Jonathan Z. Simon

Neuroscience and Cognitive Sciences
Biology / Electrical & Computer Engineering

University of Maryland, College Park
Huan Luo
Maria Chait
Juanjuan Xiang
Nayef Ahmar

Yadong Wang

David Poeppel
Shihab Shamma
Catherine Carr
Cindy Moss
Timothy Horiuchi

- Magnetoencephalography (MEG) as a tool of Non-Invasive Auditory Physiology

- Neural Encoding of Simple Modulations

- Neural Encoding of Independent Modulation Pairs (AM & FM)
• Non-invasive, Passive, Silent
• Simultaneous Whole-Head Recording (~200 sensors)
• Sensitivity
 high: ~ 100 fT (10^{-13} Tesla)
 low: $\sim 10^4$ – $\sim 10^6$ neurons
• Temporal Resolution: ~ 1 ms
• Spatial Resolution
 coarse: ~ 1 cm
 ambiguous
- Direct electrophysiological measurement
- not hemodynamic
- real-time
- No unique solution for distributed source
About the Cover

Cover Picture: Axial view of the cortically-generated magnetic field of a human listener, measured using whole-head magnetoencephalography (MEG), at a single moment in time. Isofield contours in red (respectively, blue) indicate the strength of outward (inward) magnetic flux; the digitized scalp surface is in gray. For each hemisphere, a magnetic dipole-like pattern is centered over temporal cortex, and the neural generator itself, located in planum temporale, is an inferiorly flowing neuronal electric current. The MEG channels responding most strongly (in the center of each flux area) are designated by filled yellow circles. The acoustic stimulus is a 1 kHz pure tone; time is 100 ms post onset. The image was generated with the MEG160 software (Yokogawa electric corporation, KIT, Japan). See Chait, Poeppel, and Simon, pp. 835–848.

[Table of Contents]
Evoked Responses
MEG Events Time-Locked to Stimulus Event

Pure Tone

Broadband Noise
• Advantages of humans over animals
 Subjects can be rented (by the hour)
 Subjects can be trained in minutes
 Better grasp of subjects perceptual space (?)
 Access to Speech & Language processing (?)

• Advantage of Whole Head Recording

• Disadvantage of Neural Source Localization
 Coarseness/Ambiguity in Source Location
 Blindness to Many Kinds of Coding

• Neutral Aspects
 Neural Source is Dendritic Current (not Spikes)
 Humans not typical mammals (?)
 New Technique/Immature Analysis Tools
• Simple Modulations ➔ Simple Cortical Encoding
 • Amplitude Modulation coding for slower modulations
 • Rate coding (invisible to MEG) for faster modulations

• Applies to general modulations: AM, FM, other

• Amplitude Modulation coding is easily detectable in Fourier/Spectral domain
 • Spectral Peak at Modulation Frequency
Stimulus Modulated at Single Frequency ⇒ *Steady State Response* (SSR)

32 Hz Modulation
400 Hz tone carrier
100 trials @ 1 s (concatenated)

Extremely Precise Phase-Locking: 0.01 Hz

No trial-to-trial jitter
SSR Phase
Follows Carrier
\[\downarrow \]
Phase Modulation Encoding

Ross et al. (2000)

SSR Amplitude

Phase Modulation Encoding

Correlation = 0.72 DFT duration = 72 sec

0.08 Hz

$f_{FM} = 3.1 \text{ Hz}$

$\frac{1}{2} f_{FM} = 1.6 \text{ Hz}$

$\frac{1}{2} f_{AM} = 18.5 \text{ Hz}$

$\frac{1}{2} f_{AM} = 18.5 \text{ Hz}$

Neural Modulation Coding

Amplitude Modulation (AM)

Phase Modulation (PM)

\[\alpha = (\phi_{\text{upper}} - \phi_{\text{SSR}}) - (\phi_{\text{SSR}} - \phi_{\text{lower}}) \]

\[\alpha_{\text{AM}} = 0 \text{ or } 2\pi \]

\[\alpha_{\text{PM}} = \pi \]
Modulation Encoding, with coding transition at $f_{FM} \sim 5$ Hz
Phase Modulation Encoding below $f_{FM} \sim 5$ Hz
• MEG can address questions of Neural Coding
 • Coarseness of Localization not Intrinsic Obstacle
 • Modulation encoding gives family of response types

• Combined AM/FM modulations are encoded in Auditory Cortex
 • Phase Modulation seen at lowest FM rates
 • Modulation Encoding changes at higher rates

• Single Sideband Modulation unexpected
 • Speculate: Single Modulation Encoding type?
 • Or: Two populations of AM and PM encoding neurons whose phase happens to cancel in lower sideband?