed with novel

RefRCs. The one condition that failed the significance test,

5 Hz average rate, did nevertheless exhibit the same pattern.

In addition, this condition displayed equal initial performance

for reversed-RefRC and RefRC, so the effect of time reversal

was basically as large as it could have been. The lack of a

statistically significant difference can thus be attributed to a

ceiling effect, as d0 values were high (above 4) at this slow

rate with our group of experienced listeners.

Performance for the reversed-RefRCs followed a pattern

compatible with the learning of a novel stimulus, with an

increase in performance between the beginning and end of

the second half of the block. The end performance for

reversed RefRCs was generally not as high as that observed

for the RefRC presented on the first half of the block, but

that is likely because “good” blocks were selected based on

performance for the initial RefRC only.

Overall, the data are consistent with little or no memory

transfer from a learnt temporal pattern to its time-reversed

version, which has to be re-learnt from scratch. This lack of

memory transfer suggests that participants learnt extended

temporal features, and not local runs of salient ICIs. This

finding is perhaps especially intriguing for the high rate con-

dition, 57 Hz. Such a high average rate is above the lower

limit of pitch for isochronous click trains (Krumbholz et al.,
2000; Pressnitzer et al., 2001). Accordingly, our stochastic

sequences generally sounded like buzzes at this rate, with

individual clicks difficult to hear out. However, even in this

case, the memory representation appeared to retain an extended

series of time intervals and their order of appearance.

V. CROSS-CORRELATION MODEL

A. Rationale and model description

We adapted a model of sequence discrimination

(Sorkin, 1990) to interpret the effect of ICI distributions on

the repetition-detection task. The behavioral task that was

assigned to participants was to decide whether each trial con-

tained a repetition or not. For modeling purposes, this can be

construed as a discrimination task between the two halves, A

and B, of the click train presented on any given trial. If A

were judged sufficiently similar to B, the participant would

respond “Yes” to the repetition detection task. For repeating

trials, A and B were identical, so errors (misses) would be

caused by internal noise. For non-repeating trials, A and B

were different, so errors (false alarms) would occur if noisy

representations of A and B were by chance as similar as

noisy representations of identical stimuli.

This formalization of the task can be implemented using

cross-correlation as a similarity measure between series of

time intervals, corrupted by internal noise (Sorkin, 1990).

The first half of the stimulus can be notated as A¼ {tA1, tA2,

tA3,…, tAm}þN(0,r2), with tAi the time interval correspond-

ing to the ith ICI and N(0,r) an additive noise term, follow-

ing a normal distribution with mean 0 and variance r2,

added independently to each tAi. Similarly, the second half

of the stimulus can be expressed as B¼ {tB1, tB2, tB3,…,

tBn}þN(0,r). To estimate the similarity between A and B, a

cross-correlation was computed between the series {tA1, tA2,

tA3,…, tAk}þN(0,r2) and {tB1, tB2, tB3,…, tBk}þN(0,r2),

with k¼min(m,n).

To compute d0 values simulating our behavioral dataset,

we ran the correlation model on ICIs derived from the exper-

imental stimuli generation procedure, for the RC and C

conditions. For each simulated trial, we selected a “Yes”

response if the cross-correlation between A and B was above

FIG. 5. Results for experiment 3, the effect of time-reversal. For each aver-

age click rate condition tested, performance is plotted at the beginning of

the block (trials 1–5, white), just before the introduction of time reversals

(trials 11–15, white), just after the introduction of time reversal (trials 1–5,

black) and at the end of the block (trials 11–15, black). The effect of time

reversal can be assessed by comparing the last white bar to the first black

bar. Only blocks with 90% or more hit rate for the original RefRC are

included. Results are averaged across listeners. Error bars are 95% confi-

dence intervals about the mean.
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a fixed criterion, Crit. If the cross-correlation was below the

criterion, a “No” response was selected. This provided a pro-

portion of hits and false alarms for each trial type from

which we could compute d0.

