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1. Why online computing in dynamical systems ?



Why „online computing“ ?
Classical models for computation (Turing machines, attractor neural networks) do 
not capture well the actual computational tasks that a biological organism has to 
perform in order to survive: 
It receives continuously new pieces of information, and demands for results of 
computations may arise at any time   (“online computing”, "anytime algorithm", "real-
time computing"):

Hence from a mathematical point of view, neural readouts  have to 
implement  filters (operators), i.e. they map input streams to output streams
(rather than implementing a static function, such as multiplication).



Why online computing in dynamical systems ?
Apparently the first circuits of neurons were already highly recurrent 
dynamical systems…

…and  evolution continued to improve the performance
of such dynamical systems for more specialized tasks 
(e.g. for auditory processing). 

The nervous system of
C-elegans consists of 
302 neurons. 

Shown here is the
(highly recurrent) 
subcircuit for sensory 
processing in the
head of C-elegans.



2.  What makes a dynamical system powerful for 
online computing ?



What computational operations does a dynamical system 
has to perform in order to approximate arbitrary 

Volterra-series  (i.e., fading memory filters) ?
Consider very simple computational models (“liquid state 
machines”) that only consist of a filterbank and a readout 
unit.
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Hence the following functionalities of cortical 
microcircuits would suffice in order to approximate 

any filter F that can be defined by Volterra series
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Insert: What is a kernel  (in the terminology of machine learning) ?

A kernel provides many nonlinear combinations of input variables, in order 
to boost the expressive power of any subsequent linear readout.

Example:  If a circuit precomputes all products xi · xj of  n  input variables 
x1,...,xn, then  every subsequent linear readout can compute any
quadratic function of the original input variables x1,...,xn.

Remark 1: A clear theoretical advantage of linear readouts:    their learning 
cannot get stuck in local minima of the error function. 

This fact suggests that it is advantageous for nature to restrict learning to 
linear devices.

Remark 2: Because of Vapnik’s “kernel trick” one can use in machine 
learning big kernels without additional computational cost. This is 
different for neural circuits that have to implement a kernel explicitly !



Resulting computational model for a generic 
cortical microcircuit



neurons: leaky integrate-and-fire neurons, 20% of them inhibitory, neuron a
is synaptically connected to neuron b with probability 

synapses: dynamic synapses with fixed parameters w, U, D, F
chosen from distributions based on empirical data from the Lab of Markram

input spike trains injected into 30% randomly chosen neurons, with fixed 
randomly chosen amplitudes
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3. Testing our hypotheses through computer
simulations of generic cortical microcircuits



A simple model for a neural readout:
a  linear weighted sum with adaptive weights  w

Each readout neuron receives as 
input a vector x(t), which has as 
many components as it has
presynaptic neurons in the circuit.

The  i-th component  of x(t) 
results from the spike train 
of the  i-th presynaptic neuron by 
applying a low-pass filter, which 
models the low-pass filtering 
properties of receptors and 
membrane of  the readout neuron.

We assume that a readout neuron has 
at time  t  a firing rate proportional to  w · x(t) .



7 linear readouts

with adjustable

weights

What can a generic cortical microcircuit compute in this way ?
Circuit input: 4 Poisson spike trains with 
firing rates f1(t) for spike trains 1 and 2 and 
firing rates f2(t) for spike trains 3 and 4, 
drawn independently every 30 ms from the 
interval [0, 80] Hz



Testing our approach on a popular benchmark task: speech recognition
We consider the task considered by Hopfield and Brody in      PNAS 

2000 and 2001  
(with the same transcription of speech into spike trains):

• recognition of spoken words "zero", "one", ... "nine", each spoken 10 times by 5 different 
speakers, each spoken word encoded into 40 spike trains by Hopfield and Brody 
(we used 300 examples for training, 200 for testing;  note that the circuit constructed by H&B 
did not require any training)



• linear readouts from a generic neural microcircuit model (consisting 
of 135 neurons) recognize after training  spoken test-words as well 
as the ingenious circuit consisting of >> 6000 I&F  neurons 
constructed especially for this task by Hopfield and Brody

• the generic neural microcircuit model can handle linear time warps 
in the input at least as well as the circuit constructed to achieve that
(and it can also handle nonlinear time warps)

• the generic neural microcircuit model classifies the spoken word
instantly when the word ends (i.e., in real-time), rather than 300 –
500 ms later

Comparing the performance of generic diverse 
circuits and constructed circuits for this task:
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readout neuron that
is trained to fire 
whenever „one“ is
currently spoken



Linear readouts from a generic microcircuit model can also 
be trained to classify a spoken word (encoded by spike 
trains), even before the spoken word ends.  Hence generic 
circuit models can implement   “anytime algorithms“.