B. Results

After an initial exploration of the parameter range, the

two free model parameters r and Crit were systematically

varied and the resulting goodness of fit of the model evalu-

ated, using the squared error between behavioral data and

model predictions. We computed d0 values on 100 simulated

C and RC trials, for all rate conditions and uniform or

Poisson distributions, and for all tested r and Crit values.

The search space for r was from 0 to 100 ms, in 5 ms steps,

while for Crit it was from �0.9 to 0.9, in 0.1 steps.

A broad range of parameters led to a satisfactory fit to

the data (Fig. 6, top). The best fit was obtained for r¼ 50 ms

and Crit¼�0.2. This estimate is different from the value of

r¼ 15 ms suggested in the original model (Sorkin, 1990).

However, we verified that running the model with r¼ 15 ms

produced the same trends in the predictions, so the interpre-

tations outlined below would hold with either value of r.

For the fitted model parameters, 10 000 simulated trials

were computed to estimate d0. The model predictions are

represented in Fig. 6, bottom, along the corresponding

behavioral data. The model correctly captured the two main

trends in the data: first, lower click rates led to better perfor-

mance; second, Poisson distribution led to better perfor-

mance. However, there were still discrepancies between the

model and data. In particular, performance decreased in the

model for the lowest rates, whereas it kept increasing in the

data. Also, performance was generally underestimated for

the highest rates, especially for the Poisson distribution.

C. Interim discussion

A model of temporal pattern discrimination based on

cross-correlation (Sorkin, 1990) was able to capture two

important trends of the within-trial repetition-detection per-

formance observed in our dataset: the better performance for

long ICIs, and the better performance for Poisson-distributed

compared to uniformly distributed ICIs. We interpret the

model behavior by considering the ratio between stimulus-

related variance and internal-noise variance. Stimulus-

related variance was beneficial to model performance, as it

made patterns more distinguishable from each other for the

cross-correlation operation. In contrast, internal noise

reduced performance by corrupting the internal representa-

tion of the patterns. The important characteristic of the

model here is that internal noise had constant variance. As

interval durations decreased for high click rates, their repre-

sentation in the model was proportionally more affected

by internal noise, and the model performance decreased. As

the intervals had higher stimulus-related variance for the

Poisson distribution compared to the uniform distribution,

their representation in the model was more robust to internal

noise, and the model performance was higher for the Poisson

distribution compared to the uniform distribution.

The main aim of the model was to gain an intuition

about the effect of ICI distributions, so we kept its structure

as simple as possible, but this implied some important limi-

tations. In particular, this “toy” model had perfect memory.

The only limiting factor for performance was the additive

noise added to each interval, irrespective of interval duration

or total number of intervals. An extension of the original

model has been proposed including both additive and multi-

plicative noise (Sorkin, 1990). We tried including this multi-

plicative noise parameter, but it only provided an overall

gain for the model predictions and did not change the quali-

tative differences between model and data. Another simplifi-

cation is that the model assumed that participants could

compare exactly the first and second halves of each stimulus,

even though stimuli were presented continuously. As all

trials had equal duration, it is not unlikely that participants

learnt the approximate halfway position of the stimuli, and

cross-correlation should be reasonably robust to imperfect

estimates of the halfway point. Finally, we made no attempt

at modeling the added benefit of repeated exposure for

RefRC: this advantage was about the same for all conditions,

so this did not provide any useful constraint to add a parame-

ter to the model.

The resulting fit was qualitatively correct, but still imper-

fect. The underestimation of performance at the lowest click

rates could be due to issues with computing a meaningful

correlation with a small number of intervals. The underesti-

mation of performance at high click rates suggests that partic-

ipants may have used other strategies (Ross and Houtsma,

1994) than the “holistic” comparison of all intervals implied

FIG. 6. Predictions of a correlation model. Top panel: mean quadratic error

relative to the behavioral data. The black cross indicates the best fit. Lower

panel: the data for the RC condition are replotted from experiments 1 (U)

and 2 (P), along with the model predictions. See text for details.
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by the correlation operation. For these high rates, it is plausi-

ble that some intervals, for instance the longest ones, were

weighted more than others.