Example:  anytime recognition of  "one“ :
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Experimental question:
Can your brain still recognize speech after the 

consumption of too much liquid?

This has been tested by   Fernando and Sojakka
(Pattern recognition in a bucket: A real liquid brain, 
ECAL 2003):

“This paper demonstrates that the waves produced on the surface of 
water can be used as a medium for a “Liquid State Machine”.  We made 
a bucket of water, vibrated it with lego motors, filmed the waves with a 
webcam and put it through a perceptron on matlab and got it to solve 
the XOR problem and do speech recognition.” 



• They injected the same speech data as Hopfield and 
Brody into a bucket of water.



Zero One

Food for thought: Both cortical microcircuits and buckets of 
water are  high-dimensional dynamical systems.  Can we figure 
out which inherent properties make  the circuits in the auditory
cortex  better suited as preprocessors for speech recognition ?

Examples for „liquid states“ in a bucket of water:



Hypothesis:   Neural circuits are  particular 
dynamical systems, which are better suited for 

anytime computing (for a particular type of input 
stream) than most other dynamical systems

Analysis of laminar circuit model, 
based on data by Thomson et al,  in 
[Haeusler, Maass, Cerebral Cortex 2006]



4. New results/ideas

a) Relevance of the dynamic mode of the circuit for ist
computational capability

b) Predicting the computational power of a neural circuit

c) Possible implementation of Bayesian inference in 
generic cortical microcircuits

d) Extension of the computational power of generic neural 
circuits through feedback from trained neurons



a)  Relevance of the dynamic mode of the circuit
for ist computational capability

computational performance
of  90 types of circuits
(for randomly selected
classification tasks) in 
different dynamic modes



Edge of chaos in cortical microcircuit models



b) Predicting the computational power of a 
neural circuit

The edge of chaos is reached in these models at rather low firing 
rates  (and cannot be characterized well in terms of firing rates)



Direct evaluation of the
computational performance
of  90 types of circuits
(for randomly selected
classification tasks)

Prediction of computational performance:
Linear dimension („kernel measure“) 
– VC-dimension
for the same
90 types of neural circuits:

The two terms of this difference  
provide explanations
why a circuit has high/low
computational performance.



c)  Possible implementation of Bayesian 
inference in generic cortical microcircuits

One can prove that the shown neural network can achieve the optimal 
classification performance of the Bayesian network if  
• C1 maps saliently different values of                onto linearly independent 

liquid states,  and
• C2 maps saliently different values of                 onto linearly independent 

liquid states.

5,3,1 fff

4,3,2 fff



... perhaps there is a reason why there exist so many
different brain areas (that receive different input 

combinations) 

Shown:   network of visual cortical areas in macaque monkey   

[Felleman, Van Essen, 1991]



d) Extension of the computational power of generic neural 
circuits through feedback from trained neurons



Underlying mathematical theory: There exists a large class Sn of analog 
circuits C with fading memory (described by systems of n first order 
differential equations) that gain through feedback universal computational 
capabilities for analog computing. 

This holds in particular for neural 
circuits C defined by DEs of the formNote: Any Turing machine can be 

simulated by such dynamical 
system [Branicky, 1995], 

hence all digital computations 
(including those that require a non-
fading memory).

(under some conditions on the λi, aij, bi).



5. Is our model for online computing in dynamical 
systems biologically realistic ?

analog fading
memory

kernel

+
nonlinear projection

into high-dimensional
state space
(" ")

input stream
diverse trained 
for specific tasks, provide
outputs at 

readouts, 

any time

Predictions of this model: Generic cortical microcircuits exhibit   

a) Temporal integration of information
b) General purpose nonlinear preprocessing (kernel-property)
c) Artefacts that result from keeping the system near the edge-of-chaos
d) Diversity of readouts



Biological evidence for temporal integration in the
auditory cortex of rats [Asari, Oviedo, Zador, 2006]

3 different natural sounds 
(indicated by 3 different 
colors) precede a fixed 
natural sound that starts 
at time 0.

Each line shows the
response of  the same
neuron at a different trial
(in-vivo whole cell 
recording).

Result: 
The response after time 0  
conveys information both 
about the current 
AND the preceding stimulus  („temporal integration“)



6.  Open Problems

• Which circuit architectures and learning algorithms 
optimize neural circuits (or artificial devices) as 
preprocessors for auditory processing ?

• Measure the amount of information that various 
components of the auditory system contain about 
preceding auditory inputs

• How does the auditory system deal with adaptive 
processes on various time scales (and possible ongoing 
activity) ?

• Which learning algorithms train the „readouts“ at various 
stages of the auditory system ?