Finally, even if the model succeeded in predicting trends

in the data, we do not wish to imply that the neural bases of

click-train repetition detection literally involve computing

cross-correlations over a broad range of time intervals.

Auditory models based on auto-correlation could be used to

detect repetitions using a similar strategy, but the long dura-

tion of our stimuli would place heavy demands on the

required delays, and the applicability of such models to ran-

dom click trains with purely temporal regularities has been

challenged (Kaernbach and Demany, 1998). Rather, the pre-

sent functional model served to identify a general limiting

factor for the repetition-detection task, the balance between

stimulus variability and internal noise. The underlying neural

mechanisms remain as yet unspecified and some possibilities

will be discussed in Sec. VI.

VI. DISCUSSION

The effect of repeated exposure to random auditory

temporal patterns was investigated in adult listeners, using

an experimental paradigm that had previously been used to

demonstrate learning for random spectro-temporal patterns

(Agus et al., 2010). In three behavioral experiments, we

showed that random auditory time patterns could be learnt

rapidly, after only a few exposures. Moreover, the memory

for temporal patterns was observed over a surprisingly broad

range of inter-click intervals: from sparse click trains,

containing about 5 clicks per seconds, to dense click trains,

containing more than 50 clicks per second. Such a range

encompasses the subjective transition between clicks being

heard out individually, like in a rhythm, to clicks being fused

together, like in a buzzing sound (Bendor and Wang, 2007;

Pressnitzer et al., 2001). Immediate repetition detection was

easier for the rhythm-like patterns, but, surprisingly, this did

not appear to affect the longer-term memory processes oper-

ating across trials, as the gain from increased exposure was

comparable for all rates.

There were strong similarities between the characteris-

tics of memory for noise (Agus et al., 2010; Agus and

Pressnitzer, 2013) and clicks trains (present experiments). In

both cases, learning could be achieved in an unsupervised

and implicit manner, with the patterns to be learnt inter-

spersed amongst other statistically matched sounds. The

ancillary task used in our paradigm (within-trial repetition

detection) was initially challenging. However, as the patterns

were heard more than once over the course of a block,

performance sometimes improved to reach almost-perfect

performance in about ten trials. This change in performance

was interpreted as learning, as learnt patterns became per-

ceptually easily distinguishable from novel ones (Agus and

Pressnitzer, 2013).

There was, however, an important difference between

the memory for noise and click trains. For noise, when a

white noise exemplar was time-reversed after having been

learnt, an almost-perfect transfer of memory was observed

(Agus et al., 2010). Together with other converging evidence

reviewed in the Introduction, this suggested that noise was

learnt thanks to brief spectral cues. In contrast, here we

observed that, when a time pattern was time-reversed after

learning, there was no evidence of memory transfer. Rather,

the time-reversed pattern had to be learnt afresh. Thus, for

click trains, it was the extended series of time intervals and

their precise ordering that was learnt.

This leads to an apparent puzzle: auditory memory for

noise and click trains relied on qualitatively different cues,

but still displayed similar characteristics. One parsimonious

interpretation to resolve that puzzle is that both types of cues

were recoded into a common neural code before being

learnt. Let us first consider the case of noise. Noise contains

spectral cues, which are encoded in the auditory system as

spatial patterns of activity across frequency-tuned neurons:

across auditory nerve fibers in the periphery, or across other

neural populations in subsequent tonotopic maps at least up

to primary auditory cortex (Bidelman et al., 2014). To form

memory traces for such spatial patterns, standard Hebbian

models of neural plasticity apply. Indeed, computational

models have shown that neurons receiving inputs across a

range of afferents, and equipped with well-established

plasticity rules such as spike-time dependent plasticity, can

develop selectivity to random patterns of near-simultaneously

active afferents (Klampfl and Maass, 2013; Masquelier et al.,
2008). If the afferents were frequency-selective neurons, then

the scheme could apply to the learning of auditory noise

(Viswanathan, 2016).

For auditory time patterns, the learning was dependent

on details of successive time intervals and their order, and

thus required the integration of non-simultaneous informa-

tion. In the auditory periphery, at the level of the auditory

nerve, time intervals are not encoded as a spatial map, but

rather transmitted explicitly as inter-spike intervals (Cariani

and Delgutte, 1996). Neural spikes synchronized to clicks

have been observed up to at least primary auditory cortex for

time-jittered click trains resembling our stimuli (Bendor and

Wang, 2007; Lu et al., 2001). However, there is also evi-

dence that inter-spike intervals are recoded into a rate-place

code: a “synchronized” neural population co-exists with

“non-synchronized” populations, which encode click-rate

through neural discharge rate in primary (Gao et al., 2016;

Lu et al., 2001) and non-primary auditory cortex (Bendor

and Wang, 2007) depending on the click-rates (Petkov and

Bendor, 2016).

A rate-place code for click rate should be able to pro-

duce neural spatial maps distinguishing click trains with

different rates. However, it has not been tested whether such

a representation would support the learning of a specific

pattern amongst other patterns with identical average rate, as

was the case in our experiments. To do so, a generic class

of computational models have been put forward: state-

dependent networks, which, thanks to the complex temporal

dynamics imposed by individual neurons and by the network

topography, can produce a large number of unique network

states depending on the exact temporal succession of input

spikes (Karmarkar and Buonomano, 2007; Lim et al., 2016).

Intuitively, such a network state is simply a place pattern of

neural activity that depends on the past and present input,
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with the potential to distinguish between temporal patterns

even when they share the same average rate. Such a model

has been used to account for behavioral context effects in

auditory temporal pattern perception in human listeners

(Karmarkar and Buonomano, 2007). Moreover, recent physi-

ological and behavioral evidence for a conversion from time

patterns to place patterns have been found in the avian audi-

tory system. Using random click trains with time intervals

between 11 and 40 ms—intended to mimic the timing char-

acteristics of bird sounds, but not unlike our own stimuli—

Lim et al. (2016) recorded neural activity in primary and

secondary auditory regions of the anaesthetized zebra finch

forebrain. They observed distinctive neural place patterns of

activity in secondary regions only, which could support

the behavioral discrimination between acoustic temporal

patterns. They also tested for memory transfer after time-

reversal of the click trains: there was no transfer in a behav-

ioral task, consistent with observed changes in neural place

maps after time-reversal.

In summary, such a general scheme would in principle

be consistent with all aspects of the present results.

Somewhere along the auditory pathways, time patterns could

be converted to neural place patterns, unique to each input

sequence and sensitive to time-reversal. Once recoded as

place patterns, unsupervised learning of acoustic temporal

patterns could be achieved through standard neural plasticity

processes (Klampfl and Maass, 2013; Masquelier et al.,
2008). As the spectral cues present in noise or tone clouds

(Agus et al., 2010; Kumar et al., 2014) could also be coded

as neural place patterns, the same plasticity processes apply,

hence explaining the similarities observed for the learning of

all types of auditory stimuli. There are of course many aspects

of our findings that would need to be tested more thoroughly

against this speculative account. In particular, we observed

learning over a broad range of time scales, straddling the

divide between “synchronized” and “non-synchronized” neu-

ral populations (Lu et al., 2001; Petkov and Bendor, 2016).

The time scales involved in the state-dependent models

(Karmarkar and Buonomano, 2007; Lim et al., 2016) are

broadly consistent with the stimulus range we tested, but dif-

ferences between stimuli and species prevent a more detailed

comparison. The locus, or loci, of this putative recoding and

subsequent learning remain to be ascertained in humans.

Interestingly, the available fMRI (Kumar et al., 2014) and

EEG (Andrillon et al., 2015) data for the learning of noise sug-

gest neural correlates in secondary auditory areas, which

would be consistent with the animal data (Gao et al., 2016;

Lim et al., 2016; Lu et al., 2001).

VII. CONCLUSIONS

Using random click trains in an auditory memory para-

digm (Agus et al., 2010), we showed that auditory temporal

patterns could be learnt by adult human listeners. We tested

average click rates from about 5 clicks per seconds up to

about 50 clicks per second. Even though this range covered

patterns sounding like rhythms for low rates or irregular

buzzing sounds for high rates, learning was observed in all

cases. We also varied the higher-order statistics of the

random distribution of time intervals. A higher variance led

to better within-trial repetition detection, but did not affect

much the across-trial longer term memory effect. In all

cases, learning was fast and occurred in an unsupervised

fashion, with the patterns to be learnt interspersed among

statistically matched patterns. The learning depended on the

precise time-series of interval and their presentation order,

as time-reversal disrupted performance. We suggest that

auditory temporal patterns may be recoded as neural spatial

patterns along the auditory hierarchy, which are then amena-

ble to standard neural plasticity mechanisms. Overall, the

experimental evidence now shows that audition benefits

from remarkably fast and efficient unsupervised learning

processes for noises (Agus et al., 2010), other random

spectro-temporal patterns like tone clouds (Kumar et al.,
2014), and also purely temporal patterns such as click trains

(present data). This is likely to cover any sort of acoustic

cues present in natural sounds, e.g., the timbre of a novel

sound source (Pressnitzer et al., 2015). More generally, such

an almost-inevitable emergence of memory traces after

repeated exposure, for different kinds of auditory cues and

several time scales, would be consistent with views sugges-

ting that memory may be viewed as an integral part of

sensory processing (Hasson et al., 2015).
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APPENDIX

In all experiments, we distinguished good blocks, where

learning of RefRC was observed, from bad blocks, where no

learning of RefRC was observed. Here, we further analyze

the temporal patterns that comprised the RefRCs, to test

whether there were systematic acoustic differences between

the two kinds of blocks.

Even though generative parameters were the same for

all blocks, it is possible that by chance good blocks were

associated with fewer time intervals to learn, or perhaps

more distinctive ones. For each stimulus used in the experi-

ments, we computed the mean ICI, M, inversely related to

the number of intervals in the pattern as duration was kept

constant. We also computed the standard deviation of ICIs,

SD. In the main results, higher Ms and SDs were associated

with better performance. Finally, we computed the maxi-

mum of the absolute value of z-scored ICIs (using an estima-

tion of standard deviation of all RefRC intervals within a

condition). This later index should be sensitive to exception-

ally long or exceptionally short ICIs within a pattern, which

could provide distinctive cues.

All indices were then averaged within rate conditions

for experiments 1 and 2. To assess the reliability of the

differences between good and bad blocks, we used Welch’s

two sample t-tests, as samples had unequal sizes. We report
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both exploratory, non-corrected p-values with a significance

criterion set at p< 0.05, and p-values corrected for multiple

comparisons using the Bonferroni method, with the same

significance criterion.

Results are shown in Table I. Most comparisons did not

reach our lenient uncorrected significance criterion. For

experiment 1, only the contrast between mean ICIs at rates

5 Hz [t(39.64)¼ 2.2, p< 0.05] and 10 Hz [t(41.67)¼ 2.28,

p< 0.05] reached significance. For experiment 2, only the

contrasts between mean ICIs at 5 Hz [t(14.47)¼ 3.93,

p< 0.01] and between Max(jzj) at 10 Hz [t(6.85)¼ 3.48,

p< 0.05] and 33 Hz [t(51.03)¼�2.04, p< 0.05] reached

significance. When applying the correction for multiple com-

parisons, only the contrast between mean ICIs at 5 Hz in

experiment 2 remained significant (p< 0.05/15).

The only significant difference that survived the multi-

ple comparisons correction was found for low click rates.

This may have been expected, as low rates correspond to

small numbers of intervals, and hence a greater likelihood to

obtain discrepancies between generative and observed char-

acteristics for a given random draw. In this case, good blocks

were actually associated with higher observed rates. This is

in apparent contradiction with the general pattern of results,

where lower rates led to better performance. It is possible

that for the lowest rate here, the limiting factor was that pat-

terns became too sparse to be distinguishable.

In any case, we interpret Table I as suggesting that, over

all experimental conditions, good and bad blocks were not

systematically different in terms of mean ICIs, standard

deviation of ICIs, and unusually short or long ICIs.
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